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Abstract
Renewable energy has been a worldwide subject of interest in the last decades, because of the

need to reduce greenhouse gas emissions. Solar is among the most widespread energy resources as
it has almost limitless installation possibilities on Earth’s surface. Photovoltaic panels play a key
role in the energy industry, having a dynamically evolving chemical structure of the cell and being
implemented in many applications within various weather conditions. This paper will focus on
introducing and analyzing an optimal control strategy for variable-oriented photovoltaic systems
to address the issue of suboptimal generation. In contrast with the traditional Maximum Power
Point Tracking (MPPT) approaches, a stability analysis will be performed and parametric model
uncertainties will be introduced to emulate the real-world variable conditions, such as temperature
and irradiance changes. These uncertainties will help determine the maximum region for which the
control strategy still keeps the best performances, regarding reference tracking and regulation. The
novelty of the paper comes from introducing in the photovoltaic control and optimization field, the
approach of delimiting the parametric uncertainty margins, for which a designed Linear Quadratic
Regulator (LQR) controller will keep the stability and performances, which was not previously ad-
dressed in this field. Accordingly, it will be shown that a robust controller can guarantee maximum
power at output even though the model of the system evolved influenced by environmental factors,
degradation of the system’s components or another system’s abnormal behavior. In this paper,
it will be also introduced a series of simulation results, that will emphasize the stabilized system
evolution for various uncertainties within the computed maximum stability margins. The simula-
tion findings indicate that the implemented robust LQR will offer similar response time, without
oscillations and, implicitly, similar performances for the entire family of parametric uncertainties
added to the initial system. In other words, the approach can offer a cost-effective solution for
sustainable large-scale energy production.

Keywords: uncertainty region, optimal control, stability, renewable energy.
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1 Introduction
In the field of renewable energy the electrical power extracted from the sun represents 7% of the

energy produced from all renewable sources in the European Union (EU)[27]. One-seventh of the world
total energy approximately since 2020 is produced now from renewable resources [20]. Nevertheless,
the electrical power extracted from the solar irradiance has been the fastest-growing energy in the EU,
and until 2030 it is aimed to have 600 GW installed power, from 41.4 GW as it was in 2022 [19]. To
this scope can contribute on one hand, the improvement of the photovoltaic cell in the manufacturing
process, and on the other hand, the control strategy used to maximize the output power, delivered to
the end customer [14].

In the pursuit of optimizing photovoltaic system performance, MPPT algorithms play a crucial
role in establishing that solar panels operate at their maximum efficiency. Extensive literature has
documented various MPPT techniques, highlighting their effectiveness in different environmental con-
ditions and their continuous evolution to improve energy production [6, 7, 24]. The focus of the current
paper will be to introduce an innovative approach in this field, consisting in an optimal controller de-
signed starting from the state representation of the photovoltaic system and introducing parametric
uncertainties to emulate the real world continuously changing conditions.

Photovoltaic tracking and power systems have evolved during the past decades and nowadays they
consist in: one or two DC/DC motors used to tilt the panel horizontally and vertically, the panel
formed from multiple photovoltaic cells, a power transducer and one or many controllers. It will be
studied the case with one motor used to tilt the panel for changing its altitude angle, in the vertical
plane. This is because the generated power of tilt panels at irradiance peak hours can be upper with
40% , compared to fixed panels. And the average percentage of enhancement compared to fixed panels
is 31% for single motor and 34.7% for dual motor [2]. For the current study it was chosen a single
axis motor, for the performance linked to its cost and the consumed energy from the system.

For finding the optimal tilt angle of a photovoltaic panel, various approaches have been tried in
the literature, some proposed a searching algorithm for iterating values from 0◦ to 60◦, with a step of
1◦ [10]. However, this method is based on scenario analysis and can lead to computational complexity,
making it unsuitable for real-time applications. Other researchers have employed a Support Vector
Machine(SVM) model in combination with a data system for geographical information to demonstrate
that the PV potential can be predicted with high accuracy [4]. Nevertheless, the conclusions of this
study are applied exclusively in specific locations in Switzerland. To apply these results worldwide,
certain parameters of the model may require to be tuned to consider different regions and their unique
environmental factors. Additionally, the energy consumption of the area where the panel is installed
may need to have implemented optimal approaches for electricity usage, when the energy production
is constrained as studied in [16]. Moreover, the power coming from the photovoltaic system needs to
be distributed through a network to reach the end user, and this network needs to be designed and
maintained to withstand a wide range of faults as presented in [13].

The proposed approach consists of an optimal controller designed for the model of the photovoltaic
system, giving the advantage of the possibility to be implementable on a controller linked to the
physical system, which can use limited computational resources. One important challenge in control
under PV systems is the uncertainty in the system’s parameters. In this regard, a robust LQR control
method will be proposed to take into account the variations in system parameters. With this, the
stability and the optimal performance will be maintained under the parametric uncertainties that will
be considered, since the analyzed system is influenced by the environmental temperature, the solar
irradiance and the shading.

The paper is structured in the following sections: The second part includes details about the
related work on LQR control strategy applied for PV configurations; the third section defines the
methodology of research, including the overall theoretical framework, the modeling of the dynamics
for the photovoltaic system, the design of the optimal controller and the evaluation of the maximum
region related to the considered parametric uncertainties, taking into account the stability bounds;
the fourth section consists in simulated results and analysis; the fifth section offers the conclusions
and the future directions of the research.
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2 Related works
The introduction of the photovoltaic system in energy grids is one of the core means of achieving

alternative or sustainable energy solutions. Ensuring the efficiency and stability of these systems is
crucial for their widespread adoption. A very effective method to develop those aspects is by applying
Linear Quadratic Regulator control. LQR control applied in PV systems can operate the dynamic
behavior of power converters effectively or of the motors used to move the panels, thus guaranteeing
MPPT.

A few works have outlined the potentiality of LQR control for different PV system configurations.
For instance, in [17], the authors combined LQR with fuzzy control in a grid-connected PV system, that
depicted improved stability and disturbance rejection. This study involved a system with a Buck-Boost
DC-DC converter, a DC-AC inverter and four 250 W PV panels. The control strategy included a fuzzy-
based incremental conductance (INC) algorithm for MPPT, a hybrid fuzzy PI controller for DC-link
voltage regulation, and an LQR for current control to the grid [17]. The hybrid approach demonstrated
quick settling times and robust performance under various weather conditions, outperforming previous
methods. The LQR algorithm proved to be more resistant to sudden disturbances, with simulation
results showing the system’s ability to handle variations in weather parameters.

Similarly, in [3], an LQR-based MPPT approach was proposed for standalone PV systems. This
method achieved higher tracking speed and efficiency compared to traditional Perturb and Observe
(P&O) technique. The LQR-based MPPT method was validated through simulations and experimen-
tal results, showing superior tracking speed and efficiency under varying irradiance conditions. The
benefits of this method include faster tracking ability, transmission of the maximum deliverable power,
and reduction in complexity [3]. The improved performance was confirmed by deploying this method
to a dSPACE controller, highlighting the method’s effectiveness in real-world applications.

3 Methods

3.1 Overall theoretical framework

The global theoretical framework consists of a specific strategy introduced to increase the efficiency
of a variable-oriented solar system. This framework was divided into multiple major components:

1. In the current approach, the first step was to model the photovoltaic system, based on the
DC motor, the photovoltaic panel and power transducer dynamics. This mathematical model
of the system was built by capturing the relationship between the electrical output and the
irradiance. Afterwards, the initial transfer function of the system was transformed in a state-
space representation. This representation was adopted to analyze the dynamic behavior of the
plant and is essential for the design of the optimal control strategy.

2. As a second step, an optimal controller was designed to maximize the power output of the
variable-oriented PV system. The controller computed based on LQR aimed to secure that the
PV panel operated at its maximum power point. The design process included defining the cost
function, deriving the control law and implementing the controller.

3. In order to maintain the performance under variable weather conditions, the study examined
the maximum uncertainty region for parametric model uncertainties. This involved analyzing
how variations in model parameters affect the system performance and stability. Robust control
techniques were implemented to ensure that the controller can effectively handle these uncer-
tainties.

4. A thorough stability analysis is conducted to insure the system remains stable under specific
operating conditions. This included both theoretical analysis and simulation studies of the
stability margins based on the Structured Singular Value Analysis (µ-Analysis). This guaranteed
that the system can withstand environmental variations and continue to operate reliably.
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The theoretical framework provided a structured approach to the configuration and analysis of control
systems for PV panels. By integrating mathematical modeling, optimal control design, uncertainty
analysis, and stability validation, the framework guarantees that the system can achieve maximum
power generation and maintain a stable operation under varying conditions.

3.2 Models & dynamics of the photovoltaic system

The dynamics of a variable-oriented photovoltaic system are computed considering the following
components: the DC motor, the photovoltaic panel and the power transducer.

The entire photovoltaic system’s transfer function is defined by connecting all the sub-systems in
series [5]:

HF (s) = Hm (s) ·Hpv (s) ·HT (s) (1)

3.2.1 Mathematical model of the DC motor

The DC motor defines the movement of the photovoltaic panel in order to orient it towards the
sun to generate the maximum power measured by the transducer.

The MPP is attained by changing the position of the system, by tilting or rotating the photovoltaic
panel using a DC motor. The electrical diagram of the studied DC motor can be found in Figure 1:

Figure 1: Electrical Diagram: DC motor

The DC motor can be mathematically modeled based on the hypothesis of linearization around an
operating point [1]: {

u(t) = Le
die(t)

dt +Reie(t) + ee(t)
Kmie(t) = Jm

d2θ(t)
dt2 +Dm

dθ(t)
dt

(2)

The existing i current coming from an independent source (that can be a fraction of the panel
production) feeds the motor defined by the resistance Re, and the inductance Le in the excitation
circuit. Jm represents the moment of inertia, Dm stands for the coefficient of viscous friction, and the
voltage u is applied at the terminals of the excitation circuit, with the current ie flowing through this
circuit. Moreover, the expression of the electromotive voltage is considered according to

e(t) = Ke · dθ(t)
dt

(Ke, where Ke is the electrical constant).
The angular position θ of the shaft represents the motor’s output quantity. The angular velocity

is represented by θ̇ = dθ
dt and the angular acceleration is θ̈ = d2θ

dt2 . Also, Km is a proportionality factor
relating current to torque.

The balance between the motor torque Kmie (t) and the torques due to acceleration and viscous
friction is expressed in the first equation. The second equation arises from applying Kirchhoff’s Law
to the excitation circuit.

In addition, the angular speed can be expressed based on the tilt angle (α) of the panel through
the following expression:

Ωm(s) = s · α(s) (3)
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Considering the angular speed denoted by Ωm and by applying the Laplace transform, the system
described in the Equation (2) becomes:{

U(s) = sLeIe(s) +ReIe(t) +KeΩm(s)
sJmΩm(s) = KmIe(s) −DmΩm(s) (4)

In these terms, the DC motor’s transfer function can be defined as:

Hm(s) = α(s)
U(s) = 1

s

Km

LeJms2 + (ReJm + LeDm) s+KeKm +ReDm
(5)

Based on the panel size, environmental conditions, and the available budget, various types of
DC motors can be selected. For larger panels, a motor with a high torque constant Km should be
considered. If a rapid rotation of the panel is desired, the nominal speed ωmn should be high. In
terms of power supply, in such situations, values of 12V or 24V are used.

3.2.2 Mathematical model of the photovoltaic panel

The transfer function of a photovoltaic panel can be defined based on the electronic behavior of its
components. In this case, the focus will be on the generated power - Pgen, influenced by the panel’s tilt
angle - α [rad]. Thus, we can start from the angle-dependent relationship and compute the maximum
power at the optimal tilt angle.

Pgen = PmaxF(α) (6)
The Earth’s axis has an inclination of approximately 23.45◦ relative to the orbital plane around

the sun [9]. This inclination influences temperature, seasons, day length, air and water circulation, but
most importantly, it affects the intensity of solar irradiance, which plays a crucial role in photovoltaic
energy production. The angle formed from a normal to the Earth’s surface and the sun’s rays, known
as zenith angle θ, can be calculated as follows: cos θ = sinϕ·sin δ+cosϕ·cos δ cosω, where ϕ represents
the location’s latitude, and ω is the solar hour angle indicated by shading [23]. The sun declination
δ is the angle between a plane perpendicular to a line connecting the sun to Earth, and the Earth’s
axis. Sun’s position is indicated by the azimuth angle γ, and all the angles can be seen in Figure 2
[23].

Figure 2: The main angles between the photovoltaic panel and the solar plane[23]

At sunset or sunrise, the sun is on the horizon. Therefore, the corresponding angle for sun-
set/sunrise can be determined based on:

ωrs,ap = arccos (−tan ϕ · tanδ ) (7)

The intensity of the sunlight on a tilted plane can be calculated using the formula [23]:

Rb = cos (ϕ− β) cos δ sinωap + ωap sin (ϕ− β) sin δ
cosϕ cos δ sinωap + ωap sinϕ sin δ (8)
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The tilt angle of the system that corresponds to the point of maximum power generation is strongly
linked with the solar radiation HαG, that can be computed based on the following sum [12]:

HαG = HαB + HαD + HαR (9)

, where HαB

[
W h
m2

]
represents the direct normal radiation on a flat surface, HαD

[
W h
m2

]
corresponds to

the diffuse radiation from the sky on a plane, and HαR

[
W h
m2

]
denotes the reflected radiation from the

ground on a flat surface.

Figure 3: The angle of tilt for the solar plant

In the following equations the HαB and HαR will be expressed as [12]:

HαB = cosψHnB (10)

HnB = HhB

sin β (11)

cosψ = cosα sin β + cosβ sinα cos|γ − γn| (12)

HαR = ρHhG
1 − cosα

2 (13)

where HnB

[
W h
m2

]
represents the direct normal radiation on a flat surface, HhB

[
W h
m2

]
the incident

radiation on a horizontal surface, HhG

[
W h
m2

]
the global radiation in a horizontal plane, ψ[rad] is the

incidence angle, β[rad] is known as solar altitude, γ[rad] the solar azimuth, γn[rad] the normal azimuth
angle, and ρ is the ground reflectivity [12].

The radiation on a flat surface originating from a limited section of the sky (δH) is computed
based [12]:

δH = δωRθϕ cosσ (14)

δω = δθ cos θδϕ (15)

cosσ = cosα sin θ + cos θ cosϕ sinα (16)

, where Rθϕ

[
W/m2sr

]
is the radiation received from an element of the sky located at altitude θ

and azimuth ϕ, ωsolid[sr] is the solid angle, and σ[rad] is the angle formed between the element from
the sky and the normal to the surface [12].

By applying a double integral on the surface, the HαD is defined as in [12]:

HαD = Rθϕ cos θ (cosα sin θ + cos θ cosϕ sinα) dϕdθ (17)
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If the diffuse component of the sky is divided into na angular zones, the Equation (17) can be
numerically computed as follows:

HαD = Σna
i=1 cosσiRiωsolidi

(18)

Taking into account these equations and the solar irradiance intensity at various times of the day
and during different solar exposure intervals, an ideal average tilt angle for the panel for the specific
area need to be computed.

When it comes to the dynamics of how the power at the output of the photovoltaic panel changes
based on its tilt angle, this variation is significantly faster than the dynamic response of the motor.
Therefore, the photovoltaic panel can be modeled using a gain, assuming that the panel’s tilt angle
remains within the average range.

This gain depends mainly on the transfer gain from the angular momentum generated by the motor
to tilt angle of the panel, denoted as α(s) = 1

s · ωm(s) [5]:

Kα =
∆α
α0

∆ωm
ωm0

(19)

Starting from the fact that the motor can achieve an inclination between 0o and the average angle
value, α0 can be obtained from the static linear characteristic.

α0 = ωm0 − ωmmin

ωmmax − ωmmin
(αUImax − αUImin) + αUImin (20)

For a minimum power output Pgen0 imposed, under which the generated power value should not
decrease, the transfer function becomes:

Hpv(s) = Kpv =
∆Pgen

Pgen0
∆α
α0

(21)

3.2.3 Mathematical model of the power transducer

The power transducer defines also rapid dynamics, relative to the dynamics of the DC motor.
Therefore, it can be modeled entirely through a gain.

The current I is considered to be the output in the standardized 4 − 20 mA signal, and I0 is
derived from the static characteristic [5].

I0 =
Pgen0 − Pgenmin

Pgenmax
− Pgenmin

(
IUImax−IUImin

)
+ IUImin (22)

The transfer function of the transducer becomes:

HT (s) = KT =
∆I
I0

∆Pgen

Pgen0

(23)

3.2.4 State-space representation of the variable-oriented photovoltaic system

In state-space representation, a system is defined based on differential equations that encapsulate
state variables with time-varying values. These variables depend on their previous values as well as
the system’s inputs and outputs [21]. Simultaneously, the state variables, in turn, influence the output
value.

The relationship that describes the state-space representation for a linear system is given in [21]:{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (24)

The vector representing the system state at various time instances t is denoted by x (t) ∈ Rn. In
this case, n represents the number of independent state variables. The vector representing the system
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outputs at various time instances t is denoted by y (t) ∈ Rq, where q is the number of independent
system outputs. The vector corresponding to the control input is denoted by u (t) ∈ Rp, with p
representing the number of inputs to the process. The state matrix is denoted by A ∈ Rn×n. The
matrix corresponding to the input is denoted by B ∈ Rn×p. The output matrix is denoted by C ∈ Rq×n.
The feedforward matrix is denoted by D ∈ Rq×p.

The relationship between the state-space system and its representation as a transfer function is
expressed as follows, knowing that I ∈ Rnxn is the identity matrix [21]:

HF (s) = C (sI − A)−1 B + D (25)

To assess whether a feedback control law can be computed or a regulator with an integrated state
estimator can be designed, it is suggested to build the controllability matrix CF =

[
B AB · · · An−1B

]
and the observability matrix OF =


C

CA
...

CAn−1

 [25].

3.3 Optimal control design strategy

Based on the fact that the previously presented state-space representation has been demonstrated
to be minimal, a state feedback controller will be designed.

Starting from the representation in the Equation (24):{
ẋ(t) = Ax(t) + Bu(t),
x (t0) = x0

(26)

, with the state vector x assumed to be measurable for state feedback control. Furthermore, the pair
(A,B) is assumed to be stabilizable (i.e. there exists a matrix K such the matrix (A − BK) is stable
in the sense of Hurwitz stability).

To achieve both tracking and disturbances rejection performances in the state-space, a LQR can
be applied. Implementing this regulator requires minimizing the criterion that penalizes deviations
in the control input u and in the state x [8]. This process results in the computation of a stabilizing
state-feedback control law [8]:

L =
∫ ∞

0

(
xT (t) Qx (t) + uT (t) Ru (t)

)
dt (27)

where the matrices Q and R are symmetric and positive definite.
The previously selected matrices are joined by matrix KLQR, which is defined as the gain matrix

corresponding to the optimal command:{
u (t) = −KLQR · x (t)

KLQR = R−1SBT (28)

S is determined as the solution to the algebraic Riccati equation [8] for the LQR regulator:

SA + AT S − SBR−1BT S + Q = 0 (29)

Figure 4 ilustrates the closed-loop system diagram:
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Figure 4: Closed-loop state-space representation of the system

3.4 Evaluation of the maximum uncertainty region

3.4.1 Robust LQR - Parametric uncertainties

The state feedback is stabilizing the system, meaning that A−BKLQR is stable in a Hurwitz sense
(all the roots of the defined polynomial are in the left half-plane) [18] and the criterion L(x0) is defined
as a minimal one:

L(x0) = xT
0 Sx0 (30)

for all bounded initial conditions x0. Additionally, V (x) = xT Sx is a Lyapunov function associated
to the considered system having the properties [15]:{

V (x) > 0, for x ̸= 0
V̇ (x) = −xT

(
Q + KT

LQRRKLQR

)
x < 0, forx ̸= 0 (31)

All the uncertainties that can affect the photovoltaic tracking and power system are parametric,
because the irradiance, the wind, the temperature, and the shading of the panel have models that
can be expressed in a parametric mathematical model. Consequently, in the state representation the
parametric uncertainties were considered:{

ẋ(t) = (A + ∆A(t))x(t) + (B + ∆B(t))u(t)
y(t) = Cx(t) + Du(t) (32)

The output y(t) depends on the command u(t) only through the state variables x(t), this means
that D = 0 is considered. The pair (∆A(t),∆B(t)) indicates parametric uncertainties affecting the
pair of matrix (A,B), defined in the Equation (24).

The transfer function including the uncertainties becomes:

HF (s) = C(sIn − A − ∆A)−1(∆B − B) (33)

It is needed to introduce the uncertainty domain, which defines the region where the matrix can
vary and the stability of the system can still be valid [15]:

Du =
{

(∆A(t),∆B(t)) ∥∆AT (t)A(t) ≤ γAQ0,∆B(t) ≤ γBR0
}

(34)

where γA, γB are positive scalars, Q0 and R0 are empirically imposed positive defined symmetrical
matrix.

The focus is to find the (γA, γB) pair, that defines the maximum uncertainty domain for which
the stability and the performances when the nominal command is applied are the same (for the same
(Q,R) pair previously selected).
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The matrix pair (Q0,R0) is obtained by decomposing as follows:{
Q = Q0 + Q1
R = R0 + R1

(35)

where the pair (Q,R) is known from LQR control algorithm. (Q0,R0) is defined in the Equation
(34). Q1 and R1 are positively defined symmetrical matrices.

For the nominal optimal state feedback law u(t) and the matrix pair (Q1,R1), the positive defined
symmetric matrix Γ is computed as follows [15]:

Γ = S−1
(
Q1 + KT

LQRR1KLQR

)
S−1 (36)

The closed-loop system defined in the Equation (32), with parametric uncertainties, keeps the
stability and the optimal performances if the matrix Γ verifies the inequality [15]:

Γ > (γA + γB) I (37)

The control law is derived from the nominal model, adhering to the standard criterion defined
in the Equation (27). The selected matrices from the Equation (35) are used to take into account
the uncertainties. Therefore, the Inequality (37) propose a rule to obtain the upper bound for the
uncertainties, ensuring the closed-loop system remains stable.

3.4.2 Stability margins analysis

In order to determine the extend at which the pair (δA(t), δB(t)) can vary by introducing un-
certainties in all of the parameters corresponding to the model described by the transfer function in
(1), a stability analysis is needed for the closed-loop system defined by (A,B, C,D) and the optimal
controller (KLQR,Q,R).

When the uncertainties are taken into account for the studied HF (s), the transfer function in the
Equation (1) has the following structure:

HFu(s) = 1
s

h1
h2s2 + h3s+ h4

(38)

where h1 = h1init + h1init ·
(

hp1
100

)
, h2 = h2init + h2init ·

(
hp2
100

)
, h3 = h3init + h3init ·

(
hp3
100

)
and

h4 = h4init + h4init ·
(

hp4
100

)
, with h1init , h2init , h3init and h4init - the initial values of the coefficients.

Also, hp1 , hp2 , hp3 , hp4 represent the percentage at which every parameter of the transfer function can
be varied in order to keep the system stable.

All of the changes in these coefficients will be reflected in (A,B, C) and they will become: (Au = A+ ∆A,
Bu = B + ∆B, Cu = C + ∆C). And by studying the robust stability margins of the system, the un-
certainties that can be tolerated before the system becomes unstable can be quantified. In the current
case, these margins measure how far the parameters hi can deviate from their nominal values before
the closed-loop system poles move into the right half-plane.

The new closed-loop system will have the transfer function:

HCLu(s) = Cu (sI − (Au − BuKLQR))−1 Bu (39)

Further, with µ denoted as the inverse of the smallest structured singular value of the matrix
corresponding to the closed-loop system. In order to ensure that the system remains stable, the
inequality bellow should be valid for any variation in hi [11]:

µ (HCLu) < 1 (40)

In practical applications this can be done by adding variations in hpi percents, which can desta-
bilize them and use numerical optimization to maximize the uncertainties, while checking that the
eigenvalues of the closed-loop system matrix Au − BuKLQR are still in the negative half-plane.
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4 Results and discussions

4.1 Model of the selected variable-oriented photovoltaic system

Since the photovoltaic panel SPM042152400, introduced below in the Table 1, has an output
power of 215 W [29], a motor with a nominal power of 200 W is used. In addition, to precisely orient
the panel towards the sun, the DC motor’s electromagnetic coupling constant is Km = 0, 5Nm

A .

Table 1: Datasheet Characteristics: SPM042152400 215W − 24V [29]
Parameter Value

TST C Temperature under Standard Test Conditions 25 oC

GST C Solar Irradiance under Standard Test Conditions 1000W ·m−2

UocST C Open-Circuit Voltage 45.82V
IscST C Short-Circuit Voltage 6.3A
PmpST C

Nominal Power 215W
UmpST C

Max-power Voltage 37.4V
ImpST C

Max-Power Current 5.75A
Ki Temperature coefficient of IscST C 0.04 %

oC

Kv Temperature coefficient of UocST C −0.35 %
oC

∆T Temperature Range −40oC to + 85oC

mpv Net weight 15 kg

The selection of the used motor is critical, as it must provide the capability to move the panel.
Additionally, the motor’s electromagnetic coupling should be suitable for tilting a panel with a weight
between 15kg and 20kg. Therefore, a 24V DC motor with a rated power of 200 W is selected -
ATO-80AS0202-15 [26]. The motor characteristics can be found in the Table 2:

Table 2: The parameters of the ATO-80AS0202-15 DC motor 24V − 200W [26]
Parameter Value

Ue Armature Nominal Voltage 24V
ωmn Rated speed 1500 rpm
Umax Maximum voltage 32V
Imax Maximum no-load current 64mA
Ie Maximum continuous current 9.4A

Ionmax Maximum starting current 39.8A
Mmax Maximum torque 3.8Nm
Mn Nominal torque 1.27Nm
Re Series resistance 0.06 Ω
Le Armature inductance 0.28mH
Km Motor Torque constant 0.17 Nm

A

Ke Motor Coupling constant 0.17 Nm
A

Dm Friction coefficient 2.5 · 10−5

Jm Mechanical inertia 0.418 · 10−3 kg ·m2

∆Tm Temperature range −20oC to + 60oC

mm Mass of the motor 2.5kg
ξ Efficiency 85%

The Bucharest area is considered in order to compute the average tilt angle of 33.4o for the panel.
In addition, the results of the extended computation depending on the month are given in the Table
3.
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Table 3: Tilt angle for the Bucharest area depending on month [28]
Month Tilt angle [o]

January 43.4
February 38.4

March 33.4
April 28.4
May 23.4
June 18.4
July 23.4

August 28.4
September 33.4
October 38.4

November 43.4
December 48.4

By analyzing the evolution during for a year, it can be deduced that the tilt angle of the panel will
not exceed 50o[0, 8727 rad].

Assuming that the photovoltaic panel can be approximately modeled using a gain, based on the
Equation (19), the constant from angular momentum to tilt angle is computed as:

Kα =
∆α
α0

∆ωm
ωm0

=
0.8727
0.6672
523.59
400.02

= 0.9995 (41)

with α0 computed as:

α0 = ωm0 − ωmmin

ωmmax − ωmmin
· (αUImax − αUImin) + αUImin = 400.02

523.29 · 0.8727 = 0.6672 rad (42)

A limit power value of Pgen0 = 150W is imposed and obtained transfer function becomes:

Hpv(s) = Kpv =
∆Pgen

Pgen0
∆α
α0

=
215
150

0.8727
0.6672

= 1.0958 (43)

The power transducer is also modeled through a gain. The I0 derived from the static characteristic
is:

I0 =
Pgen0 − Pgenmin

Pgenmax
− Pgenmin

·
(
IUImax−IUImin

)
+ IUImin = 150

215 · (20 − 4) + 4 = 15.1632A (44)

The gain of the transducer is computed as:

HT (s) = KT =
∆I
I0

∆Pgen

Pgen0

=
16

15.1632
215
150

= 0.7362 (45)

Taking into account the already computed models, the entire photovoltaic system’s transfer func-
tion is defined by connecting all the sub-systems in series [5]:

HF (s) = Hm ·Hpv(s) ·HT (s) = 1
s

· 137.09
0.117 · 10−3 · s2 + 0.02509 · s+ 28.9 (46)

To derive the state-space representation and fully characterize the system’s behavior, three state
variables are necessary. Using the transfer function defined in the Equation (1), the model can be
realized as a quadruple (A,B, C,D), where:

A =

 −214.44 −482.4386 0
512 0 0
0 1 0

 B =

 64
0
0


C =

[
0 0 35.7577

]
D =

[
0

]
(47)
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The controllability matrix CF =
[
B AB A2B

]
[25] has a rank of 3, which is identical to rank(A) =

3, indicating that there are 3 independent variables. This is also reflected in the degree of the transfer
function.

The observability matrix OF =

 C
CA
CA2

 [25] also has a rank of 3. Therefore, the pair (B,A) is

controllable and the pair (C,A) is observable. Consequently, the realization is minimal.
Therefore, a state feedback control law can be computed, or a regulator with an integrated state

estimator can be designed.

4.2 Optimal control designed for the photovoltaic system

To compute the stabilizing state-feedback control law in the Equation (27), the matrices pair
(Q,R) are empirically chosen based on the system’s limitations, where Q inR3×3 and R ∈ R.

R is a unit cost in this case, as more weight on the control means there will not be a significant
improvement for what’s designed via control. The positive definite diagonal matrix Q is given by:

Q =

5.73 0 0
0 1.23 0
0 0 1423.92

 R =
[
1
]

(48)

In this case, the resulted KLQR computed based on the Equation (28) is:

KLQR =
[
0.9998 0.1231 37.7349

]
(49)

Therefore, the closed-loop system is stable, because the poles −137.22+480.51j, −137.72−480.51j
and −3.98 are placed in the left half-plane. The complex-conjugate pair suggests that the system has
oscillatory components, but the large negative real part indicates that these oscillations will decay
very quickly. The real eigenvalue defines the long-term behavior of systems, as the effects of the other
eigenvalues will decay much faster. The simulated result is represented in the Figure 5:

Figure 5: The response of the closed-loop system using LQR control law

The performances of this controller can be summarized as zero overshot when reaching the reference
power of 215W , following it with zero steady-state error and a transient time of 0.629 seconds.
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4.3 Evaluation of the maximum uncertainty region - Parametric uncertainties &
Stability Margins of the Photovoltaic System

When the uncertainties are taken into account, the transfer function (1) has the following structure
based on (38):

HFu(s) =
137.09

(
1 ± hp1

100

)
(
0.117 · 10−3

(
1 ± hp2

100

))
s3 +

(
0.02509

(
1 ± hp3

100

))
s2 +

(
28.9

(
1 ± hp4

100

))
s

(50)

Applying the defined methodology for the system, it was identified that h1 can vary by hp1 =
91.06%, h2 can vary by hp2 = 72.22%, h3 can vary by hp3 = 65.94% and h4 can vary by up to
hp4 = 78.5%. These values indicate that the system can have large variations and it will be maintained
stable by the same KLQR. The highest variations can be added to the numerator of the transfer
function, and that shows that even at high deviations produced by the solar irradiance, temperature,
partial shading or other environmental conditions, the system will keep the stability margins.

The values for the output corresponding to the margins found by applying this method on the
closed-loop system are represented in the Figure 6:

Figure 6: The output of the closed-loop system, that keeps the system’s stability

The matrix pair (Q0,R0) from (35) were chosen simetric and positive defined as:{
Q0 = CT C + I
R0 = [0.01] (51)

Choosing Q0 will ensure that all states are penalized, even though C has some elements equal to
zero. Also, it prevents ignoring any state in the cost function, providing stability and performances
for the entire system. Moreover, it will penalize heavier the state with high impact on the output, in
order to align the control effort to the desired output performances. Additionally, the identity matrix
enhances numeric stability, by ensuring that the matrix is positive definite, leading to robust and
stable solutions. Furthermore, this selection is a useful approach for implementation of the controller,
because of simplifying the design process by leveraging the known system matrices C and the identity
matrix I. This can make a practical choice in applications for the ease of implementation.
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The drawback of this Q0 can be that adding the bias I, could lead to excessive control actions,
because the matrix can be not appropriately scaled, or this might lead to actuator saturation. But,
this is why the identity matrix was the choice, because it has values of ones, which are significantly
lower than the term resulted from CT C, implying that the control effort for the other states is minimal,
considering its benefits in the numerical properties of the matrix Q0, system control, robustness and
performances as in [22].

The defined margins will lead to an analysis consisting of two case studies: one in which all the
parameters are varied up with the defined percentages for the margins and one in which they are
varied down. This is because the worse case scenarios will be studied to define the bounds between
which γA and γB can vary.

4.3.1 Case 1 - The parameters are varied towards the upper margins

Since the parameters of the transfer function are set up with the specified percentages, the values
for the variations (∆A+,∆B+) can be computed as:

∆A+ =

7.8153 −17.5921 0
0 0 0
0 0 0

 ∆B+ =

0
0
0

 (52)

The resulted solution of the Riccati equation from (29) is:

S =

0.0156 0.0019 0.5896
0.0019 0.0146 0.3206
0.5896 0.3206 289.095

 (53)

With this values, the matrix Γ from (36) is computed as:

Γ =

27174.996 −2157.61 −44.827
−2157.61 1332.96 2.889
−44.827 2.889 0.0901

 (54)

For the defined margins, the values of γA+ and γB+ are calculated taking into account the relation
(37) and the uncertainty domain Du. {

γA+ = 370.5615
γB+ = 0 (55)

In this case, the value of γB+ is zero, because of the fact that the B has only the first element not
null and when adding the maximum variations that will not destabilize the system. Also, the new
matrices, that define the system with uncertainties are:

Au+ =

−206.6247 −500.0307 0
512 0 0
0 1 0

 Bu+ = B =

64
0
0


Cu+ =

[
0 0 39.6694

]
Du+ = D =

[
0
]

(56)

The new system representation in the state space was proved to have similar performances, for the
same KLQR =

[
0.9998 0.1231 37.7349

]
, in simulation and the result from the Figure 7.
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Figure 7: The output of the closed-loop system, for the maximum upper uncertainties

The transient time for this case is 0.588 sec, which is faster than 0.629 sec for the initial system.
This is because the matrix Au+ and Cu+ , define higher gains and introduce a faster dynamic for the
system, for which the controller keeps zero overshoot and helps the system reach the reference, by
applying a command with values in a similar range as for the initial system.

4.3.2 Case 2 - The parameters are varied towards the lower margins

In this case, the parameters of the transfer function are all varied down with the defined percent-
ages, thus the computed values for (∆A−,∆B−) are:

∆A− =

−48.4822 109.0610 0
0 0 0
0 0 0

 ∆B− =

−32
0
0

 (57)

Both the Riccati equation solution S and the matrix Γ have the same values. But, the domain Du

is now changed, therefore the values of γA− and γB− are computed as:{
γA− = 14244.8162
γB− = 3200 (58)

The new matrices defining the state-space representation of the uncertain system for this case have
the values:

Au− =

−262.9222 −373.3776 0
512 0 0
0 1 0

 Bu− =

32
0
0


Cu− =

[
0 0 23.0147

]
Du− = D =

[
0
]

(59)

The system defined with these inferior margins for the parameters, also proves that the same KLQR

keeps stability and the response has zero overshoot as can be visualized in the Figure 8.
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Figure 8: The output of the closed-loop system, for the maximum lower uncertainties

For this case, the transient time in which the same reference is reached is 1.518 seconds. It is clear
that the system defined for the lower margins of the parameters has much slower dynamics, which
can be seen from the matrix defining this state-space realization of the system. Also, this is a realistic
case, where both the motor and the photovoltaic panel slows down their dynamics, because of the
aging of their components and environmental conditions.

5 Conclusion
The current paper has brought to light a robust LQR controller for a variable-oriented photovoltaic

system, that aims to deliver and maintain at the end customer a maximum power of 215W . The
designed controller was proved to keep high performances for consistent variations of the system’s
model. This will be an advantage, when it will be implemented on a real world photovoltaic application,
because it will act properly for changes in irradiance, temperature, shading, other environmental
factors or a limited degradation of some parts of the system over time.

A robust LQR controller designed for the photovoltaic system with variable tilt angle enhances
energy efficiency. By optimizing the tilt angle in real-time, the system maximizes the captured solar
energy during the daytime and across different seasons and weather conditions. This adaptability is
crucial for maintaining high energy output in diverse and unpredictable climates.

The controller enhances the overall stability of the solar tracking system. It was shown in the
current work, that it keeps oscillations to zero and minimizes disturbances, leading to smoother the
operation and reduced overloading of mechanical components.

While the initial investment in adding a DC-DC motor to the photovoltaic system and in imple-
menting a LQR controller may come with some additional costs, long-term benefits include increased
energy production and reduced maintenance costs. This makes the defined system a cost-effective
solution for sustainable large-scale energy production, making it also suitable for fields of photovoltaic
panels. Moreover, this system can be easily scaled and integrated into existing solar power infrastruc-
tures.

Maximizing the efficacy of solar energy captured, the system contributes to reduce fossil fuels and
decreases greenhouse gas emissions. This supports the general efforts to reduce the climate change
and to boost the renewable energy resources.

The success of the designed LQR controller in managing variable tilt angles and relatively high
variations in the model of the system, opens avenues for further research. Future developments could
focus on implementing the controller on a real-time application, enhancing the control algorithms,
integrating machine learning techniques to determine the Q and R matrix or to learn from the sea-
sonal trends and vary between different controllers, and exploring new materials for improved panel
efficiency.



https://doi.org/10.15837/ijccc.2025.5.6829 18

The main drawback of the strategy was that the design required solving a Riccati equation, which
can add some computational complexity. In the current case, the order of the involved matrix was
three, but the complexity will increase with the number of states. Another drawback is that the LQR
controller performances are hardly linked to the mathematical accuracy of the modeled system and to
the strategy of selecting Q and R matrices. Any differences between the model and the real system
may result in instability or suboptimal performance. In addition, the selection of the pair (Q,R)
depends on the system’s limitations, and in the majority of cases the proper way to choose them is
empirically.
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