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Abstract

Edge computing is essential for 6G mobile networks for improving reliability, reducing data
rates and latency, and enhancing mobile connectivity. Edge computing is also meant to meet
the increasing demands of the Internet of Things (IoT)/ Internet of Everything (IoE). In these
approaches, IIoT systems necessitate precision, reliability, and scalability, while vulnerabilities in
IToT systems may lead to financial losses and safety hazards. To tackle this, Edge AI/ML-based
IDSs provide adaptability and robustness for IIoT security challenges. These solutions improve
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security levels, threat detection rates, and response times. However, main issues such as limited
resources and the accuracy of attack detection rate are challenged nowadays. In this paper, we
present contributions in proposing an intrusion detection system (IDS) for edge devices deploying
a lightweight deep neural network to detect IToT attacks. We present performance analysis of the
typical dimensionality reduction methods and balancing data features of the Edge-IIoT dataset to
get higher performance metrics than other state-of-the-art studies.

Keywords: Industrial IoT, attacks, intrusion detection systems, dimensionality reduction, and
deep neuron networks.

1 Introduction

1.1 Background

Edge technology is essential for 6G mobile network reliability, data rate reduction, latency reduction, and
worldwide connection [9] [14]. In edge computing environment, edge devices are essential to these advances which
are projected to be widely deployed as integral nodes in mobile networks to fulfill the rising demands of the IoT
becoming the IoE [21] [34]. Edge computing and 6G networks can offload tasks to edge servers for improving
resource usage and performance in autonomous vehicles and mobile devices in real-time task offloading. Edge
devices and 6G technology must work together to maximize IoT /IoE applications and drive linked technology
innovation. Industrial Internet of Things (IToT) systems require precision, reliability, and scalability beyond
traditional ToT systems, requiring increased security [23] [5]. IToT vulnerabilities can cause economic losses,
safety risks, and reputational damage [25]. AI/ML-based Intrusion Detection Systems (IDS) for IToT can help
industrial IoT systems secure sensitive data, comply with regulations, and mitigate infrastructure attacks [6] [7].
Edge AI/ML-based IDSs provide adaptability and robustness for IIoT environments for ensuring the continuity
of industrial processes and reducing latency, improving privacy, scalability, and cost-effectiveness [22]. These so-
lutions protect sensitive data, speed up threat detection and response, and offer security management flexibility
[1]. However, processing power, system complexity, data management concerns, and security vulnerabilities can
hinder edge AI/ML-based IDS adoption [20, 31]. These barriers must be overcome to exploit these applications
and ensure efficient and appropriate security when navigating edge computing environments. Dimensionality
reduction techniques are essential for reducing high-dimensional data, which improves data preparation. These
methods reduce computational complexity during training and prediction by decreasing characteristics [10, 15].
Dimensionality decrease reduces overfitting and improves machine learning models [26]. These techniques also
help visualize data and understand model behavior, which can be helpful in many applications [32]. Hence,
dimensionality reduction simplifies computation and improves model performance and interpretability. Machine
learning deployed on network edge devices requires data dimension reduction due to resource constraints [30].
Edge data reduction improves quality of applications, IoT system bottlenecks, data management, storage, and
computation time. Deep Neural Network (DNN) models for medical picture recognition use EMD, Principal
Component Analysis (PCA), and correlation [4]. These methods minimize dimensionality and select key char-
acteristics to improve performance of medical picture detection machine learning. However, machine learning
for IToT’s IDS does not have comprehensive dimensionality reduction studies. In this paper, we will deploy
a DNN architecture with actual EdgeloT data for an IDS system and study the performance of dimensional-
ity reduction methods. Simulation results show that the IDS system identifies assaults even after decreasing
dimension parameters of the edge device.

1.2 Related Works

Preprocessing data is vital before model training. Dimensionality reduction is one of major preprocessing
techniques, which reduces the number of features in a dataset while retaining the most essential information
[8]. This leads to more accurate and efficient models by eliminating redundant and noisy features and sim-
plifying methods that struggle with high dimensions [28]. Dimension reduction can also aid noise reduction,
data visualization, cluster analysis, and other investigations. Many dimensionality reduction approaches exist,
including feature selection and extraction. PCA, Factor Analysis (FA), Linear Discriminant Analysis (LDA),
SVD, Kernel PCA, t-SNE, MDS, and Isomap are commonly used data analysis methods[18, 24, 27]. Dimension-
ality reduction techniques like PCA have been shown to improve the performance of machine learning models in
various applications. A study in [16] looks at how well the PCA dimensionality reduction algorithm works with
autoencode, neural networks (NN), and support vector machines (SVM) to predict cancer. The results showed
that the proposal reduced the complexity and increased the performance of ML models. The authors in [17]
evaluated PCA algorithms with different ML techniques to enhance intrusion detection models’ performance.
Evaluation measures, including accuracy, precision, and recall on the NSL-KDD dataset, demonstrated clear
performance benefits. In [2], AE and PCA techniques were used to reduce the dimensionality of features in
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the CICIDS2017 dataset. The results show that the features of the CICIDS2017 dataset have been reduced
from 81 to 10 while maintaining a high accuracy of 99.6% in multiclass and binary classification. When testing
dimensionality reduction of up to 10 features with four IoT attack datasets (NSL, NB15, BoTIoT BoTNeTIoT),
the author in [3] proposed data dimensionality reduction methods including PCA, Random-Forest and Pearson
Correlation.AE and PCA techniques were also used to reduce the dimensionality of features in the CICIDS2017
dataset. Experimental results show that no solution stands out when it comes to meeting both performance
and accuracy goals. The authors in [12] used the Local Intrinsic Dimensionality (LID) method to test the
algorithm on the ToN IoT, NF Bot-IoT, and IoT-23 datasets. This method was better than traditional ones
at finding attacks on IoT. Our previous work on the IoT-23 dataset using the PCA algorithm combined with a
DNN achieved an attack detection rate of 99% [13]. In [11], the Edge-IToTset dataset was explicitly designed for
evaluating intrusion detection systems in the context of edge computing in Industrial IoT (IToT) environments.
It details the dataset creation process, including the types of attacks and network traffic scenarios. For IoT and
IIoT applications, [11] has proposed the Edge-IToTset dataset as a comprehensive, useful cybersecurity dataset.
The Edge-IloTset dataset has been recognized as a "Document in the top 1% of the Web of Science." The
authors in [19, 29] made tests that showed the Kmeans-SMOTE method, which combines the K-means cluster-
ing algorithm and the SMOTE oversampling algorithm, works better than random oversampling, SMOTE and
borderline-SMOTE when working with uneven data during dimensionality reduction processes. The detailed
survey indicates that the Kmeans-SMOTE method efficiently addresses imbalances within and between layers
while preventing the creation of unnecessary noise. As a result, we employ this method in our proposed IDS
model evaluations to enhance the attack detection rate.

1.3 Contributions

The main contributions of this paper are as follows:

e This study proposes an IDS system for edge devices, including preprocessing, data transformation, and a
lightweight deep neural network, to detect security attacks in industrial IoT environment.

e The study evaluates dimensionality reduction methods and balancing data features of the Edge-IloT
dataset to make recommendations for the selection of dimensionality reduction methods that are able to
improve performance for detecting industrial IoT attacks.

1.4 Organization

The organization of this paper is as follows: The following section briefly introduces the proposed system
model, which contains the main processing phases. Session 3 will describe the Edge IoT dataset used in the IDS
model with essential dimensionality reduction methods and unbalanced data processing. Session 4 will show
simulation and evaluation findings. Our conclusions and future research are presented in the last section.

2 System model

2.1 The outline of the system model

The proposed system model for detecting IIoT attacks on edge devices incorporates a lightweight Deep
Neural Network (DNN) to optimize performance and resource utilization. This approach is critical for edge
computing environments, where computational and memory resources are limited.

The system model’s workflow is shown in Figure 1 and comprises three stages: preprocessing, feature
selection, and evaluation. The evaluation stage focuses on reducing the number of dimensions and dealing with
class imbalance.

The initial step involves acquiring data from the Industrial Internet of Things (IIoT) ecosystem to construct
a comprehensive dataset. The dataset is then subjected to a data preprocessing procedure to transform it into
an appropriate format for machine learning and deep learning methodologies. This preprocessing stage includes
the removal of duplicate rows, handling missing or infinite values, and encoding categorical features using a
binary encoder.

Next, a dimensionality reduction methods is used to eliminate some features while keeping the important
data. The method can be one of typical principal component analysis (PCA), linear discriminant analysis
(LDA), independent component analysis (ICA), factor analysis (FA), and uniform manifold approximation and
projection (UMAP) methods. The dataset is partitioned into training, validation, and test sets to facilitate
model development and evaluation. In the first phase, each dimensionality reduction method is evaluated using
a lightweight deep neural network (DNN) to determine the most effective technique.

The lightweight DNN in this paper is designed for edge computing environments with limited computa-
tional resources and power consumption [33]. It maintains high accuracy in detecting attacks while minimizing
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Figure 1: System model.

parameters, making it ideal for edge devices. By integrating dimensionality reduction, the DNN processes fewer
features, reducing computational load and memory usage, resulting in faster inference times and lower power
consumption. This is essential for real-time IIoT applications like automated industrial systems and real-time
security monitoring. The DNN model is a fully connected neural network starting with 64 nodes and com-
pressed to 32 nodes, using the ’gelu’ activation function and a five percent dropout layer. For the multi-class
classification problem, the model’s output is a softmax function with 15 nodes for 15 attack types. We use
the ’Adam optimizer’ and cross-entropy function to adjust optimization weights, identifying a learning rate of
0.0001 as optimal for achieving the highest detection rate. To minimize overfitting, we implement early stopping
during training, halting when the validation error does not decrease after a set number of iterations, allowing
us to adjust the number of epochs to achieve the best accuracy during testing.

The second phase involves applying the optimal dimensionality reduction method and addressing class
imbalance using KmeansSMOTE, focusing on the training set. This balanced dataset is then used to train the
DNN for attack classification, with the outcomes detailed in Section 3.2. This comprehensive workflow ensures
the data is effectively processed and analyzed, leading to robust and accurate machine-learning models for IIoT
applications.

2.2 Edge-IIoT Dataset and Preprocessing

In 2022, the Edge-IToTset dataset was introduced to provide a realistic and comprehensive data source for
evaluating Al-based intrusion detection systems focusing on realtime challenges [11]. This dataset includes a
wide range of devices, sensors, protocols, and cloud/edge computing configurations, making it ideal for testing
the intrusion detection capabilities of machine learning models. The initial raw dataset comprised up to 1,176
features. After thorough analysis, the research team filtered 61 relevant features, resulting in two CSV files. In
this paper, we use the "DNN-EdgelloT-dataset.csv" to evaluate various dimensionality reduction techniques on
a deep neural network (DNN) for anomaly detection. The dataset classifies attacks into 15 distinct categories,
encompassing 14 specific attack types and one benign label, offering valuable insights into the security landscape
of the IToT ecosystem.
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The data from the original Industrial Internet of Things (IIoT) dataset undergoes a series of preprocessing
steps to ensure data integrity and suitability for analysis.

e The "Attack type" label and data from the DNN-FEdgelloT-dataset.csv are fed into a multi-layer classi-
fication model.

o Entries with errors labeled as "NAN" (Not a Number) or "INF" (Infinity) are removed to maintain data
accuracy and prevent duplication.

e Duplicate rows and features with identical unique values are eliminated to streamline the dataset.
e Irregularities in the dataset are addressed using binary encoding techniques to classify behaviors.
e The data are standardized using a Standard scale to normalize the feature values.

o Dimensionality reduction techniques are applied to decrease the number of model parameters and com-
putational requirements.

e The dataset is split randomly into training, validation, and test sets using the train_test_split function,
with an 80:10:10 ratio.

The specific distribution of attack types is detailed in Table 1.

2.3 Dimensionality reduction techniques

PCA involves identifying principal components and linear combinations of the original features to maxi-
mize the dataset’s variance. The fundamental concept of PCA revolves around transforming data into a new
coordinate system defined by these principal components, with the primary objective being the preservation of
global variance rather than intricate local correlations. The critical steps outlining the PCA process include
calculating the covariance matrix, eigenvalue decomposition, selecting principal components, and transforming
data into a lower-dimensional space.

LDA is another significant dimension reduction technique that is particularly advantageous in supervised learn-
ing scenarios. LDA emphasizes enhancing separability among distinct classes by transforming data into a
space that optimally discriminates between predefined classes. The methodology encompasses calculating mean
vectors for each class, computing scatter matrices to comprehend class variance, determining eigenvectors and
eigenvalues through eigenvalue decomposition, forming a transformation matrix using selected eigenvectors, and
ultimately transforming data to a new lower-dimensional space to improve class separability.

ICA is a computational method that separates a multivariate signal into additive, independent non-Gaussian
components. In contrast to the PCA, which focuses on maximizing variance, the ICA aims to identify com-
ponents that exhibit statistical independence. The essential steps involved in ICA include (1) subtracting the
mean to achieve data centering, (2) applying whitening to convert the data into uncorrelated components with
unit variance, and (3) utilizing algorithms such as FastICA to estimate the independent components through
the maximization of non-Gaussianity.

FA is a statistical technique that improves principal component analysis, also known as multivariate statistical
analysis. It groups variables based on correlations to reveal intercorrelations among attributes by reducing
them to fewer factors. The method reduces dataset dimensionality by approximating the covariance matrix.
The FA produces a table with original variables as rows and factors as columns, displaying factor loadings.
These loadings show variable-factor correlations and identify strong associations. The steps include calculating
the initial factor loading matrix using the principal component or principal axis factoring methods. Factor
rotation enhances interpretability by ensuring high loadings on one factor per variable through orthogonal or
oblique rotation. Factor scores are calculated for each factor, with the total variance explained by the original
variables exceeding 75%. The number of factors chosen typically corresponds to eigenvalues greater than 1.
UMAP is a technique for dimensionality reduction and visualization. UMAP maintains local and global struc-
tures in high-dimensional datasets better than other techniques. UMAP creates a topological representation of
data and projects it onto a lower-dimensional space. Unlike PCA, UMAP focuses on preserving neighborhood
relationships to capture non-linear patterns effectively. UMAP involves constructing a topological graph, opti-
mizing for low-dimensional representation, and embedding data into a lower-dimensional space for visualization.

3 Numerical results

This section involves a comparative analysis of different dimensionality reduction methods applied to the
Edge-IIoT dataset mentioned before. The efficacy of these methods is evaluated based on classification accuracy,
the count of model parameters, and after dimensionality reduction. The experiments used Python 3.7, the
TensorFlow framework, and the Keras module for deep learning tasks. The experimental configuration included
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a PC with an Intel® Core i9 10900K processor, 48GB of RAM, and an Nvidia® RTX A4000 GPU. The training
process consisted of 200 epochs in Phase 1, then extended to 1000 epochs in Phase 2. Before evaluating the
effectiveness of dimensionality reduction methods, we present the data imbalance handling method as follows:
The KmeanSMOTE method is utilized to address class imbalances in the dataset. This technique ensures
that the classification model does not exhibit bias towards the majority class by accounting for the unequal
representation of different classes in the dataset, which is critical during Phase 2 of the workflow. KmeanSMOTE
uses both K-means clustering and the Synthetic Minority Over-sampling Technique (SMOTE) to make fake
samples for the minority groups, which evens out the dataset. Table 1 below provides a detailed breakdown of
the number of instances for each attack type after the dataset has been divided into training, validation, and
test sets. In the dataset, some attack types have significantly more training data than others. By addressing
class imbalances, the KmeanSMOTE method plays a crucial role in enhancing the robustness and accuracy
of the machine learning model, leading to better performance in detecting various types of attacks within the
industrial IoT security landscape.

Table 1: Distribution of attack types in each data split

Attack_ types Train Val Test
Backdoor 1,148,439 | 143,555 | 143,555
DDoS_HTTP 97,253 12,157 12,157
DDoS_ICMP 93,147 11,644 11,643
DDoS_TCP 40,783 5,098 5,098
DDoS__UDP 40,066 5,008 5,008
Fingerprinting 40,050 5,006 5,006
MITM 40,025 5,003 5,003
Normal 39,870 4,983 4,984
Password 29,791 3,724 3,724
Port_ Scanning 19,230 2,404 2,404
Ransomware 15,992 1,999 1,999
SQL_ injection 12,070 1,509 1,509
Uploading 7,760 970 970
Vulnerability _scanner 688 86 86
XSS 320 40 40
SUM 1,625,484 | 203,186 | 203,186

To compare dimensionality reduction methods, we looked at how many features were kept after reduction
and how they affected a deep neural network (DNN) model that had already been built [13]. We also ex-
perimented with dimensions starting from two, incrementally increasing until the model achieved an accuracy
of approximately 99%. This would help to ensure minimal loss of accuracy relative to the number of model
parameters. By using the same model, reduced dimensionality also implied reduced model complexity. The
primary goal of employing dimensionality reduction was to decrease the model size while maintaining robust
classification accuracy.

3.1 Results of dimensionality reduction methods

The results of dimensionality reduction using PCA are presented in Table 2.

Table 2: Comparison Accuracy for PCA, LDA, ICA, FA, UMAP for different numbers of features

Features 2F 5F 7F 8F 10F 14F 15F
PCA 0.9306 | 0.9808 | 0.9881 | 0.9931 | 0.9981 - 0.9992
LDA 0.8166 | 0.7990 | 0.9757 | 0.7311 | 0.9949 | 0.9952 -
ICA 0.9170 | 0.9362 | 0.9341 | 0.9414 | 0.9627 - 0.9930

FA 0.8952 | 0.9587 | 0.9650 | 0.9810 | 0.9963 - 0.9990

UMAP | 0.8662 | 0.9813 | 0.9968 | 0.9979 | 0.9984 - 0.9993

The combined table provides a comprehensive comparison of PCA, LDA, ICA, FA, and UMAP across various
feature counts (2F, 5F, 7F, 8F, 10F, 14F, and 15F). For LDA, the maximum number of dimensions after using
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reduction is the number of classes minus one, resulting in a maximum of 14 features. The results showed in Table
2 indicate that model accuracy was generally improved as the number of features increases, highlighting the
importance of feature richness in enhancing model performance. Specifically, for PCA, the model’s classification
accuracy increases gradually as the number of features increases, achieving 99% accuracy with 8 features, which
balances the number of model parameters and accuracy. LDA shows varied results, peaking at 10F and 14F with
accuracies of 0.9949 and 0.9952, respectively, but performs poorly at 8F (0.7311). The ICA method requires
more features than PCA and LDA, needing 15 features to achieve 99% accuracy. FA shows a proportional
relationship between the number of features and model accuracy, starting with approximately 90% accuracy at
2 features and reaching 99% accuracy at 10 features. Lastly, UMAP exhibits strong performance, with accuracy
rapidly increasing from 0.8662 at 2 features to 0.9984 at 10F.

These findings underscore the diverse requirements and effectiveness of different dimensionality reduction
techniques in optimizing model performance. They emphasize the importance of selecting the appropriate
method and feature count for specific applications. Based on this comparison, we can determine the optimal
feature count for each method to achieve both high performance and lower complexity. The most efficient feature
counts identified are PCA_8F, LDA_10F, ICA_15F, FA_10F, and UMAP_ 7F for their respective techniques.

3.2 Confusion Matrices

The specific results for the classification of each attack and the confusion matrix for each technique are
shown in Figures 2, 3,4,5, and 6.
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Figure 2: Confusion matrix of PCA_8F

From Figure 2, the PCA_ 8F model demonstrates consistent performance across most attack types, with
the exception of 'Password’, which has the lowest detection rate at only 90%. The LDA_ 10F model, shown
in Figure 3, also performs consistently except for ’Fingerprinting,” where the LDA model has 34% of confusing
"Fingerprinting’ with DDoS_ ICCMP, despite increasing the number of features to 10F. This indicates LDA has
more false positives and only captures two-thirds of actual instances, resulting in a low F1 score of 0.10.
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Figure 3: Confusion matrix of LDA_10F

The ICA model, based on Figure 4, shows overall a slightly lower performance compared to PCA_8F and
LDA_ 10F models while needing more features. The FA_10F model, according to 5, performs significantly
better compared to the LDA__10F model, considering they use the same number of features. Lastly and most
importantly, UMAP_ 7F, as seen in Figure 6, outperforms other methods with fewer features.
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Figure 5: Confusion Matrix of FA_ 10F
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Figure 6:

Confusion Matrix of UMAP_ 7F
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Performance Metrics for Different Attack Types for UMAP_(7F)
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Figure 7: Preformance of UMAP_ (7F)

Overall, UMAP__7TF delivers superior performance compared to four other methods as it achieved a 'Macro
avg (F1-Score)’ of 0.95 and a "Weighted avg (F1-Score)’ of 1.00 with fewer features. Therefore, Figure 7
was created to show the detailed performance metrics for UMAP_ (7F), demonstrating its effectiveness. For
the Recall metric, the lowest score is 0.99 (for detecting DDoS_HTTP, DDoS_ICMP, and XSs), while the
rest achieves perfect scores, indicating that the model accurately recognizes and classifies most attack types.
Additionally, UMAP_ (7F) improves the Precision score for the "Fingerprinting’ class to 0.52, although MITM’s
Precision is slightly lower at 0.50 compared to other methods.

3.3 Overall performance evaluation

From the evaluation results of the above dimensionality reduction methods, we continue to evaluate the
overall performance of the DNN-based IDS system with the non-dimensionality-reduced Edge-IloT data set
(DNN-Origin) with the system using our best dimensionality reduction results and supports data balancing.

The confusion matrices of the two models, DNN and DNN_ UMAP_ KmeanSMOTE, are shown in Figure
8. Figure 8 shows that the model after dimensionality reduction performs very well compared to the model
before reduction. On the main diagonal, only 2 class scores are 0.99, while the rest achieves 1.00 compared to
the overall 1.00 of the original model. The number of misclassifications for the original model is 7, whereas for
the reduced model, it is 11. This is acceptable as the number of incorrect predictions remains very small while
the number of features learned has reduced significantly. Another critical parameter for quickly deploying the
model on edge devices is the model parameter count. The number of parameters that are reduced after reducing
dimension is shown in Table 3.

Table 3: Parameter Count of DNN_ origin and DNN _ UMAP(7F)_KmeanSMOTE Models

Model DNN_ origin | DNN-UMAP(7F)-KmeanSMOTE
Parameter 15,439 3,087
Accuracy 99.98% 99.96%

After dimensionality reduction, the model has demonstrated excellent classification performance (accuracy)
at the specific class level. The average F1-Score (Macro avg) is 0.99, and the weighted F1-Score (Weighted
avg) is 1.00 in the classification report, showing that the model maintains precise and consistent classification
capability across all classes. More importantly, the model has significantly reduced the number of parameters
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Figure 8: Confusion matrix of DNN__UMAP(7F)_KmSMOTE and DNN__origin

to approximately one-fifth of the original model. It shows that UMAP not only optimizes resources but also
enhances the deployability and performance of the model in practical applications.

1 DDoS _HTTP Attack 1 Fingerprinting Attack 11 XSS Attack
DNN_UMAP(7F)_KmeanSMOTE DNN_UMAP(7F)_KmeanSMOTE DNN_UMAP(7F)_KmeanSMOTE
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Figure 9: Notable difference in the performance of DNN_ UMAP(7F) KmeanSMOTE and
DNN_ origin

Figure 9 highlights some notable differences between the proposed model and the original model. For all
attack types except one, both models achieve scores close to or exactly 1.0 across the three performance metrics.
The proposed model not only increases the depth of the model but also maintains or enhances classification
performance. The most significant improvement is observed in the "Fingerprinting" class, as shown in Figure 9b,
where precision is typically low in most models. This enhancement demonstrates that dimensionality reduction
can be an effective strategy for optimizing models, especially when handling large datasets with numerous
parameters.

4 Conclusion

The paper has presented and illustrated the effectiveness of dimensionality reduction techniques in improving
the detection of attacks in industrial Internet of Things (IIoT) systems. The investigation emphasizes the
capacity of these approaches not only to enhance model accuracy but also to notably decrease the number
of model parameters, thus optimizing resource utilization for deployment on edge devices. For instance, the
DNN-UMAP (7F)-KmeanSMOTE model has a significantly reduced number of parameters while achieving
nearly the same level of accuracy as the original model. The model uses fewer resources than the other DNN-
based IDS using the original edge IIoT dataset that was applied to IDS on edge devices. This underscores
the practical applicability of these methods, which opens a chance to act in real-world IIoT scenarios where
computational efficiency and model performance are crucial. Future research will focus on the development of
lightweight learning mechanisms for continuous model updates without impacting edge device performance and
the integration of explainable AI techniques for a better understanding of attack detection decisions in IIoT
systems.
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