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Abstract

This paper presents the design of an H∞-based Restricted Static Output Feedback (RSOF)
controller with regional pole placement in Linear Matrix Inequality (LMI) framework for Load Fre-
quency Control (LFC) of a 2-area Interconnected Power System (IPS). The motivation behind the
RSOF controller is to develop a controller with a predefined structure for implementing centralized
and decentralized control strategy as per need. In this work a new stabilization criterion is devel-
oped by choosing circle and strip LMI regions for pole-placement along with the use of Particle
Swarm Optimization (PSO) technique to tune the scalar parameters for the feasibility of the de-
veloped LMI criterion. The designed controller (both centralized and decentralized structure) with
the above modifications improves the transient response of the frequency output. The designed
controller is tested on a 2-area LFC model incorporating both conventional and renewable energy
sources. Simulation results validate the effectiveness of the designed controller in attenuating dis-
turbance and also enhancing the transient response. Also, simulation studies are carried out to
test the robustness against time delays and cyberattacks. A comparative analysis is presented for
various controllers, highlighting their performance differences.

Keywords: Load Frequency Control (LFC), Restricted SOF controller, Pole Placement, par-
ticle swarm optimization (PSO).
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1 Introduction
Interconnected power systems (IPS) are constantly being upgraded to include renewable energy

sources (RES) like wind and solar [1]. These RES help reduce carbon emissions. However, adding
many wind and solar generators to IPS causes significant fluctuations in power generation. These
fluctuations when combined with the load changes increases the imbalance between generation and
demand that leads to frequency deviation in the power grid from the normal limit. Thus, Load
Frequency Control (LFC) is essential to manage the frequency changes that eventually maintains the
balance between power generation and demand in the IPS.

Many controller models have been studied in the field of LFC for IPS. These include robust PI
controllers [2], [3], sliding mode controllers (SMC) [4, 5, 6], model predictive controllers (MPC) [7],
PID controllers [8], and state feedback control [9]. PI controllers and their variants are widely used
in industry because of their simple design, however to handle the uncertainties and disturbances,
the controller gains are tuned using metaheuristic approaches [10, 11, 12, 13]. These metaheuristic
approaches for PI designs are effective but suffers from the drawbacks of analytical tractability of
the algorithms, computational burden and implementation issues in real-time power systems due to
involvement of many slack variables that are not related with the system dynamics or power system
parameters. In contrast the state-space mathematical models of LFC uses Lyapunov based controller
design methods that has the advantages of the tractability of the design, ease of computation while
handling different types of system complexities, uncertainties and constraints. The authors are referred
to some important LMI-based design and tuning of controller methods from [9, 8, 14, 15, 16].

State feedback control design [17, 9] is not practical due to the requirement of all the state in-
formation to be feedback to the controller. This design is not viable economically, computationally
and for physical realizability. While, output feedback controller design [18, 19] instead uses partial
state information for computing the controller gain. But the design of output feedback controller is
computationally challenging in terms of computing control gains that can give better performance
with limited state information. For a large scale system (in this case multi-area IPS) where various
subsystems (rather power system areas) are spread out over a large geographical area having many
state information designing a centralised control scheme may lead various operational, computational
and communication problems. As opposed to centralised control, decentralized control collects state
information of the local power system area to have individual controllers for each power system area
[6, 20].

The work in this paper is motivated from the work reported on restricted static output feedback
(RSOF) controller to design a decentralised control scheme [21] and [22]. The method presented
in these literature requires decomposition of the diagonal and off-diagonal terms of the Lyapunov
matrices in order to obtain predefined control gain matrix. It is worth mentioning at this stage that,
the design in [21] and [22] uses a decomposition technique that requires controller gain matrices to be
purely square. This square structure constraint in-turn imposes limit on the selection of number of
outputs that consequently affects the solvability of the LMI conditions for large scale systems.

The inherent structural shortcoming discussed above about the design methods presented in [21]
and [22] restricts one to implement the results as it is for stabilising and enhancing the dynamic
performance of any large-scale system. Thus, the design in [21] and [22] needs modifications in terms
of an appropriate LMI region to place the closed loop poles to circumvent the inherent structural
restrictions of the reported design. The novelty of this work lies in reporting the inherent shortcomings
of the design methods in [21] and [22] for any large scale system and thereby point out the source
of modification to obtain computationally feasible solution that can stabilise as well as enhance the
dynamic performance of any large sacle system. In this work, first a 2-area LFC system model with
renewable energy sources is proposed as a large scale system and secondly following the method in [22]
a RSOF controller is designed with an appropriate combination of circular and strip LMI regions for
pole-placement ensuring a feasible design a the large-scale system. Further, the current design uses
a PSO-based metaheuristic optimization algorithm to tune the arbitrary scalar parameters involved
in the LMI constraints unlike the use of “fminsearch” algorithm used in [22] with a suitable objective
function.

The proposed controller design is implemented in a large-scale interconnected power system model



https://doi.org/10.15837/ijccc.2024.6.6857 3

to show the efficacy of the design and it is compared with the results reported in [14, 15]. Additionally,
robustness studies are conducted to assess the proposed controllers’ effectiveness in managing time
delays and cyberattacks [24] and [25].

The paper is organized as follows: The introduction provides an overview of the study. System
Model and Description detail the system’s mathematical model. H∞ Controller Design covers the
design and optimization of the controller. Simulation Results presents and analyzes the simulation
outcomes. The conclusion summarizes the findings and suggests future work.

Table 1: Notations Used in the Paper

Notation Description
X = XT > 0 Positive definite symmetric matrix

XQ = XT
Q Symmetric matrix XQ

XT Transpose of a matrix X
N (·) Null space of a matrix
R(·) Range space of a matrix

* Symmetric component in the matrix

2 System Model and Description
This section describes the state space model of the considered large-scale interconnected power

systems with conventional sources and renewable energy sources (wind, PV). A two-area LFC scheme
of the IPS is considered here, as shown in Fig. 1. One area has a wind energy source along with a con-
ventional source while the second area is connected with a PV source along with a conventional source.
Wind or solar power generation and changes in the power demand are considered as a disturbance to
the IPS. The dynamical equations representing the LFC system are given in (1) - (11).

∆ḟ1(t) = − 1
Tp1

∆f1(t) + kp1
Tp1

∆Pt1(t) + kp1
Tp1

∆PW T G(t) − kp1
Tp1

∆Pd1(t) − kp1
Tp1

∆PT ie(t) (1)

∆Ṗt1(t) = − 1
Tt1

∆Pt1(t) + 1
Tt1

∆Pg1(t) (2)

∆Ṗg1(t) = − 1
R1Tg1

∆f1(t) − 1
Tg1

∆Pg1(t) + 1
Tg1

∫
ACE1(t) + 1

Tg1
u1(t) (3)

˙∫
ACE1(t) = B1∆f1(t) + ∆PT ie(t) (4)

∆ṖW T G(t) = − 1
TW T G

∆PW T G(t) + 1
TW T G

∆PW (t) (5)

∆ṖT ie(t) = 2πT12∆f1(t) − 2πT12∆f2(t) (6)

∆ḟ2(t) = − 1
Tp2

∆f2(t) + kp2
Tp2

∆Pt2(t) + kp2
Tp2

∆PP V (t) − kp2
Tp2

∆Pd2(t) + kp2
Tp2

∆PT ie(t) (7)

∆Ṗt2(t) = − 1
Tt2

∆Pt2(t) + 1
Tt2

∆Pg2(t) (8)

∆Ṗg2(t) = − 1
R2Tg2

∆f2(t) − 1
Tg2

∆Pg2(t) + 1
Tg2

∫
ACE2(t) + 1

Tg2
u2(t) (9)

˙∫
ACE2(t) = B2∆f2(t) + ∆PT ie(t) (10)

∆ṖP V (t) = − 1
TP V

∆PP V (t) + 1
TP V

∆PS(t) (11)
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Figure 1: Structure of a 2-area LFC System

The large-scale interconnected system can be represented in state space form as follows.

ẋ(t) = Ax(t) + Bu(t) + Dw(t)
y(t) = Cx(t) + Dyww(t) (12)
z(t) = Czx(t) + Dzuu(t) + Dzww(t)

where, the state vector is denoted as x(t) ∈ ℜ11, the control input vector as u(t) ∈ ℜ2, the output
vector as y(t) ∈ ℜ2, and the disturbance vector as w(t) ∈ ℜ4. The specific definitions for these vectors
are provided in (13).

x(t) =
[
∆f1, ∆Pt1, ∆Pg1,

∫
ACE1, ∆PW T G, ∆PT ie, ∆f2, ∆Pt2, ∆Pg2,

∫
ACE2, ∆PP V

]
,

y(t) =
[∫

ACE1,

∫
ACE2

]
,

z(t) =
[
∆f1,

∫
ACE1, ∆PT ie, ∆f2,

∫
ACE2

]
w(t) = [∆PD1 ∆PW ∆PD2 ∆PS ]T ,

u(t) = [u1 u2]T ,

(13)

The SOF control law for the system (12) is

u = Ky(t) (14)

The closed-loop system is given by[
˙x(t)

z(t)

]
=

[
A B
C D

] [
x(t)
w(t)

]
(15)

where

A = A + BKC B = D + BKDyw

C = Cz + DzuKC D = Dzw + DzuKDyw

The closed-loop transfer function matrix from w(t) to z(t) is

Tzw(s) = C(sI − A)−1B + D (16)
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3 H∞ Controller Design
The controller design presented in this section is motivated from the design in [22]. The design

considers combination of circle and strip regions LMI regions instead of conic regions in [22]. The
following lemmas related to H∞ performance (16) are taken from [22] and presented here without
proof for establishing the main result.
Lemma 1 [22]. The following statements are equivalent to γ > 0.

1. ∥Tzw(s)∥ < γ and A is Hurwitz.

2. There exists X = XT > 0 satisfying Sym
{

AX
}

∗ ∗
B

T −γ2I ∗
CX D −I

 < 0 (17)

Condition (17) is BMIs due to the involvement of the term BKCX.

Lemma 2 [22]. For the matrices L, M, N and O of appropriate dimensions, the condition[
L MT OT

OM −O − OT + N

]
< 0 (18)

implies
L + MT NM < 0 (19)

Lemma 3 [22]. For arbitrary matrices S, T and V = V T > 0, the following holds:

ST + T T ST ≤ SV ST + T T V −1T (20)

3.1 Decomposition of X

The following statements about matrices Q ∈ N (C) and R ∈ R(C), where N (·) represents the
null-space and R(·) denotes the range-space, are straightforward.

1. Any matrix X can be decomposed as

X =
[

QT

RT

]T [
XQ XS

XT
S XR

] [
QT

RT

]
, with

[
XQ XS

XT
S XR

]
> 0 (21)

where XQ ∈ ℜ(n−p)×(n−p), XS ∈ ℜ(n−p)×p and XR ∈ ℜp×p. Since CQ = 0, CR = 1, and
X = QXQQT + RXT

S QT + QXSRT + RXRRT , one obtains

CX = XSRT + XT
S QT (22)

2. For all K and X, there exist an invertible matrix XR ∈ Rp×p and a matrix YR ∈ Rm×p such
that the following decomposition holds

KCX = YRRT + YRX−1
R XT

S QT (23)

with
KXR = YR (24)

Lemma 4 [22]. The stability of system (12) with controller and the assurance of performance
||Tzw(s)|| < γ are guaranteed if there exist scalars ρ1 and ρ2. This existence is contingent upon
matrices XQ = XT

Q, XR = XT
R , ZR = ZT

R , alongside XS and YR satisfying the following LMI:
Ψ1 ∗ ∗ ∗ ∗
Ψ2 −γ2I ∗ ∗ ∗
Ψ3 Dzw −I ∗ ∗
ΨT

4 0 Y T
R DT

zu −ZR ∗
ρ1XT

S QT ρ1Dyw 0 0 −Ψ5

 < 0, (25)
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Figure 2: Regions D(q,r) and Ha

[
XQ XS

XT
S XR

]
> 0, ZR > 0, (26)

where

Ψ1 = Sym {Ξ1 + Ξ2}
Ξ1 = AQXQQT + ARXT

S QT + AQXSRT + ARXRRT ,

Ξ2 = BYRRT − ρ2RXT
S QT ,

Ψ2 = DT − ρ2DT
ywRT ,

Ψ3 = CzX + DzuYRRT ,

Ψ4 = BYR + ρ2RXR

Ψ5 = Sym {ρ1XR} − ZR

The proof of the Lemmas 1-5 are given in [22].

3.2 Pole Placement within Circular and Strip LMI Regions

Pole placement enhances the transient performance of the closed-loop system by strategically
positioning the poles. This section expands the robust H∞ performance to incorporate pole placement
within circle and strip regions. The LMI region for pole placement with circular and strip regions is
shown in Fig. 2. The characteristic equation related to circle region D(q,r) is

fV(z) =
[

−r q + z
q + z̄ −r

]
< 0, (27)

Hence, the matrix inequality criterion corresponding to placing the closed-loop poles within D(q,r)[
−rX qX + AX

qX + XA
T −rX

]
< 0. (28)

Similarly, the characteristic equation and the matrix inequality associated with the strip region Ha

are

fV(z) = z + z̄ + 2a < 0 (29)

Sym
{

AX
}

+ 2aX < 0 (30)

Theorem 1. The closed-loop poles of the system are positioned within the regions D(q,r) and Ha

if, for scalars α1, α2 there exist positive definite matrices XQ = XT
Q, XR = XT

R , and ZR1 = ZT
R1,
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ZR2 = ZT
R2, along with matrices XS and YR, satisfying the following LMIs:

−rX ∗ ∗ ∗
qX + ΞT

1 + ΞT
2 −rX ∗ ∗

0 ΨT
4 −ZR1 ∗

α1ΠT
1 0 0 −Π2

 < 0, (31)

 Ψ1 + 2aX ∗ ∗
ΨT

4 −ZR2 ∗
α2ΠT

2 0 −Π3

 < 0, (32)

where

Π2 = Sym {α1XR} − ZR1

Π3 = Sym {α2XR} − ZR2

3.3 Parameter Tuning Using PSO

In this section, an algorithm for tuning the scalar parameters in the LMI is presented. For a large-
scale system, an algorithm like fminsearch cannot provide a feasible solution due to the necessity of
a large search space. Therefore, a metaheuristic approach, PSO, is chosen because of its advantages,
such as its ability to handle high-dimensional search spaces and its robustness against local minima.
The appropriate selection of the parameters ρ1, ρ2, α1, and α2 is essential for stabilizing the system
and improving the transient performance through effective pole placement. The pseudo-code for
optimization using the PSO algorithm is summarized in Algorithm 1.

Algorithm 1 Psuedo code for optimization using the PSO algorithm
1: Initialize the PSO algorithm by selecting the parameters ρ1, ρ2, α1, and α2.
2: Obtain state space matrices A, B, C, Dyw, Cz, Dzu, Dzw from (12) and select suitable values of q, r

and a for pole placement.
3: Set the maximum number of iterations and the minimum and maximum limits of the variables for

the PSO algorithm.
4: Define the objective function to minimize the disturbance attenuation parameter G = √

γ.
5: for each iteration do
6: Run the mincx algorithm to find the solution that satisfies the LMI constraints of Lemma 4

(25, 26) and Theorem 1 (31, 32) for the chosen parameters from PSO.
7: if the obtained γ is not the least so far then
8: Update the parameter values.
9: end if

10: end for
11: Obtain the optimized gains after the final iteration.

4 Simulation Results
In this section, a 2-area LFC model represented in (12) is simulated with the centralized and de-

centralized control schemes. The closed loop system is simulated with the following model parameters
given in Table 2 for the constant matrices indicated in (12) and the parameters for circular and strip
regions of pole placement are q = −13; r = 12.75; a = −0.5. Load disturbances of Pd1 = 0.01p.u and
Pd2 = 0.01p.u are considered.

4.1 Centralized control

In this section, the controller gain of the designed centralized control is obtained by solving the
LMI conditions in (25) to (26) and (31), (32) using Algorithm 1. For designing a centralized control,
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Figure 3: Comparison of ∆f for centralized and decentralized controller in (a) area 1 and (b) area 2

no restrictions are needed on the matrices XR and YR. The controller gain matrix K obtained for
centralized control is given below.

K =
[

−0.1626 −0.0322
0.0823 −0.1485

]
(33)

The pole placement parameters tuned by the PSO algorithm for centralized control are ρ1 = 2,
ρ2 = −1.2642, α1 = 5.2768, and α2 = 4.6087.

4.2 Decentralized control

To obtain decentralized control, the same LMI conditions in (25), (26) and (31), (32) using Al-
gorithm 1 are solved but by applying restrictions on the matrices XR, YR such that the controller
gain matrix K is restricted to decentralized structure. XR ∈ Rp×p is restricted to be a block diagonal
matrix while YR ∈ Rm×p is restricted to have the same structure as controller gain matrix K ∈ Rm×p.

The controller gain matrix K obtained for decentralized control is given below.

K =
[

−0.1637 0
0 −0.1777

]
(34)

The pole placement parameters tuned by the PSO algorithm for decentralized control are ρ1 = 2,
ρ2 = −1.0494, α1 = 4.2379, and α2 = 5.0571.

The LFC parameters listed in Table 2 are provided in the per-unit system. Area 1 consists of
two generators, each with a capacity of 500 MW, while Area 2 contains four generators, each with a
capacity of 500 MW [23].

Table 2: Parameters of the LFC of a 2-area power system

Parameter Kpi Tpi Bi Tgi Tti Ri TW T G TP V

Area 1 1 10 41.0 0.1 0.3 0.05 1.5 -
Area 2 0.6677 8 81.5 0.4 0.17 0.05 - 1.3

4.3 Performance of Centralized and Decentralized Controllers

In this section, the performance of centralized and decentralized controller designs are compared
for stabilization and disturbance attenuation. Fig. 3 shows the frequency deviation, and Fig. 4 shows
the control input of both the areas. Fig. 5 displays the disturbance attenuation γ for centralized and
decentralized controllers. Here, only one output (

∫
ACE(t)) is considered per area to show that the

controller can mitigate the disturbance even with fewer outputs.

4.4 Comparitive Analysis

In this section, a comparison of the designed controller with the controllers used in recent pub-
lications is presented. Table 3 shows the type of controller used and the number of outputs utilized
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Figure 4: Comparison of ui for centralized and decentralized controller in (a) area 1 and (b) area 2
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Figure 5: Comparison of √
γ obtained from PSO for (a) centralized and (b) decentralized controllers

in the controller design. From Table 3, it can be observed that as the number of outputs increases,
the controller gains also increase, which helps to improve transient performance. This is because,
with more outputs, there is more flexibility in designing the controller. However, as mentioned ear-
lier, to maintain a square matrix structure for the controller, it is only feasible to use two outputs.
Consequently, in such cases, the controller gain is lower, and the disturbance attenuation is higher.

Table 3: Comparative analysis of the controllers

Controller No. of outputs ||K|| Disturbance attenuation γ

Centralized control 2 0.1918 10.7922
Decentralized control 2 0.1777 10.4001

Overlapping [15] 5 0.59 2.56
Decentralized [14] 7 14.39 3

Centralized [9] 9 112.13 4.0124

Figure 6: Structure of 2-area LFC with time delay
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Table 4: Calculated maximum delay bounds for both areas

τ1 Maximum delay bound τ2 Maximum delay bound τ1 τ2

Centralized
1 5 6 1
2 4.75 6.05 2
3 3.1 6.25 3
4 2.88 2.5 4
5 3 2.3 4.5
6 3.42 1.5 5

Decentralized
1 3 7.9 1
3 2.42 8.02 1.5
5 2.77 8.2 2
7 3.19 8.3 2.5
8 3.31 8.4 3
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Figure 7: Comparison of ∆f for centralized and decentralized controller with time delays τ1 = 2 and
τ2 = 1.2 seconds in (a) area 1 and (b) area 2

4.5 Robustness study with time delay

In this section, a robustness study is conducted against time delay for both centralized and decen-
tralized control strategies. This robustness study with time delays is conducted due to the evolving
nature of power systems, which are transitioning toward deregulated markets that rely on open com-
munication networks, such as TCP/IP. In these networks, delays often arise in communication between
the controller and actuator due to factors like network congestion, packet loss, and other related issues
[9]. Fig. 6 shows the block diagram of the 2-area LFC scheme, incorporating time delays between the∫

ACE(t) signal and the actuator. Table 4, shows the delay bounds for both cases in two areas [9].
Since typical delays in LFC systems range from 2 to 4 seconds, the proposed controller demonstrates
its ability to stabilize the system within these acceptable delay bounds. Fig. 7 shows the frequency
deviation for both areas when time delays of τ1 = 2 seconds and τ2 = 1.2 seconds are introduced,
respectively. The results indicate that the frequency deviation in the decentralized case is slightly
greater than in the centralized case, although the two are relatively similar.

4.6 Robustness study with time delay and cyberattacks

In this section, the robustness of the proposed controller is analyzed in the presence of both time
delays and a Man-in-the-Middle (MitM) cyberattack, specifically focusing on False Data Injection
(FDI) attacks targeting the actuator.Open communication networks are vulnerable to cyberattacks,
making it crucial to address these attacks and other network-related challenges. As a result, transi-
tioning existing power systems into a Cyber-Physical Power Systems (CPPS) framework is becoming a
key trend. MitM attacks are typically classified as either passive or active; passive attacks involve the
attacker only monitoring data without interference, whereas active attacks involve direct manipulation
of the data [25]. In this case, the study addresses an active MitM attack where the input signal, u(t),
is compromised by false data injection, represented as v(t).
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Figure 8: Structure of 2-area LFC with time delay and cyberattack
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Figure 9: Frequency deviation of both areas with time delays τ1 = 2 and τ2 = 1.2 seconds and
deterministic cyberattack [24] for centralized and decentralized controller in (a) area 1 and (b) area 2
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Figure 10: Frequency deviation of both areas with time delays τ1 = 2 and τ2 = 1.2 seconds and
stochastic cyberattack [25] for centralized and decentralized controller in (a) area 1 and (b) area 2

The manipulated control signal is expressed as:

u′
i(t) = ui(t) + vij(t) ∀t ∈ [tℓ, tℓ+1) (35)

where vij(t) represents the MitM attack, treated as an input disturbance, contrasting with sensor
disturbances discussed in [24]. In this analysis, both deterministic and stochastic forms of cyberattacks
are considered. The case of j = 1 references the attack model from [24], while j = 2 follows the attack
scenario from [25].

vi1(t) =


0.2 0 < t < 10
0.5sin(2t) + 0.5

t2 10 < t < 20
0.2sin(t) 20 < t < 30
0.3cos(t) otherwise
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vi2(t) follows the Gaussian distribution with E{vi2(t)} = 0 and E{v2
i2(t)} = 1.

Figs. 9 and 10 illustrates the frequency deviations, ∆fi (i = 1, 2), in response to MitM cyberat-
tacks. The impact of various types of cyberattacks on ∆fi is depicted in Figs. 9 and 10, demonstrating
the distinct effects produced by each attack scenario.

5 Conclusion
In this work, an H∞-based RSOF controller with regional pole placement in the LMI framework

is designed for LFC of a 2-area interconnected Power System. The two key contributions of this
paper are: first, a new LMI criteria employing a combination of circular and strip LMI regions for
pole placement to ensure feasible controller design is proposed for large scale system and, secondly,
PSO-based metaheuristic optimization algorithm is proposed with disturbance attenuation factor γ as
objective function to find the feasible solution subject to various LMI constraints. Simulation results
depicts that both centralized and decentralized controllers effectively stabilize the system and mitigate
disturbances with only two considered outputs. The norm of the controller gain is significantly lower
compared to other methods indicating that the current design uses reduced control effort. Thus,
one can conclude that the modification suggested in the current design for large scale system has
the potential in enhancing the performance of an interconnected power system with diverse energy
sources. The designed controller when tested with with time-delay and cyberattacks, it is found that
the controller is robust enough to deal with stability and disturbance rejection. In future, decentralized
control design with rectangular structure of output matrices for large scale system will be attempted.

Appendix: Proof of Theorem 1
The matrix inequality given in (28) can be written as[

−rX qX + AX

qX + XA
T −rX

]
=

[
−rX qX + Ξ1 + Ξ2

qX + ΞT
1 + ΞT

2 −rX

]
+

[
0 Ψ4X−1

R XT
S QT

QXSX−1
R ΨT

4 0

]
(36)

The second part of the RHS of (36) can be rewritten as follows[
0 Ψ4X−1

R XT
S QT

QXSX−1
R ΨT

4 0

]
=

[
0

Ψ4

]
X−1

R

[
QXS

0

]T

+
[

QXS

0

]
X−1

R

[
0

Ψ4

]T

(37)

Setting

U =
[

0
Ψ4

]
X−1

R , V =
[

XT
S QT 0

]
, W = XRZ−1

R1 XR,

using Lemma 3, (37) can be rewritten as,[
0 Ψ4X−1

R XT
S QT

QXSX−1
R ΨT

4 0

]
≤

[
0

Ψ4

]
(Z−1

R1 )
[

0
Ψ4

]T

+
[

QXS

0

] (
X−1

R ZR1X−1
R

) [
QXS

0

]T

(38)

Substituting (38) in (36) and using Schur compliment[
−rX qX + AX

qX + XA
T −rX

]

=
[

−rX qX + Ξ1 + Ξ2
qX + ΞT

1 + ΞT
2 −rX

]
+

[
0

Ψ4

]
(Z−1

R1 )
[

0
Ψ4

]T

+
[

QXS

0

] (
X−1

R ZR1X−1
R

) [
QXS

0

]T

=

 −rX ∗ ∗
qX + Ξ1 + Ξ2 −rX ∗

0 ΨT
4 −ZR1

 +

 Π1
0
0

 [
X−1

R ZR1X−1
R

]  Π1
0
0


T

(39)
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Using Lemma 2 and substituting the following leads to deriving the LMI associated with the circular
region given in (31).

L =

 −rX ∗ ∗
qX + Ξ1 + Ξ2 −rX ∗

0 ΨT
4 −ZR1

; MT =

 Π1
0
0

 X−1
R ; N = ZR1; O1 = α1XR;

Similarly, the same procedure can obtain the LMI for the strip region as presented in (32).
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