INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 20, Issue: 4, Month: August, Year: 2025
Article Number: 6847, https://doi.org/10.15837 /ijccc.2025.4.6847

communication

R RN
[uni]

cc PUincationS UNIVERSITY PRESS

computing

Multiple-UAV Path Planning in Obstacle Environments with
Evolutionary Computation

Bui Trong Dung, Trinh Van Chien, Van Son Nguyen, Minh T. Hoang,
Phuong Nhung Do, Hoang Anh Dang

Bui Trong Dung and Trinh Van Chien

School of Information and Communication Technology

Hanoi University of Science and Technology, Vietnam

No.1, Dai Co Viet Street, Hai Ba Trung, Hanoi, Vietnam
dung.bt207594@sis.hust.edu.vn and chientv@soict.hust.edu.vn

Van Son Nguyen*

Faculty of Electrical and Electronic Engineering

Hanoi Open University, Vietnam

B101 Nguyen Hien Street, Hai Ba Trung, Hanoi, Vietnam
*Corresponding author: sonnv@hou.edu.vn

Trong Minh Hoang

Telecommunication Faculty Nol

Posts and Telecommunications Institute of Technology, Vietnam
Hanoi, Vietnam

hoangtrongminh@ptit.edu.vn

Phuong Nhung Do and Hoang Anh Dang

Faculty of Electrical and Electronic Engineering

Hanoi Open University, Vietnam

B101 Nguyen Hien Street, Hai Ba Trung, Hanoi, Vietnam
dpnhung@hou.edu.vn and anhdh.dttt@hou.edu.vn

Abstract

Broadcasting to various devices is a critical requirement when applying 5G and B5G networks.
Unmanned aerial vehicles (UAVs) are expected to facilitate wireless 5G connection to remote areas
with high data transmission speed. However, optimizing the flight paths of multiple UAVs is a
significant challenge. The primary concerns include ensuring the UAVs avoid collisions with each
other and with obstacles in the flying environment while maintaining efficient end-to-end routes.
To address the challenge, this research proposes effective multiple-UAV route planning techniques.
Two multiple-UAV approaches based on genetic algorithm (GA) and particle swarm optimization
(PSO) are utilized in this paper. In complex scenarios, the proposed methods effectively determine
the optimal UAV routes while satisfying various constraints. Simulation results indicate that GA
is faster to output final paths but PSO has better flight paths.

Keywords: unmanned aerial vehicles, 5g networks, route planning, genetic algorithm, particle
swarm optimization.
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1 Introduction

The rapid development of wireless communication technology [21, 41] has made the fifth generation
(5G) and beyond 5G (B5G) networks superior to previous generations [37]. Unique features of 5G such
as high data transmission, low latency, and real-time connection to multiple devices [4, 8, 28, 31, 35]
facilitate high performance and reliable applications [7, 43]. While 4G/LTE has improved signifi-
cantly in transmission speed and connection quality [17], 5G/B5G networks still offer outstanding
enhancements with larger bandwidth [18]. These features enhance user experience [2] and create
new opportunities for the telecommunication industry, particularly the IoT industry [39, 45]. 5G
technology facilitates smart homes, a common application of the IoT, by enabling high-speed commu-
nication. The network enables homeowners to remotely access and operate their devices, including
lights, thermostats, and security systems, with little latency. The low latency connectivity guarantees
that commands are performed almost immediately, making controlling home environments quicker and
more efficient. In smart city applications, 5G is the foundation for autonomous traffic management,
real-time weather updates, energy-saving technologies, and smart lighting. It also facilitates effective
water resource management, crowd control, and emergency response systems. Hence, smart city users
benefit from the high-speed and reliable connectivity that 5G provides. Unmanned aerial vehicles
(UAVs) are important components of modern applications in 5G/B5G networks [34]. In remote areas,
UAVs can provide temporary connection [5, 27], perform security surveillance operations [24], and
support emergencies [13, 14]. Additionally, they can act as aerial base stations to enhance 5G wireless
networks, therefore, the quality of service is improved and their coverage areas are broadened [23, 25].
A way to utilize UAVs is by planning UAV routes and optimizing the UAV path-finding process. It
offers numerous benefits, including minimizing travel time, saving energy, and avoiding danger zones
or obstacles [1, 3, 20, 32, 33, 44, 46, 49, 54, 56]. UAVs operate in a three-dimensional space with
dynamic elements and their planning process is a complex challenge [6, 36]. To pilot through the di-
mensions and avoid possible collisions successfully, a path-planning algorithm has to consider several
factors. One of the challenges that have to be acknowledged when planning UAV flight routes is the
environmental complexity [1, 9, 50].

Although many path-planning techniques exist, this research focuses on multi-UAV approaches
and their suitability for complex, obstacle-rich environments. While effective in smaller problems,
traditional shortest path algorithms, including the Dijkstra algorithm, struggle with scale and com-
plexity in large-scale applications [42]. We explore alternative methods such as PSO (Particle Swarm
Optimization) and GA (Genetic Algorithm), which can manage complicated search spaces [10, 12,
16, 26, 30, 47, 55]. Additionally, these techniques can simultaneously handle the multiple-UAV issue
[15, 52]. Particle Swarm Optimization (PSO) offers its simplicity [22, 40, 48], fast convergence [10],
and ability to handle complex search spaces [22] which make it well-suited for UAV path planning.
In addition to PSO and GA, there are also other options. While sampling-based approaches can
handle diverse information from previous planning iterations, they often get stuck in local minima
and cause long exploration time [38, 51]. In dynamic environments, reinforcement learning shows
promises [11] but formulating reward functions for situations can be challenging [29]. Therefore, this
research explores the potential of utilizing PSO and GA in the multiple-UAV scenario. We simulate
to evaluate their performance and decide which method provides a more effective solution for UAV
route planning. While several studies have focused on using Particle Swarm Optimization (PSO) in
multi-UAV path planning in obstacle environments [19], this paper introduces the Genetic Algorithm
(GA) as a novel approach. Additionally, we provide a detailed computational complexity comparison
between GA and PSO, which has not been seen in solving the multi-UAV path planning problem in
complex environments using hybrid PSO.

This paper can be utilized in various critical scenarios, especially in disaster response and emer-
gencies. In disaster areas like fire in forests with high tree density, UAVs are ideal for retrieving
emergency information from remote regions [53]. These environments have significant challenges, such
as navigating through tree canopy, encountering weather conditions, and avoiding natural obstacles
like waterfalls. Additionally, UAVs sometimes have to navigate around restricted flight regions, pro-
tected areas, and signal interference. Optimized path planning methods proposed in this research help
to ensure that UAVs can be directed efficiently and allow crucial messages to be transmitted quickly
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Figure 1: The considered system model

to the information collection base station or directly to rescue teams.

2 System Model & Optimization Problem

As shown in Figure 1, the map illustrates the starting points of both UAVs, their destination, and
the locations of obstacles. The established routes must avoid obstacles and prevent collisions with
another UAV. Moreover, the total travel time needs to be as short as possible. Additionally, if both
UAVs need to pass through the same point on the map, only one can cross at a time, as they must
maintain a safe distance from each other at all times.

2.1 UAYV Path Representation and Segment Calculation

The UAV’s path is represented as a sequence of redirect points, each point is defined by its coordi-
nates (z;,y;) and corresponding UAV speed v;. The segment between (z;, y;,v;) and (41, Yit1, Vit1)
redirect points is defined as the path segment S;. To determine the coordinates of a UAV at any given
time ¢ along a path segment .S;, we use the following formulas

(t —t)  (ziy1 — 23)

x(t) = P— + 2, (1)
i+1 7

iy = Lm0 ©)
i+1 7

where t; represents the time when the UAV reaches point (z;,y;, v;), where ¢; <t < t;4.

2.2 Formulated Optimization Problem

The cost function evaluates UAV flight paths based on three key factors: time cost, danger zone
cost, and collision cost. The time cost for UAV j, denoted as Cijme j, represents the time it takes for
UAV j to complete its task. The total time cost for both UAVs can be calculated as

Ctime = Z CtimeJ- (3)
J
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Figure 2: Genetic algorithm output paths

The danger zone cost is computed by summing the costs incurred during each time interval when
a UAV is inside a dangerous zone. The total danger zone cost can be expressed as

Cdangerizones = Z Cdangerizonesit- (4)
t
Here, Cganger zones t stands for danger zone cost at time interval . The cost at each time interval
is determined by distance between the UAV and center of a danger zone, its speed, and a penalty
coefficient k1. Mathematically, the danger zone cost for the UAV at time interval ¢ is expressed as

0 if dt Z dmin;

Cdan er__zone: t
g ones [. l l
v Z;k 1 t < mins

()

where d; represents the distance between the UAV and the danger zone center at time t , v; denotes
its speed at time t, and k1 is the penalty coefficient. The collision cost is incurred when the distance
between two UAVs falls below the distance threshold for detecting a UAV collision. The total collision
cost can be expressed as

Ccollision = Z C'collision_t- (6)
t

Here, Ccopision t stands for collision cost at time interval ¢. The cost at each time interval is
determined by the distance between the two UAVs, velocities, relative velocity, and penalty coefficient
k2. The collision cost for both UAVs at time intervals ¢ is expressed as

0 if dt 2 dminy

Cco ision_t — 7
llision_t (v1 + v2d+ ov)k2 itd, < do (7)
t

Here, at each interval time ¢, d; represents the distance between two UAVs, v; and vy stand for
the velocities of UAV 1 and UAV 2, respectively, dv is the relative velocity between those UAVs and
k2 is the penalty coefficient for UAV collisions.

We now formulate the constraints and objective function for our optimization problem. Our
objective is to minimize the total cost, denoted as C, which includes three individual costs, which are
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Figure 3: Particle swarm optimization output paths

time cost, danger zone cost, and collision cost. The objective function is expressed as

minimize C' = Ctime + Cdanger zones + Ceotlision (8)
subject to  (x1,y1) = (Tstart, Ystart) 9)
(TnsYn) = (Tend, Yend) (10)
0 <2 < Tpax (11)
0 < ¥i < Ymax (12)
Umin < ¥ < Umax- (13)

In addition to minimizing the total cost, the constraints are designed to ensure that the UAV will
fly along the expected flight path, from the source to the destination location which is shown in (9)
and (10), through redirect points, in permitted areas, which is demonstrated in (11) and (12). At
redirect points, they can rotate when flying, and those intermediate locations’ coordinates can be
updated by algorithms. To ensure flight safety but still fly effectively, the UAVs’ velocity has to be
limited within a speed range in (13).The sensitivity to weather conditions such as wind, rain or other
environmental factors has significant impacts on specific UAVs due to the configurations. To keep a
general framework, we have not considered these environmental factors in this work.

3 Proposed Solution

3.1 Methodological Approach

The Particle Swarm Optimization (PSO) approach is outlined in 1. Initially, a swarm of particles
is generated randomly, where each particle represents a potential pair of end-to-end UAV paths. These
particles are evaluated using a cost function defined in (8), the function can approximate the quality
of each pair by considering travel time, penalties for entering danger zones, and potential collisions.
The approximation helps guide the optimization process. To improve the quality of these paths, each
particle adjusts its velocity and coordinates of rotation points based on its own best position (Pbest)
and the best position of the entire swarm (Gbest). Particles use inertia weight to accelerate towards
Pbest and Gbest. This dynamic adjustment allows particles to explore the search space and converge
towards optimal paths effectively. It minimizes travel time while avoiding danger zones and UAV
collisions. Throughout the optimization process, the algorithm continuously tracks the best positions
of each particle (Pbest) and the best position founded by the entire swarm (Gbest). As better solutions
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Input : number of patience iteration as n_ patience_ iteration; inertia weight range as
omega_ min_ max
Procedure: Find final path by using PSO approach
begin
path_ pairs, gbest_ pair < initialize();
pbest_ pairs < path_ pairs;
while no convergence do
if cost(gbest_pair) stable for n__patience _iteration then
‘ path_ pairs.partial _reset();
end
foreach p € path__pairs.len do
inertia_ weight.update(omega_ min_ max);
p_delta < pbest_ pairs[p| - path__pairs[p];
g delta < gbest_ pair - path__pairs[p];
rand_coef = rand.uniform(0,1);
path_ pairs[p].update(p_delta, g delta, inertia_ weight, rand__coef);
pbest__pair.compare_ update(path_ pairs|p]);
gbest__pair.compare_update(path__pairs[p]);
end

end
end

Output: Final path for the problem
Algorithm 1: PSO Algorithm

are discovered, these two values are updated. To prevent the algorithm from getting stuck in local
minima, when the global best cost remains stable for a predefined patience threshold, a mechanism
is applied to reset a subset of the path solutions partially. This introduces new diversity into the
population, helping the algorithm explore alternative solutions and improve convergence efficiency.
After several iterations that lack significant improvement, the stopping condition is considered satisfied,
then the algorithm outputs the best pair of paths, representing the optimal flight paths for the two
UAVs. Significant improvement is implicitly defined by multiple factors. Firstly, whether the average
fitness has not plateaued over a recent window. Secondly, the average rate of improvement over a
period of iterations is above an adaptive threshold. The algorithm is considered to have “significant
improvement" when these conditions are met, ensuring a balance between finding a good solution and
avoiding excessive computation. If the algorithm continues to provide a significant improvement over
a long period and has not yet exceeded the maximum number of iterations, it continues running to
refine the solution further. Besides adjusting parameters and partially resetting a subset of solutions
to further guarantee convergence within a short time frame, the algorithm runs for at least 20 percent
of the maximum allowed iterations before early termination is considered. This mechanism helps to
prevent premature stopping and ensures the search process thoroughly explores the solution space
before converging. These routes can avoid danger zones, prevent UAV collisions, and minimize travel
time.

Besides the PSO approach, we propose a Genetic Algorithm (GA) method to solve this problem,
outlined in 2. In the initial phase, we generate individuals, each representing a potential pair of paths
for two UAVs. These paths are initialized randomly, meaning that each redirect point for each UAV
is selected randomly within the defined map boundaries and speed limits. This randomness ensures
that the initial population is diverse. Once the population is initialized, we evaluate the fitness of
each individual. The fitness function is designed to check how well each path satisfies the UAV
routing problem, it calculates the total travel time for two UAVs, adds penalties for entering danger
zones, and includes penalties for potential collisions between two UAVs, directly relating to the cost
function defined in (8). The selection phase is critical, for our UAV path optimization problem, we
use the tournament selection method. First, it chooses randomly a subset of individuals from the
population. From this subset, the individual with the highest fitness is selected as a parent. This
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Input : crossover_ rate as crossover rate; mutation_rate as mutation rate; n_ redirect_ point
as number of redirect points

Procedure: Find final path by using GA approach

begin

path_ pairs, global best_ pair + initialize();

while no convergence do

offspring + empty array;

foreach individual € path pairs do

parents < tournament(path_ pairs);

if get_random__rate() < crossover_rate then

cross_index < random(1,n_rotate_ point);

child < crossover(parents,cross_index);

end
else

| child « random__select(parents);
end
foreach redirect_points € child do

if get _random__rate() < mutation_rate then

redirect__points.mutate__coordinate();
redirect__points.mutate_ velocity();

end
end
offspring.append(child);
end
path__pairs < elitism(path__pairs, offspring);
local _best__cost < path_ pairs.min_ fitness_ value();
if local best cost < global best__cost then
global_best_ pair < path_ pairs.best_ pair();
global_best_ cost < local_best_ cost;

end
end

end

Output: Final path for the problem
Algorithm 2: Genetic Algorithm Approach

process is repeated to select another parent. After selecting parents, the crossover phase generates
new offspring. For the UAV path-finding problem, we use a single-point crossover technique. Here, a
random crossover point along the sequence of redirect points is selected. The segments before and after
this point are exchanged between the two parents to create two new offspring. This technique ensures
that the offspring inherit from both parents. The mutation is applied to some offspring with a certain
probability. In the context of UAV routing, mutation updates the coordinates of a redirect point or the
UAV speed at certain points. This randomness helps maintain diversity in the population, preventing
premature convergence to local optima solutions. To ensure continual improvement in the quality of
output solutions, we have implemented an elitism strategy for the UAV path optimization problem. It
preserves the top-performing individuals from the current generation. Specifically, a part of individuals
with the highest fitness scores, representing the most potential UAV paths are directly carried over
to the next generation. By keeping these elite individuals, we maintain a baseline level of quality in
the population. The remaining slots in the population can be filled with next-generation offspring
by crossover and mutation operations. The stopping criteria are designed to ensure convergence
while preventing excessive computation, meeting the real-time demands of the application. First,
the average fitness has plateaued over a recent window, indicating minimal improvement. Second,
the average rate of improvement over a period of iterations is under an adaptive threshold. Finally,
the number of current iterations exceeds the maximum number of allowed iterations. If any of these
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criteria are met, the stopping condition is satisfied, ensuring a balance between finding an optimal
solution and computational efficiency.

3.2 Computational Complexity Analysis

The fitness evaluation is crucial because it directly impacts the output of both algorithms in finding
optimal solutions. For each segment, we calculate its slope and its intercept, which has a complexity
of O(1). Besides, the presence or absence of collisions between the UAV flight path and obstacles
must also be considered. Because we have to check along a flight segment, that makes the complex-
ity of inspection of whether a UAV collided with an obstacle is (9(\/§ X map__dimension), where
map_ dimension is denoted for the length of the square side of the flight area. In addition, we have
to evaluate n_ redirect_ point redirect points of each UAV, which makes the computation complex-
ity for 2 UAVs equals (9(\/§ x map__dimension X n_redirect_point x 2) = O(map_dimension X
n_redirect_point). On the other hand, checking if two UAVs collide with each other has a huge
impact on the fitness function. We take the approach of checking every second for the entire flight
whether two UAVs will collide with each other, which leads to its complexity, which is O(v/2 x
map__dimension/v_min X n_redirect_point) = O(map_dimension/v_min x n_redirect_point),
equivalent to the longest time a UAV can fly. Here, the slowest flight speed is v_min. Finally, for
each redirect point, the cost function has to consider end-to-end travel time, with the complexity
of O(n_redirect_point x 2). Because checking obstacle collision has the highest times complexity,
and because three evaluating steps, including UAV collision checking, object collision checking, and
time-consuming calculation, are used in order, the fitness evaluation cost can be described as

O(map__dimension x n__redirect__point). (14)

To approximate the complexity of the PSO approach, in 1, we examine each component and determine
its complexity. In the beginning, we consider the population initialization process of n_ particle parti-
cles, each particle has 2 UAV, each UAV has n_ redirect_ point redirect points, and each point has 3
attributes, which are horizontal coordinates, vertical coordinates, and velocity values. Therefore, its
complexity is

O(n__particle x n__redirect__point). (15)

The primary steps involved in each iteration of the PSO algorithm, which runs for a maximum of
n_max_ iter iterations, include updating the speed, coordinates corresponding to redirect points, and
the fitness value of the examining particle. Since these updates are performed on redirect points, the
total complexity for these updates in each iteration is O(n__particle x n__redirect_point). After up-
dating velocities and coordinates, each particle fitness value is evaluated, and its complexity is defined
n (14), therefore, evaluating all of the particles has a complexity of O(n__particle x map__dimension x
n__redirect__point). Since the complexity of each iteration is dominated by the fitness calculation step,
the complexity of one iteration in the PSO approach can be formulated as follows

O(n_particle x map__dimension X n__redirect__point). (16)

In the genetic algorithm, i.e., Algorithm 2, the initialization step has different parameters, compared to
the PSO algorithm, from n_ particle of particles to population_ size of individuals, but the mechanism
remains the same, therefore, its complexity is O(population__size x n__redirect__point).

Next, the child is mutated, where the complexity is O(n__redirect_point) because the mutation
function iterates over each redirect point. Because of that, parsing through all individuals costs
total O(population__size x n_redirect_point). After generating the offspring through crossover and
mutation, the fitness values of the offspring are evaluated using function (8). Since it iterating through
each individual in the offspring and current population, the complexity of evaluating the fitness values
step is O(population__size x n_redirect_point x map_ dimension). Finally, the elitism strategy is

!Previous works have demonstrated that genetic algorithm performs better than ant colony optimization in many
practical applications. Meanwhile, particle swarm optimization converges fast to a fixed point solution. Hence, we have
selected the two algorithms for demonstrating the system performance. Since deep reinforcement learning is aligned with
data-driven approaches, it is not included for comparison.



https://doi.org/10.15837 /ijccc.2025.4.6847 9

applied to combine the best individuals, so it forms the next generation, the elitism process has the
complexity of O(population__size X population__size). Overall, the complexity of calculating fitness
value dominates other complexity in each iteration, hence, the complexity of each iteration in the
genetic algorithm is

O(population__size x n_redirect__point X map_ dimension). (17)

4 Numerical Results
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Figure 4: Fitness score of two algorithm output paths for each iteration
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Figure 5: Comparison of valuation score and runtime for each algorithm output pair of paths

4.1 Parameter Settings

In our research on efficient multiple-UAV route planning in complex environments, we define a
set of parameter settings to ensure the effectiveness and reliability of our algorithms. First, we set
the distance threshold for detecting UAV collisions to 4 [m], while restricting the maximum velocity
for UAVs to 10 [mps]. The map is designed as a square grid with dimensions of 100 [m], and we
randomly place 10 obstacles within this space. Next, we designate 5 redirect points along the UAV
route. Considering the start and destination positions for 2 UAVs, they start their journey from
the coordinates (5,0) and (0,5), respectively, and reach the goal located at (100,95) and (95,100),
respectively.
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Figure 6: The box plot of benchmarks

To fine-tune our algorithms, we used Bayesian Hyperparameter Optimization, a strategic choice
based on the continuous nature of our hyperparameters. This method facilitates efficient exploration
of the hyperparameter space. For the PSO algorithm, this involved adjusting the number of particles,
the cognitive and social parameters, and the inertia weights. While for the GA algorithm, we focused
on the population size, crossover rate, and mutation rate. The search ranges for the number of
particles and population size ranged from 20 to 200. In addition, the search space for the cognitive
and social parameters from 0.1 to 10, the inertia weights from 0.1 to 2, the crossover rate from 0.5 to
1.0 and the mutation rate from 0.05 to 0.3. Through this optimization process, we determined suitable
parameters for our algorithms. For the PSO algorithm, we configure the number of particles used in
the Particle Swarm Optimization algorithm to 30 and execute with cognitive and social parameters
set to 2.0 and 2.0, respectively. Additionally, we limit the inertia weights to between 0.3 and 0.8. For
the GA algorithm, we initialize a population of 20 individuals and define a crossover rate of 0.9 and a
mutation rate of 0.1. The algorithm runtime and end-to-end travel time are recorded to compare the
performance of the two approaches.

4.2 Results and Discussions

Figure 4 shows the convergence behavior of PSO and GA, in one run among 120 experiment runs.
Both algorithms demonstrate a rapid decrease in fitness scores, with elbow point around the 50"
iteration for PSO and the 15" iteration for GA. Moreover, the first graph in Figure 5 and the first
three box plots in Figure 6 compare the end-to-end travel times of the UAVs for GA, PSO and Hybrid
PSO-GA. The results indicate that the PSO algorithm finds better routes with travel times ranging
between 24 to 28 [s], while GA produces significantly longer travel times, between 29 to 34 [s]. The
Hybrid PSO-GA approach, which initializes paths using GA and refines them with PSO, achieves the
shortest travel times, typically ranging from 18 to 23 [s]. In addition, there is a run of the genetic
algorithm that has more than 46 [s] in travel time, highlighting its inconsistency in path optimization.
Furthermore, in the second graph of Figure 5 and the last three box plots in Figure 6 illustrate
the runtime comparison for each algorithm. The GA method consistently shows shortest runtimes,
completes the task within 20 [s] to 35 [s] to find optimal routes. While the PSO algorithm requires
35 [s] to more than 40 [s], which is 1.5x longer than GA algorithm as shown in the box plot. The
Hybrid PSO-GA approach does not fully inherit GA’s speed advantage, its runtime performance is
closer to that of PSO, typically ranging from 39 to 42 [s]. The execution time is influenced primarily by
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the number of drones rather than the number of obstacles or unpredictable paths. The computational
complexity is detailed in 16 and 17, showing a linear impact as the number of drones increases. Faster
computation can be achieved by increasing server resources to meet real-time requirements. Overall,
the results demonstrate that the PSO algorithm tends to have better output but consistently takes
more time to execute.

5 Conclusion

In this paper, the study effectively employs Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) methodologies to enhance UAV routing within obstacle environments, proficiently
tackling significant challenges such as the reduction of travel duration, circumventing hazardous zones,
and averting collisions. By facilitating the proficient autonomous management and regulation of UAVs
within 5G networks, these methodologies exhibit considerable potential for application in real-world
scenarios such as disaster response, where effective UAV navigation is imperative. Moreover, the
comprehensive examination of the computational complexity associated with both PSO and GA yields
insightful perspectives regarding their efficacy and applicability in practical contexts, emphasizing their
relevance for sophisticated UAVs.
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