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Abstract

In response to the challenges in the realm of intrusion detection for marine meteorological
sensor networks, such as difficulties in model training, inadequate detection performance, and low
operational efficiency, we propose an advanced intrusion detection model. This model leverages
feature dimensionality reduction, utilizing the Genetic Algorithm based on Random Forest (GARF)
technique, to discern the most effective feature subset, thereby streamlining the original network
intrusion detection dataset. An Approximate Nearest Neighbor (ANN) algorithm is employed to
convert network traffic data into a graph structure, and the Approximate Nearest Neighbor-based
Graph Convolutional Neural Network (AGCN) is constructed for traffic classification prediction on
this graph-structured data. Our simulation experiments conducted on the NSL-KDD dataset have
yielded positive results, demonstrating the model’s enhanced intrusion detection capabilities and
efficiency, and affirming its potential to provide robust security measures for marine meteorological
sensor networks.

Keywords: Network intrusion detection, Marine meteorological sensor network, Graph convo-
lutional network, Feature dimensionality deduction.
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1 Introduction
The Internet of Things (IoT), benefiting from the rapid progression in smart device technology

and innovative communication methods, has been integrated into various sectors, including marine
meteorological sensor networks (MMSN) [1, 2, 3]. The MMSN is designed to collect comprehensive
regional marine meteorological and hydrological data, encompassing seawater temperature, current
dynamics, tidal phases, and their intensities. Such information is of paramount importance to maritime
navigation, oilfield operations, and aquaculture activities [4].

However, while IoT technology brings convenience to MMSN, it also increases network security
risks [5]. The high-frequency communication between marine meteorological sensors, utilizing public
protocols, renders the MMSN inherently vulnerable to attacks from unauthorized networks. This
exposure significantly jeopardizes the cybersecurity of the MMSN. Furthermore, the potential leakage
of marine meteorological and hydrological information poses a substantial threat to national strategic
security [6, 7, 8]. The heterogeneous characteristics of MMSN devices make it difficult to design
and deploy an effective intrusion prevention mechanism for MMSN [9]. Facing increasingly diverse
attack types and attack methods, establishing a reliable and effective intrusion prevention mechanism
is urgent for the further development of the marine, and traditional Passive defense mechanisms, such
as firewalls, traffic encryption, user authentication, etc., are difficult to cope with [10]. Intrusion
Detection System (IDS) is widely used as an active defense mechanism against network intrusion
attacks by intruders to enhance system security and is widely used with IoT security, smart grids,
and maritime transportation systems [11, 12]. Therefore, the reliability and security of MMSN will be
improved by establishing an MMSN intrusion detection system to identify network anomalous traffic
with aggressiveness in MMSN.

IDS are mainly divided into two categories: Host-based Intrusion Detection Systems (HIDS) and
Network-based Intrusion Detection Systems (NIDS) [13]. HIDS keeps an eye on system logs and
response records, spotting intrusions by checking how files are handled, and it’s typically found on
local gear like PCs and database devices [14]. Feature-based NIDS and anomaly-based NIDS are two
typical types of NIDS [15]. Feature-based NIDS and anomaly-based NIDS represent the two principal
categories of network-based (NIDS). A feature-based NIDS operates by establishing a set of rules
to ascertain whether a given behavior constitutes an intrusion. These rules are essentially feature-
based representations of recognized attack patterns. While this approach excels in detecting known
attacks, it is less effective in identifying previously unseen attacks, commonly referred to as zero-day
attacks [16]. Anomaly-based NIDS constructs a profile of typical behavior by extensively analyzing
statistics derived from network traffic data(NTD). This methodology exhibits enhanced generalization
capabilities, which has garnered significant attention in recent years.

In the scenarios under consideration for the MMSN, several notable characteristics are present,
including the harsh operational environment and the heterogeneity of the devices utilized. However, a
significant majority of these DL methodologies operate on the assumption of centralized training data
and unlimited computational resources, neglecting the time cost associated with the intrusion detection
process. Given that real NTD typically possesses high-dimensional features, the application of complex
detection neural networks can entail significant computational demands, extensive time consumption,
and may even impact real-time detection capabilities. Consequently, the practical implementation of
these methods within the MMSN environment is rendered infeasible.

To solve the dilemma faced by MMSN and to transmit and store marine meteorological and
hydrological information more securely, this paper proposes a GARF-based intrusion detection method
for AGCN networks, and the main contributions of this paper are as follows:

1. Propose a reliable feature dimensionality reduction algorithm combining GA and RF to
reduce the feature dimensions of NTD and introduce it to NID.

2. An ANN algorithm is proposed to convert NID data into graph-structured data, and a
GCN model is constructed for efficient graph classification of graph-structured data.

3. The simulation experiment was performed on the GARF-AGCN using the NSL-KDD
dataset, and it was benchmarked against several other state-of-the-art methods. The experimental
outcomes indicate that the GARF-AGCN intrusion detection model demonstrates superior perfor-
mance and efficiency in MMSN intrusion detection.
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The remainder of this paper is organized as follows: The related work are presented in Section
2.The design of our proposed model is discussed in Section 3. The experimental design and results
are presented in Section 4. The conclusions are discussed in Section 5.

2 Related work
IDS can be conceptualized as a classification issue pertaining to network behavior. Leveraging

Machine Learning (ML) and Deep Learning (DL) methodologies, several conventional classification
algorithms have been integrated into the domain of network intrusion detection (NID) [17, 18]. Tradi-
tional Machine Learning techniques, including logistic regression (LR), support vector machine (SVM),
and random forest (RF), are extensively employed in the realm of NIDS for the identification of normal
and abnormal network behaviors. Additionally, hybrid models are typically utilized to enhance the
efficacy of IDS [19]. Vijayanand et al. have developed a novel intrusion detection system for wireless
networks, which incorporates genetic algorithm-based feature selection and multiple support vector
machine classifiers. Their experimental findings indicate that this system exhibits a high degree of
accuracy in detecting network intrusions [20]. Disha et al. utilized the Gini Impurity-based Weighted
Random Forest model as an embedded feature selection technique, effectively reducing the feature di-
mensionality and enhancing the efficiency of intrusion detection [21]. Gu et al. have developed an SVM
and Naive Bayes-based IDS framework. This framework employs Naive Bayes technology to modify
the original features, which are then utilized to train the SVM classifier, thereby creating an effective
intrusion detection model. This strategy demonstrates superior performance in terms of detection rate
and false alarm rate, and exhibits greater robustness compared to other technologies [22].

DL techniques have advanced considerably since the 2010s, with Convolutional Neural Networks
(CNN), Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), and other associated al-
gorithms being extensively employed in NID. DL approaches address the limitations of conventional
ML methods in effectively handling high-dimensional and large-scale data [23, 24]. CNN, DNN, and
RNN excel in extracting abstract features from large volumes of NTD, thereby overcoming the lim-
itations of shallow ML algorithms. These techniques provide a novel approach to achieving more
precise intrusion detection [25]. Ji Z et al. have proposed a novel method for intrusion detection,
combining CNN with Conditional Generative Adversarial Network (CGAN). This approach achieves
data balance, utilizing CGAN for data augmentation, and employs CNN as a classification model to
enhance the accuracy of intrusion detection [26]. Mushtaq et al. have proposed an intrusion detection
methodology that employs Autoencoders (AE) to extract optimal features and subsequently utilizes
Bidirectional Long Short-Term Memory (BILSTM) networks for classifying normal and abnormal sam-
ples, thereby achieving a relatively high level of intrusion detection accuracy [27]. Fu Y et al. have
proposed an intrusion detection approach that initially extracts sequence features from data traffic
through CNN. This is followed by redistributing the weight of each channel using the attention mech-
anism, and subsequently employing BiLSTM networks to learn from the sequence feature network,
thereby further enhancing the performance of NID [28]. One of the key strengths of the aforemen-
tioned DL-based intrusion detection methods is their superior performance compared to those based
on traditional ML. However, these methods are accompanied by challenges such as increased model
complexity, difficulties in model training, higher computational resource requirements, and elevated
time costs for detection. Existing techniques continue to struggle in achieving a harmonious balance
between intrusion detection performance and efficiency.

3 System description

3.1 MMSN intrusion detection system

The structure of the Marine Meteorological Sensor Network (MMSN) is shown in Figure 1. MMSN
mainly consists of marine servers (coastal servers, marine base station servers, etc.), marine mobile ter-
minal nodes (meteorological buoys, meteorological drones, etc.), marine switches (ship meteorological
stations, meteorological detection ships, etc.), and satellites [29].
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Figure 1: Marine meteorological sensor network

Each marine meteorological mobile terminal node can transmit and forward network traffic, and
the mobile terminal node has limited computing resources, making it impossible to implement large-
scale network protection mechanisms. Marine base station servers have sufficient computing power to
deploy network security mechanisms. The marine switch close to the marine meteorological mobile
terminal node can capture the network traffic of the marine meteorological mobile terminal node of
the marine base station server.

Marine meteorological mobile terminal nodes are characterized by their diverse types, complex
hierarchical structures, substantial data transmission capacities, and challenging deployment environ-
ments [30]. Within the Marine Meteorological and Marine Network (MMSN), the marine switch serves
as the primary forwarding device, capable of forwarding or discarding traffic based on the flow table.
The transmission process of all network traffic can be conceptualized as:

Hsrc → (S1, R1) → · · · → (Si, Ri) → Hdes (1)

where, H denotes an IP host, src and des denote source and destination addresses, respectively, and
Si and Ri denote the i-th network node and its traffic processing rules.

In addition, marine base station servers and marine switches have strong computing capabilities
and computing resources and can be deployed for advanced defense. It is assumed that criminals
invade MMSN network nodes from the external network by initiating malicious network traffic, further
harming and controlling vulnerable MMSN network nodes, and placing MMSN network nodes in an
untrustworthy state. An infected node within the MMSN due to malicious network traffic loses its
intended functionality and transforms into a malicious MMSN node. Subsequently, it can initiate a
substantial amount of malicious traffic, targeting other normal MMSN nodes, which could potentially
lead to the paralysis of the entire network, resulting in severe consequences. To prevent the MMSN
from being compromised and to ensure its normal operation, it is imperative to conduct timely NID
within the MMSN.

In light of the specific characteristics of the MMSN and the requisite functionalities for NID, the
framework design of the MMSN Intrusion Detection System is depicted in Figure 2.

This framework comprises a data collection module, a NID module, and a feedback processing
module. The data collection module primarily functions to collect the network traffic data flow within
the MMSN, extract the relevant data characteristics from this traffic, and subsequently transfer this
information to the NID module. The NID module is mainly responsible for pre-processing the network
traffic data, using efficient classifiers to classify and detect the incoming network traffic data features,
identifying abnormal network traffic data and network traffic attacks, and passing the NID results
to the response feedback module. The response feedback module is designed to terminate services
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Figure 2: Marine meteorological sensor network

at the affected node in the event of an attack, to filter out network traffic originating from malicious
nodes, and to provide detailed reports to human personnel for subsequent action regarding the network
security incident.

The NID model based on GARF-AGCN proposed in this paper mainly consists of three parts,
such as the GARF feature dimensionality reduction module, and ANN graph structure construction
module, and the GCN classification module. First of all, the data preprocessing such as numerical
and standardization is performed on the network traffic data. Then we do feature dimensionality
reduction by the GARF algorithm to find the optimal feature subset and accelerate the training speed
of the model; then we use the ANN algorithm to learn the acquaintance characteristics of neighboring
nodes, get the information of approximate nearest-neighbor nodes, and construct the optimal graph
structure data, and then we make efficient classification prediction on the graph structure data by the
GCN classifier, and finally, we get the intrusion detection results of the network traffic.

3.2 Data preprocessing module

In the context of marine meteorological sensor NID, the preprocessing of raw data is imperative
to enhance the precision of feature identification. This paper presents a data preprocessing module
specifically designed for the MMSN, which is demonstrated to effectively distill the principal features
from network traffic datasets. This module significantly reduces the dimensionality of features, op-
timizes computational resource utilization, and boosts the efficacy of NID processes. The module is
structured into two integral components: Numerical processing. Symbolic features within the NID
dataset must be transformed into digital format for model training purposes. To achieve this, One
hot encoding will be employed to convert the symbols features in the dataset into digital features.

Standardized processing. In NID datasets, the variability in the range of values across different
features can be substantial. Such a wide disparity in feature values may hinder the model’s ability
to converge effectively. Consequently, it is imperative to employ a standardization process that stan-
dardizes the computation of eigenvalues for each dataset sample, thereby converting the data into a
normal distribution with a mean of 0 and a standard deviation of 1. Standardization is a critical
process that facilitates the model’s more accurate learning of data features, thereby enhancing the
efficacy of model training. This is achieved by computing the mean and standard deviation for each
feature. The standardization formula is expressed in the following equation:
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Xstandard = X − X̄

σ(X) (2)

Where X̄ is the mean of X and σ(X) is the standard deviation of X. The standardization of each
feature is conducted utilizing Equation (2) . This standardized feature matrix not only accelerates
the model’s processing speed but also guarantees the model’s convergence in an appropriate manner.

The standardized feature matrix optimizes the efficiency of matrix operations. When computing
the covariance matrix C = XT X, the unstandardized feature matrix may lead to numerical instability
due to large differences in feature value ranges. In contrast, the standardized feature matrix Xstandard
ensures that the computation of the covariance matrix Cstandard = XT

standardXstandard is more stable,
thereby improving the efficiency of matrix operations.

3.3 GARF module

Feature dimensionality reduction entails the selection of an optimal subset of features from the
original feature set. Its key objective is to eliminate extraneous and superfluous features, thereby
retaining only the pertinent features [31]. First, a GARF feature dimensionality reduction method is
proposed to effectively reduces the dimensionality of the feature space, expedites the learning algo-
rithm’s execution, and enhances the prediction accuracy of the learning algorithm. Genetic Algorithms
(GA) [32] offer the advantage of effectively addressing non-linear distributions and performing feature
dimensionality reduction through the evaluation of the relevance and importance of each feature, in-
terpretability, and robustness in the presence of noise and outliers. Consequently, GA are utilized as
the search strategy, with the Random Forest (RF) algorithm serving as the classifier in the feature
dimensionality reduction stage. This collaboration establishes the GARF feature dimensionality re-
duction algorithm to identify the most effective feature subset and reduce the dimensionality of the
original dataset’s features.

Fitness Function: The computation of fitness scores is essential in evaluating the capabilities of
GA. The fitness function is derived from the classification accuracy of the RF and the quantity of
selected features. The chromosome exhibiting the highest accuracy and the least number of features
attains the maximum fitness value. The adaptation score for each chromosome within the population
is calculated utilizing the formula provided in Equation (3).

fitness(X) = α × Accuracy(X) + (1 + α) × (∑n
i=1xi)−1 (3)

where X is a binary vector representing the current subset of features, and α is a predefined weight
adjusted according to the user’s requirements to indicate the importance of RF accuracy relative to the
length of the subset. Accuracy(X) serves as an evaluation metric for the RF’s performance based on
the feature subset X, crucial for assessing the classifier’s efficacy, and the summation ∑n

i=1 xi provides
the total count of features within the given subset.

RF is an integrated algorithm consisting of a Decision Tree (DT), RF is composed of many DTs,
and there is no association between different DTs. When the classification task is performed, new
input samples come in, and each DT in the forest judges and classifies them separately, each DT will
get a classification result of its own, and whichever of the DT’s classification results has the most
classifications, the RF will take that result as the final result.

The algorithm proposed in this paper for GARF-based feature dimensionality reduction is shown
below.

The initial step involves the random generation of an initial population, comprising N chromo-
somes, denoted as P . To create a new population, Pnew based on the preceding generation P , genetic
algorithm operations are implemented. Initially, two chromosomes, labeled XP1 and XP2 , are randomly
selected from P for crossover, employing the roulette selection technique. X0 = Crossover(XP1 , XP2)

Subsequently, a mutation operation is conducted on the offspring in accordance with the prede-
fined mutation rate. The resulting mutated offspring, identified as XO1 and XO2 , are subsequently
incorporated into the newly formed population Pnew.
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Algorithm 1 GARF-based feature dimensionality reduction
1: Input: Original data set
2: Output: Subset of features
3: P = Generate_Initial_Population(N)
4: i = 1
5: while Chromosomes(P ) and i ≤ G do
6: Pnew = empty
7: repeat(N/2 times)
8: Selection (P, Xp1, Xp2)
9: X0 = Crossover(Xp1, Xp2)

10: Mutation (Xo1, Xo2)
11: Add to Pnew (Pnew, Xo1, Xo2)
12: until completed
13: Compute Fitness with RF(Pnew)
14: Save Best Chromosome(Pnew)
15: P = Pnew

16: i = i + 1
17: end while

Thirdly, the fitness of each chromosome within the newly formed population Pnew is computed,
considering the accuracy and the quantity of features of the RF algorithm. The chromosome exhibiting
the highest fitness throughout all iterations is preserved in memory. This sequence of operations is
iterated until all chromosomes within P exhibit similarity or the predetermined number of iterations
G is attained.

3.4 ANN module

Graph Convolutional Networks (GCN), as an extension of CNNs from regular lattices to irregular
graphs, have been widely studied for graph data representation and learning [33]. Whereas GCN
computation is based on graph-structured data, graph-structured data consists of two parts, the
feature matrix, and the adjacency matrix, so it is necessary to transform the dataset into graph-
structured data. Literature [34] transforms datasets into graph-structured data through K-Nearest
Neighbor (KNN), but constructing graph-structured data using the KNN method suffers from long
computationally time-consuming computations and difficulty in dealing with large datasets of network
traffic. Approximate Nearest Neighbor [35] (ANN) has the advantages of faster computation and
fewer computational resources compared to KNN. Therefore, this module adopts the ANN method to
convert marine meteorological sensor network traffic data into graph-structured data, which reduces
the construction time and saves computational resources. The ANN method considers each piece of
data in the network traffic dataset as a node and calculates the Euclidean distance between the nodes,
and the Euclidean distance calculation process is:

d(x, y) =
√∑n

i=1(xi − yi)2 (4)

where x and y are the feature vectors of the two nodes and n is the number of features. The
ANN-based algorithm for graph structure data construction is shown in Algorithm 2:
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Algorithm 2 ANN-based algorithm for graph-structured data construction
Require: dataset after feature dimensionality reduction
Ensure: graph-structured data

1: Read the dataset
2: Select the node identification column
3: Extraction characteristics
4: Select the value of K
5: Initializing ANN models using Euclidean distance metrics
6: Adding data points to the model
7: Constructing ANN Indexes Using K Trees
8: Create an empty list to store side connections
9: for each node do

10: Retrieve K’s approximate nearest neighbors
11: Excluding self-connections
12: Add the found edge to the list
13: end for
14: Returns the edge index
15: Convert to an adjacency matrix

By cyclically traversing the nodes in the dataset, obtaining the indexes of similar neighboring
nodes of node i, obtaining the node feature matrix, adding the information of the edges to the edge
list, obtaining the edge connectivity data, and finally converting it to the adjacency matrix, i.e.,
transforming the network traffic data into graph-structured data for the classification prediction of
the graph-structured data by the GCN classifiers.

3.5 GCN module

GCN exhibits high computational efficiency with graph-structured data, capable of processing it
directly. It utilizes the feature matrix X and the adjacency matrix A as its initial input to extract
features from graph-structured data. The operational principle of GCN is depicted in Figure 3,
illustrating how nodes aggregate information from adjacent nodes and subsequently update their
features.

Figure 3: Working principle of GCN

Given a graph with N nodes, each possessing d-dimensional features, the graph’s structure and
the features of its nodes are represented by A ∈ RN×N and X ∈ RN×d, respectively. The GCN unit
operates with X and A as inputs, executing a graph convolution operation utilizing a localized first-
order approximation. The GCN architecture comprises several neural network layers, which propagate
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information across layers in a defined manner:

Z = σ(D̂− 1
2 ÂD̂− 1

2 XW ) (5)

Where Z represents the node representation matrix obtained after the graph convolution operation
and σ is a nonlinear activation function. The term D̂− 1

2 ÂD̂− 1
2 represents an approximate graph

convolution filter. Â is the self-loop adjacency matrix, and Â = A + I, D̂ refers to the degree matrix,
while W is the weight matrix associated with inputs to the hidden layer. GCN facilitates the learning
of hidden representations of nodes by encoding the graph structure and node features, thereby enabling
the classification of network traffic and achieving the objective of NID.

4 Experimental results and analysis

4.1 NSL-KDD dataset

The NSL-KDD dataset [36], recognized as a benchmark in the field of NID, has been extensively
utilized in recent years for research in this domain. Therefore, it has been selected as the primary
dataset for our experimental analysis. The NSL-KDD dataset comprises 148,517 instances of network
traffic data, with each entry featuring 43 distinct attributes. Of these attributes, 41 pertain to the
traffic input itself, while the remaining two represent labels (indicating whether the traffic is normal
or malicious) and scores (reflecting the severity of the traffic input).The traffic types are classified into
five categories: Normal, DoS (Denial of Service), Probe, U2R (User to Root), and R2L (Remote to
Local). Within these categories, DoS encompasses 11 attack types, Probe includes 6, U2R comprises
7, and R2L consists of 15 attack types.The dataset is subdivided into two subsets, KDDTrain+ and
KDDTest+, and the categorical distribution of the samples within these subsets is detailed in Table
1. Considering that the objective of MMSN-IDS is to identify attack traffic within MMSN traffic, the
intrusion detection task can be conceptualized as a binary classification problem. In this scenario, “0”
is utilized to denote normal traffic, while “1” signifies abnormal traffic.

Table 1: Distribution of sample categories in the NSL-KDD dataset
Category Data Train Test Total

Attack

DoS 45,927 7,458 53,385
Probe 11,656 2,421 14,077
U2R 995 2,754 3,749
R2L 52 200 252

Normal 67,343 9,711 77,054

Total 125,973 22,544 148,517

4.2 Evaluation criteria

In order to evaluate the efficacy of the proposed model, we have employed Accuracy, Precision,
Recall, and F1-score as our primary evaluation metrics in the experimental phase [37]. Accuracy,
being a standard metric in classification model evaluation, quantifies the proportion of samples that
are accurately classified in relation to the overall sample set. Precision quantifies the proportion of
actual positive labels within the subset of samples that the model predicts positively, thereby assessing
the model’s proficiency in accurately forecasting positive instances. Conversely, Recall represents the
proportion of all positive samples that are accurately predicted by the model, serving as an indicator of
its effectiveness in encompassing all positive examples. The F1-score, derived from the harmonic mean
of Precision and Recall, is a critical metric for evaluating the performance of classification models. It
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provides a nuanced measure of the model’s balance between precision and recall, thereby offering a
comprehensive evaluation of its classification efficacy.

Accuracy = TP + TN

TP + TN + FP + FN
(6)

Precision = TP

TP + FP
(7)

Recall = TP

TP + FN
(8)

F1 − score = 2 × Recall × Precision

Recall + Precision
(9)

Where: TP denotes the total number of positive cases accurately predicted as positive, FP signifies
the total number of negative cases inaccurately predicted as positive, FN indicates the total number
of positive cases incorrectly predicted as negative, and TN represents the total number of negative
cases correctly predicted as negative.

4.3 Analysis of experimental results

4.3.1 Feature dimensionality reduction process based on GARF

The GARF-AGCN model is simulated and experimented with using the Pytorch deep learning
framework. Firstly, data preprocessing of the NSL-KDD dataset is required to convert character-based
features ’protocol_type’, ’service’, and ’flag’ in the dataset to numerical features using one-hot coding.
After one hot coding, the feature dimension of the dataset is increased from 41 dimensions to 122
dimensions and then the dataset is normalized using the normalization method. The GARF algorithm
is used for feature dimensionality reduction of the data preprocessed dataset, the ANN algorithm is
used to make the data transformed into graph-structured data, and finally, the classification prediction
is performed using the GCN classification module to get the NID results.

The experimental parameters are set as follows: the initial population size of GARF is set to 50,
the number of iterations is set to 50, the crossover rate is set to 0.8, the mutation rate is set to 0.1,
the random seed size of RF is set to 42, the K value of ANN is set to 7, the number of training rounds
of GCN is set to 300, the learning rate is set to 0.05, the size of the hidden layer is set to 14, and
the discarding rate is set to 0.375. In addition, in the MMSN The most important goal in intrusion
detection is to distinguish between normal and malicious traffic in MMSN, therefore, in this paper,
binary classification labels are used as model labels for training and testing.

Firstly, the training set is subjected to feature dimensionality reduction using the GARF algorithm,
and the results are stabilized after 50 iterations to get the subset of features with different feature
dimensions, and the experimental results of the classifier’s accuracy under the subset of features with
different feature dimensions in the validation set are shown in Figure 4.

Figure 4: Effect of different feature dimensions on model performance
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As can be seen in Figure 4, when the feature dimension is 122 full features, the accuracy of the
classifier is about 80%. As the feature dimension decreases, the accuracy of the classifier gradually
increases, and when the feature dimension is reduced to 16 features, the classifier reaches a maximum
accuracy of about 90%, and continuing to reduce the feature dimension, the accuracy of the classifier
will drop dramatically. Therefore, the feature subset F16 with a feature dimension of 16 is selected
as the best feature subset of the original dataset to achieve the purpose of feature dimensionality
reduction, reduce the model training time, and improve the model performance. The 16 features in
the best feature subset F16 are shown in Table 2.

Table 2: Feature names of the best feature subset F16
ID Feature Name ID Feature Name ID Feature Name ID Feature Name
1 protocol_type_udp 5 service_nnsp 9 flag_RSTR 13 hot
2 service_domain_u 6 service_pm_dump 10 flag_S0 14 root_shell
3 service_http, 7 service_supdup 11 flag_SF 15 num_shells
4 service_kshell 8 flag_REJ 12 wrong_fragment 16 num_access_files

4.3.2 Construction process of graph-structured data based on ANN

Secondly, the ANN algorithm is used to make the data transformed into graph structured data,
the key parameter of ANN algorithm is the K value, different K values control the number of nearest
neighbor nodes for each node, When K=7, the ANN algorithm finds for each node its 6 nearest
neighbor nodes as its neighbor nodes. Different numbers of neighbor nodes will affect the model
classification performance and training duration. The effect of the K value of the ANN algorithm on
the classification model is shown in Table 3.

Table 3: The effect of different K values on the classification performance of the model
K value Accuracy(%) Precision(%) Recall(%) F1score(%) Time(s)
K=2 91.86 91.63 92.06 91.78 9.83
K=3 91.83 91.77 92.41 91.79 10.82
K=4 91.67 91.59 92.22 91.63 11.72
K=5 91.78 91.69 92.31 91.74 12.72
K=6 91.87 91.81 92.43 91.84 13.59
K=7 92.02 91.88 92.49 91.97 14.75
K=8 91.75 91.65 92.27 91.71 15.61
K=9 91.73 91.63 92.25 91.69 16.58
K=10 91.75 91.65 92.27 91.71 17.58

From Table 3, with the increase of the K value, the number of each node with other neighboring
nodes will increase, the classification performance of the classifier will gradually enhance, and the
training time will also increase; when K=7, the classifier’s reaches the highest accuracy rate of 92.02%.
Therefore, K=7 is chosen as the optimal K value for the ANN algorithm to get the best approximation
of the graph structure data of neighbor nodes.

4.3.3 Performance evaluation results of NID based on GARF-AGCN

To verify the effectiveness of the GARF algorithm, the original dataset F122 and the feature
subset F16 are utilized for the training and testing of classification models. Initially, commonly used
DL intrusion detection classification models, such as CNN, GRU, LSTM, and BILSTM, are employed
as comparative models against the AGCN model. The results are presented in Figure 5 and Figure 6.

From Figure 5, it can be seen that all five classification models have poor classification results on
the original dataset F122, with lower accuracy, recall, and F1, and higher precision, which indicates
that the classification models failed to learn effective features on the original dataset F122, and that the
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Figure 5: Classification results of different DL models on the original dataset F122

Figure 6: Classification results of different DL models on the feature subset F16

prediction results of the classification models are biased towards the normal traffic, and the sensitivity
for the detection of the attack traffic is relatively low.

As can be seen in Figure 6, the classification performance of the five classification models on
the feature subset F16 is greatly improved, the average test Accuracy, Recall, and F1-score are all
improved, and the average test Precision of the false high is alleviated, which indicates that the GARF
feature dimensionality reduction can improve the sensitivity of the classification model to the attack
traffic, which in turn improves the classification model’s NID performance.

Comparing Figure 5 and Figure 6, it can be found that after GARF feature dimensionality reduc-
tion, the test accuracies of the five DL classification models, CNN, GRU, LSTM, BILSTM, and AGCN,
are improved by 7.92%, 9.01%, 8.27%, 9.54%, and 8.32%, respectively. The AGCN classification model
has the highest average test Accuracy, Recall, and F1-score of 92.02%, 91.63%, 91.88%, and 91.97%,
respectively, which are higher than the other 4 DL classification models, indicating that AGCN model
has a better ability to recognize the attack traffic and has a better classification performance.
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4.3.4 Ablation experiments based on GARF-AGCN

To verify the effectiveness of the proposed GARF-AGCN model, ablation experiments are con-
ducted on the NSL-KDD dataset to test the intrusion detection performance and intrusion detection
efficiency with different conditions, and the results are shown in Table 4.

Table 4: The effect of GARF-AGCN ablation experiments different K values on the classification
performance of the model

Different Conditions Accuracy(%) Precision(%) Recall(%) F1 score(%) Time(s)
F122 K=2 83.27 84.95 84.71 83.27 12.21
F122 K=7 83.68 84.47 84.74 83.68 17.88
F16 K=2 91.86 91.63 92.06 91.78 9.83
F16 K=7 92.02 91.88 92.49 91.97 14.75

As shown in Table 4, a comparative analysis of two experimental configurations (F122 K=2 and
F122 K=7 ) with preserved 122-dimensional features reveals that optimizing ANN parameters by
adjusting the neighbor count K from 2 to 7 enhances model performance. Specifically, the accuracy
and F1 scores improve from 83.27% and 83.27% to 83.68% and 83.17% respectively, indicating that
K=7 facilitates the construction of optimal graph-structured datasets for feature extraction.

Furthermore, comparison between configurations F122 K=7 and F16 K=7 (maintaining identical
ANN parameters) demonstrates that implementing GARF-based feature dimensionality reduction to
obtain the optimal 16-dimensional feature subset yields substantial improvements. The accuracy and
F1 scores escalate from 83.68% and 83.17% to 92.02% and 91.97% respectively, representing relative
improvements of 8.34% and 8.80%. Concurrently, the training duration decreases from 17.88 s to
14.75 s. These results confirm that GARF effectively extracts critical features from network traffic
data while optimizing computational efficiency.

This systematic evaluation demonstrates dual optimization benefits:

1. ANN parameter tuning (K = 7) enhances graph structure construction, and

2. GARF-driven dimensionality reduction (F16) achieves superior feature representation with re-
duced computational overhead.

4.3.5 Comparative results based on different graph data construction methods

To verify the effectiveness of the ANN algorithm, ANN and KNN are compared on the original
dataset F122 and feature subset F16, and the node and edge information obtained from the two
algorithms are constructed into graph structure data, and finally the constructed graph structure
data are used for the training and testing of GCN model. The test results of GCN based on KNN and
ANN algorithms and the construction time of graph structure data are shown in Table 5.

Table 5: The effect of Comparison experiments between ANN and KNN GARF-AGCN ablation
experiments different K values on the classification performance of the model

Different Conditions Accuracy(%) Precision(%) Recall(%) F1score(%) Time(s)
F122-KNN-GCN 83.71 84.55 84.79 83.71 284.49
F122-ANN-GCN 83.68 84.47 84.74 83.68 6.05
F16-KNN-GCN 91.83 91.76 92.39 91.79 3.61
F16-ANN-GCN 92.02 91.88 92.49 91.97 2.72

From Table 5, it is evident that the GCN models based on KNN and ANN algorithms exhibit supe-
rior classification performance on both the original dataset F122 and the feature subset F16. Notably,
the classification accuracy and F1 score of GCN on the feature subset F16 exceed 91%, indicating that
the graph structures constructed by both algorithms are of high quality and suitable for subsequent
GCN training. Additionally, the graph structure construction times for KNN and ANN on the original
dataset F122 are 284.49 seconds and 6.05 seconds, respectively, highlighting the inefficiency of KNN in
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constructing graph structures when dealing with high-dimensional features, while ANN demonstrates
relatively higher efficiency. Overall, KNN and ANN exhibit similar capabilities in constructing graph
structure data, but ANN proves to be more efficient when handling high-dimensional feature datasets.

4.3.6 Comparative results of NID based on ML and DL methods

In order to validate the NID performance of the GARF-AGCN model, it is compared with the
common ML-based and DL intrusion detection models on the original dataset F122 and the feature
subset F16, and the results of the experimental comparison of the intrusion detection of different
models are shown in Table 6.

Table 6: Effect of GARF-AGCN Ablation Experiments with Different K Values on Classification
Performance

Models F122 F16
Acc(%) Pre(%) Rec(%) F1(%) Acc(%) Pre(%) Rec(%) F1(%)

LR 76.29 79.06 78.07 76.24 84.67 85.47 85.74 84.67
RF 79.83 82.53 81.58 79.79 80.82 83.72 82.64 80.78
XGB 82.28 84.66 83.95 82.26 83.86 85.27 85.19 83.86
SVM 76.77 79.39 78.49 76.72 85.59 86.87 86.88 85.58
CNN 82.01 96.56 70.45 81.46 89.93 90.01 92.31 91.14
GRU 82.16 96.05 71.15 81.75 91.17 93.41 90.67 92.02
LSTM 81.41 96.81 69.14 80.67 89.68 96.18 85.01 90.24
BILSTM 81.37 96.31 69.48 80.72 90.91 96.14 87.31 91.51
GARF-AGCN 83.68 84.47 84.74 83.68 92.02 91.88 92.49 91.97

Table 6 shows that among ML models (LR, RF, XGB, SVM), XGB performs best with 82.28%
accuracy and 82.26% F1 score. For DL models (CNN, GRU, LSTM, BILSTM, AGCN), AGCN leads
with 83.68% in both metrics. This indicates that on high-dimensional network traffic data, both ML
and DL models struggle to learn key features, resulting in subpar classification.

On the F16 feature subset, ML and DL intrusion detection models show improved performance. ML
models (LR, RF, XGB, SVM) see accuracy and F1 score increases of 8.38%, 0.98%, 1.58%, 8.82% and
8.43%, 0.99%, 1.60%, 8.86% respectively. For DL models (CNN, GRU, LSTM, BILSTM, AGCN),
the improvements are 7.92%, 9.01%, 8.27%, 9.53%, 8.33% in accuracy and 9.68%, 10.27%, 9.56%,
10.79%, 8.28% in F1 score. This indicates that after GARF dimensionality reduction, both types of
models better capture effective features, enhancing classification. The top ML model is SVM with
85.59% accuracy and 85.58% F1 score, while the best DL model, AGCN, achieves 92.02% accuracy
and 91.97% F1 score, showing DL models’ superior overall performance. Among all, the AGCN model
excels in NID.

4.3.7 Comparative results of training durations for NID based on ML and DL

The length of time to train the intrusion detection model to a stable state is also an important
indicator of intrusion detection in marine networks, which not only directly affects the intrusion
response time, but also reflects the computational overhead of NID, which is very important for MMSN
with limited computational power. To verify the NID efficiency of the GARF-AGCN model, the test
set of NSL-KDD is used to test the computational efficiency of ML models such as LR, SVM, XGB,
RF, and DL models such as CNN, GRU, LSTM, BILSTM, AGCN, etc., where the training rounds
are set to 300 rounds. The experimental comparison results are shown in Figure 7 and Figure 8.

Figure 7 and Figure 8. show that DL-based intrusion detection models have longer training times
than ML-based ones, but both see reduced times after GARF dimensionality reduction. On the F122
dataset, LR (ML) trains fastest at 2.08 s, while SVM (ML) is slowest at 398.98 s; for DL, BILSTM is
slowest at 422.46 s, and AGCN is quickest at 40.68 s.
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Figure 7: Training duration of different ML classification models on F122 and F16 datasets

Figure 8: Training duration of different DL classification models on F122 and F16 datasets

On the F16 feature subset, LR (ML) and SVM (ML) have their training duration shortened to
0.91 s and 188.08 s, respectively, whereas BILSTM (DL) and AGCN (DL) take 301.29 s and 14.75 s.
Despite LR’s fast training, its accuracy and F1 score are below 85%, making it ineffective for MMSN.
BILSTM and GRU (DL) perform better, with BILSTM scoring 90.91% and 91.51% and GRU 91.17%
and 92.02% in accuracy and F1, respectively. However, their long training times and difficulty in
convergence make them unsuitable for such networks.

The GARF-AGCN model has a training time of 14.75 s, outperforming both DL and ML models,
including RF and SVM. With an accuracy of 92.02% and F1 score of 91.97%, it demonstrates superior
detection performance and efficiency. Thus, the GARF-AGCN model is well-suited for detecting and
protecting against malicious attacks in MMSN.

4.3.8 Comparative results of different NID models on the NSL-KDD Dataset

he intrusion detection performance of some existing studies and the GARF-AGCN model proposed
in this paper are compared and the results are shown in Table 7.

Table 7: Classification performance of different methods on NSL-KDD dataset
Model Accuracy(%) F1score(%)
CNN-CGAN[26] 79.70 79.60
AE-BILSTM[27] 89.00 91.00
CNN-BILSTM[28] 90.73 89.65
GARF-AGCN 92.02 91.97
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Table 7 shows that the GARF-AGCN model outperforms other models in intrusion detection.
Literature [26] used CGAN for data equalization and CNN for classification, achieving only 79.70%
accuracy and 79.60% F1 score. Literature [27] improved performance to 89.00% accuracy and 91.00%
F1 score by using AE for feature selection and BILSTM for classification. Literature [28] combined
CNN, Attention, and BILSTM, reaching 90.73% accuracy and 89.65% F1 score, which is the best
among the three but still below the GARF-AGCN’s 92.02% accuracy and 91.97% F1 score, indicating
its superior performance.

5 Conclusion
In this paper, a GARF-AGCN-based intrusion detection model for MMSN is designed. The feature

dimensionality reduction module GARF is utilized to select the best feature subset F16, the ANN
module is utilized to transform the marine network traffic data into graph-structured data, and the
GCN module is utilized to classify and predict the graph-structured data. Simulation comparison
experiments were conducted on the NSL-KDD dataset, and the intrusion detection accuracy and F1
score of the GARF-AGCN model reached 92.02% and 91.97%, respectively, with a training duration
of 14.75 s for 300 rounds.

The experimental results show that the NID performance and intrusion detection efficiency of the
GARF-AGCN model are higher than that of the existing ML intrusion detection models such as LR,
SVM, and DL intrusion detection models such as CNN, LSTM, etc., which verifies the validity of the
intrusion detection model of marine meteorological sensor network based on the GARF-AGCN=, and
illustrates the importance and application value of the GARF-AGCN intrusion detection model in
the marine meteorological sensor network field has important theoretical significance and application
value. However, marine meteorological devices are deployed in marine environments and face harsh
climatic conditions such as salt water corrosion, strong ultraviolet rays, and strong winds and waves,
so application tests in real marine meteorological sensor network environments are still needed to
verify the actual performance of the models.

Although the GARF-AGCN model has demonstrated high detection accuracy and efficiency in
experiments, several limitations remain. Firstly, the model’s feature extraction capability may be con-
strained by the complexity and diversity of the data, particularly when dealing with high-dimensional,
nonlinear, or dynamically changing marine meteorological data. The comprehensiveness and accuracy
of feature extraction need further improvement. Secondly, the model’s performance in real-world ma-
rine environments has not yet been validated. Harsh climatic conditions such as salt spray corrosion,
strong ultraviolet radiation, and severe wind and waves, which marine meteorological equipment often
faces, may impact the model’s stability and reliability.

To address these limitations, future research could focus on the following improvements:

1. Incorporation of Attention Mechanisms: By integrating self-attention or channel attention
mechanisms, the model can better capture key features in the data, thereby enhancing the
precision and robustness of feature extraction.

2. Multimodal Data Fusion: Combining multi-source data (e.g., temperature, humidity, wind
speed) from marine meteorological sensor networks to design a multimodal fusion model can
provide a more comprehensive description of network states and improve detection performance.

3. Real-World Environment Testing: Conducting application tests in actual marine meteoro-
logical sensor network environments to verify the model’s stability and reliability under adverse
climatic conditions.

The intrusion detection method based on GARF-AGCN proposed in this paper alleviates the com-
putational limitations of MMSN devices by significantly reducing feature dimensionality through the
GARF feature reduction algorithm, thereby decreasing computational load. Additionally, by convert-
ing network traffic data into graph-structured data using the ANN algorithm and leveraging GCN for
feature extraction, the model enhances training efficiency and improves the real-time performance of
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MMSN-IDS. This provides a novel solution for securing resource-constrained marine IoT systems. Fur-
thermore, the feature reduction and graph-structured data processing methods employed in this model
can serve as a reference for other resource-constrained IoT systems, promoting further advancements
in IoT security technologies.
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