
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 19, Issue: 5, Month: October, Year: 2024
Article Number: 6697, https://doi.org/10.15837/ijccc.2024.5.6697

CCC Publications 

EfficientNet Convolutional Neural Network with Gram Matrices
Modules for Predicting Sadness Emotion

M. Motiejauskas, G. Dzemyda

Modestas Motiejauskas*
Institute of Data Science and Digital Technologies
Vilnius University, Lithuania
Akademijos str., Vilnius, LT-08412, Lithuania
*Corresponding author: modestas.motiejauskas@mif.stud.vu.lt

Gintautas Dzemyda
Institute of Data Science and Digital Technologies
Vilnius University, Lithuania
Akademijos str., Vilnius, LT-08412, Lithuania
gintautas.dzemyda@mif.vu.lt

Abstract

Images are becoming an attractive area of emotional analysis. Recognising emotions in the
images of general nature is gaining more and more research attention. Such emotion recognition
is more sophisticated and different from conventional computer tasks. Due to human subjectivity,
ambiguous judgments, cultural and personal differences, there is no an unambiguous model for
such emotion assessment. In this paper, we have chosen sadness as the main emotion, which has
significant impact to the richness of human experience and the depth of personal meaning. The main
hypothesis of our research is that by extending the capabilities of convolutional neural networks to
integrate both deep and shallow layer feature maps, it is possible to improve the detection of sadness
emotion in images. We have suggested integration of the different convolutional layers by taking
the learned features from the selected layers and applying a pairwise operation to compute the
Gram matrices of feature sub-maps. Our findings show that this approach improves the network’s
ability to recognize sadness in the context of binary classification, resulting in a higher emotion
recognition accuracy. We experimentally evaluated the proposed network for the stated binary
classification problem under different parameters and datasets. The results demonstrate that the
improved network achieves improved accuracy as compared to the baseline (EfficientNetV2) and
the previous state-of-the-art model.

Keywords: EfficientNetV2, Gram matrix, emotion prediction, images of general nature, sad-
ness emotion.
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1 Introduction
With the current spread of the Internet of Things and smart devices, the amount of data, much of

it visual, has increased significantly. Vision is the main source of information that people receive from
the outside. Images can also express meaning or information, but it is also possible to analyse these
images as containing and expressing certain emotions. People viewing the images may be affected
emotionally, with positive or negative emotions.

Studies in psychology identify the presence of six distinct, basic, and universal emotion categories:
happiness, anger, sadness, surprise, disgust, and fear. Various researchers in their studies [17, 20] tackle
the problem of emotion recognition by identifying and selecting the following basic emotion categories:
joy, sadness, surprise, disgust, anger, fear, and neutral. Facial emotion recognition (FER) is important
aspect in various disciplines, as facial expressions play a crucial role in non-verbal communication. The
standard FER process includes image pre-processing, face detection, feature extraction, and expression
classification, where approaches and their accuracy can significantly vary. Despite its challenges, recent
advances in deep learning have improved FER methods, demonstrating that these modern approaches
generally outperform conventional techniques in recognition accuracy.

In this paper, we investigate the sadness emotion recognition in images of general nature. Sadness
is one of the most common expression and is heavily linked to the other negative emotions. Detecting
it in the images of the environment would allow decisions to be taken to modify the environment or
adapt it for special needs. Based on psychological insights, our study views sadness as an essential
emotion that contributes to the richness of human experience and the depth of personal meaning.
With advanced neural networks, this research aims to accurately recognize sadness in images of general
nature, thus combining emotional awareness and adaptation to the environment to support human
well-being.

A lot of research has been carried out on images of people’s faces to identify the emotions of the
person in the picture [7, 14, 22]. However, we often deal with images of a general nature, where there is
no textual information and faces are not the main focus of the image. In our study, we consider cases
where faces are not the main focus of the image to be non-faces. In this case, it is not the emotion of
the person that we need to recognise, but the conveyed emotion of the image. Unlike facial emotion
recognition problems, the recognition of emotions expressed in the general image remains a challeng-
ing task. When analysing images of people’s faces, the researchers first manually extracted low-level
features including colour, shape and texture. These features are also relevant and used in the analysis
of general images. Advancements in deep neural networks, specifically convolutional neural networks,
have allowed researchers to capture features and recognize image emotion more reliably. Also, some
researchers propose various network fusion strategies [11, 33], through multi-modality. However, re-
lationships between hand-crafted feature fusions are difficult to evaluate objectively. Recognizing the
emotion conveyed through non-facial or general images is important for various industries such as
marketing, architecture, arts, and design. To achieve this, we leverage deep neural networks.

The aim of our study is to address previous research [37] suggesting that convolutional neural
networks (CNNs) tend to favour deep semantic information at the expense of shallower layer features,
which are crucial for recognising visual emotions. Given that these shallower layer features play a
significant role in conveying emotional content in images, we propose a novel approach that leverages
the strengths of EfficientNetV2 CNNs while addressing their limitations.

The main hypothesis of our research is that by extending the capabilities of convolutional neural
networks (CNNs) to integrate both deep and shallow layer feature maps, it is possible to improve the
detection of sadness emotion in images. Some attempt has been done in [37], where the suggested
deep neural network provides a description from the deep semantic representation to shallow visual
representation. We extend these ideas. The convolutional neural network (CNN) layer uses a set of
filters. The result is a three-dimensional feature map composed of a fixed number of two-dimensional
feature sub-maps. Filters produce a feature map that represents different specific detected features,
such as edges or textures, contributing to the network’s ability to understand diverse characteristics of
the visual data. Applications of convolutional neural networks lie at image and video recognition, im-
age classification, image segmentation, natural language processing. Typically, fully connected neural
network has many connected weights, which usually may lead to overfitting, but CNNs share receptive
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fields through learnable filters. EfficientNet is the CNN-based image classification model family. It
was first described in [30]. One of the newest convolutional neural network family EfficientNetV2 [31]
was published in 2021. EfficientNet was chosen in our research because we formulate the problem of
sadness recognition as an image classification problem. Generally, the term backbone CNN refers to
the feature-extracting network that processes input data into a certain feature representation. These
feature extraction networks usually perform well as stand-alone networks on simpler tasks, but also
researchers utilize them as a feature-extracting part in the more complicated models.

Our contribution is in the integration of different convolutional layers by taking the learned features
from the selected layers and applying a pairwise operation to compute the Gram matrices of feature
sub-maps, which quantify the correlations between the groups of features in the convolutional layer.
The Gram matrix is a mathematical construct that represents the inner product of vectors. By fusing
these Gram matrices in the penultimate layer of the network, we transfer additional knowledge from
the shallow layer to the deep one. Our findings show that this approach improves the network’s
ability to recognize sadness in the context of binary classification, resulting in more accurate emotion
recognition overall. By computing the Gram matrix for a set of feature sub-maps extracted from an
image or feature map of the previous convolutional layer, we can generalize the valuable information
that is present. This is particularly important for our goal of recognizing sadness, as this emotion can
be conveyed through the textures and visual patterns in an image, besides just facial expressions.

In Section 2, we discuss emotion recognition in images: studies and common architectures. In
Section 3, we discuss in detail the motivation, purpose, and strategy of the possible fusion of the
Gram matrix module with EfficientNet. This makes a basis of the proposed new architecture, i.e.
some extension of EfficientNet. Section 4 describes the experimental setup used for carrying our
proposed network training. In Section 5, results of our improved model are described and compared
to the baseline network.

2 Related work
Xu et al. [11] demonstrated a visual emotion recognition system using CNN architecture. CNN

architecture-based model was trained to recognize objects and then the problem was transferred to
sentiment recognition. Chen et. al. [6] used medium-level representations as adjective-noun pairs
(ANPs) labelled images. Authors managed by manipulating the strength of the sentiment upon ad-
jectives and nouns to obtain statistical hints for the emotion classification. However, these mentioned
works demonstrate how these models solve only binary emotion classification problems. You et al.
[35] constructed a large-scale visual emotion dataset named Flick and Instagram set. This dataset was
formulated according to the psychology studies and contains 8 labelled emotion categories – amuse-
ment, awe, anger, contentment, disgust, excitement, fear, and sadness. This dataset was collected
from freely available sources, obtained 90000 weakly labelled emotion images, and using Amazon Me-
chanical Turk system workers manually labeled emotion images. Using the manual labelling approach
final Flickr and Instagram dataset has 23308 visual emotion images.

Other researchers are describing multi-layered network models in order to recognize and classify
possible visual emotion [34]. These authors demonstrate the possibility of fusing visual semantic and
visual-stream models for predicting emotions. Their proposed visual-semantic model produces possible
visual-emotional embedding merging alongside the visual-stream model. Their Visual-semantic model
is based on the DeepSentiBank structure [2], which produces conceptual emotion expression, e.g. small
beetle, which is expressed as the disgust expression. These expressions are formed as graph embedding
in the 2-dimensional space. For the visual stream emotion recognition model authors use ResNet50 [10]
model architecture. The final fused model is the multiplication of these 2 different model architectures
and in the result, the visual emotion predictions are obtained. A similar approach and study was being
done by Zhang et al. [37], where a multi-level representation model with side branches named Gram
matrices for shallow features is proposed. The authors in [37] are trying to integrate feature maps
from different layers by applying a Gram matrix for further sentiment analysis – i.e. for negative and
positive emotion classification.

The training of deep neural networks needs many computing resources. They also tend to have
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vanishing or exploding gradient problems. Batch normalization helps here, but, with the increase in
depth, the problems above remain. One solution was proposed in Deep Residual Learning for Image
Recognition by [10] to use Resnet blocks, which connect the output of one layer with the input of an
earlier layer. These skip connections are also commonly known as residual connections. The team of
Deep Residual Learning for Image Recognition won the ImageNet 2015 competition using these deep
residual layers, applying skip connections. The authors used ResNet-152 CNN architecture, consisting
of 152 layers, This ResNet model surpassed the previously top-performing model on the ImageNet
task, named VGGNet16 [28]. Residual connections applicability and usage has been proven widely in
various state-of-the-art convolutional neural network architectures such as – Xception, MobileNetV2,
DenseNet, EfficientNets [4, 13, 25, 30, 31]. Skip connections are also widely used in other tasks of
domain applications – U-Net [23] and DeepLabV3 [3] for various image segmentation tasks.

Previously mentioned studies set the stage for our study, which proposes a novel extension based
upon [37] work. Our study addresses EfficientNetV2 improvements by taking advantage of Gram
matrices and fusing them onto the network. There are also insufficient recent results regarding specific
emotion recognition, which, in our case, is sadness emotion. Furthermore, previous studies employ
deep neural networks, which usually need lots of training data. Current investigations on emotion
recognition and analysis use ResNet, VGG, DenseNet type networks [14, 34, 37]. There is a lack of
visual emotion recognition studies using recent EfficientNet-type networks.

3 Sadness emotion recognition in images of general nature
The recognition of emotions in general images can be considered and evaluated at a higher, more

abstract level. In our paper, general images are images that do not contain textual information and
where faces are not the main focus of the image. Some authors in their reviews [38], for emotion recog-
nition claim that colors, textures, shapes, and contours as essential (defining) features, determining
visual emotion in the given image. This statement (consideration) may lead us to state that emotion
recognition in images of a general nature is a different problem as compared to commonly known facial
emotion recognition problems. In our case, the expression of emotion detected and recognised may
not be of physical origin, as the features describing the emotion can be broad and diverse. For ex-
ample, the emotion of sadness can be associated with darker colours, textures or a broader subjective
emotional pain, which in turn can be associated with many emotional feelings.

Sadness emotion recognition in images of a general nature is being constructed as a binary classi-
fication problem – answering whether an image expresses sadness emotion. We chose a convolutional
neural network as the means for such classification. Convolutional neural networks still remain one of
the main and promising tools for image analysis.

However, for our stated (given) problem we are going to need highly performant and well-structured
CNN. Moreover, the convolutional neural networks are known for their need for a large set of images
for training [16, 18, 32].

3.1 Modifications in the EfficientNet convolutional neural network

In addressing our stated problem, we will need to handle very large amounts of data. In order to
efficiently take advantage of such large datasets, including the aim of reducing computation overhead,
it is appropriate to use the EfficientNet convolutional neural network. This network is going to serve
as our backbone in striving to maximize the quality of the results, i.e., our goal is to investigate CNN
(particularly EfficientNet) improvement areas for better recognition of sadness emotion.

According to the authors of convolutional neural network EfficientNetV2 [31], this network has
demonstrated the best results in the ImageNet [24] classification challenge. The used in this challenge
ImageNet ILSVRC2012 dataset consists of 1281167 training images, 50000 validation images, and
100000 test images and aims to classify 1000 categories from the mentioned set. EfficientNetV2 family
models achieve better results than previous solutions because they incorporate more efficient blocks
called MBConv and Fused-MBConv. The authors also conducted a neural network architecture search
to find optimal network parameters, using their older EfficientNet [30] B4 version as a base, resulting
in a model dubbed EfficientNetV2-S [31].
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Model optimization for the EfficientNetV2 was based on these objectives: accuracy, training speed,
and number of parameters. EfficientNetV2B0 and EfficientNetV2B2 are scaled-down versions of the
original EfficientNetV2, with fewer parameters, fewer convolutional layers, and trained with lower
resolution images. The authors also introduced progressive image resolution changing combined with
adaptive regularization training methods, which significantly reduced the time required for training
not only for their presented model but also for existing older models. The novelty and main idea of
progressive training are to divide the training phase into several smaller steps – initially training the
network using lower-resolution images with weaker regularization and, in later stages, increasing the
image resolution and incorporating stronger regularization using mixing [36] (blending images into
one and outputting a probabilistic category), random augmentation [5], and stochastic dropout [29].

Figure 1: Structure of MBConv and Fused-MBConv blocks. Source: [31]

Figure 1 shows the structural blocks (modules) of EfficientNetV2 architecture. By using combi-
nations from these blocks, the authors determined the entire network structure. Here H and W are
the height and width of the input, and C is the number of channels. The MBConv block, also known
as the inverted residual block, is understood as a variation of the residual block aimed at achieving
higher efficiency. The inverted residual block was first introduced in the MobileNetV2 convolutional
neural network architecture [25]. Initially, a 1x1 convolution expands the number of layer channels,
followed by a special 3x3 depthwise convolution that reduces the number of parameters, and finally, a
1x1 convolution is applied to normalize the dimensions of the output and input. This normalization
is necessary to combine them using a residual connection (skip connection). The authors of Effi-
cientNetV2 also enhanced this block with a so-called squeeze and excitation (SE) layer, which was
first introduced by the authors of [12]. This layer, essentially a module, consists of a global average
pooling, fully connected, ReLU activation, subsequent fully connected, sigmoid activation, and multi-
plication operations. Such a block helps achieve better results in benchmark solutions with a minimal
increase in computational cost. The essential difference between MBConv and Fused-MBConv is that
Fused-MBConv replaces the first two layers with a conventional 3x3 convolution.

Table 1 illustrates the optimized structure of EfficientNetV2S detailing its components and blocks.
The structure was optimized using reinforcement learning on the basis of the ImageNet dataset [24].
Stride refers to the convolution operation’s step size. Channels No. indicates the number of output
channels from a particular block or operation. Layers No. specifies the count of particular block
repetitions within a certain stage. For example, the number of layers in the fourth stage, 6, indicates
the number of MBConv block repetitions. MBConv[n] denotes the module MBConv with an expansion
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Stage Operation Stride Channels No. Layers No.
0 Conv3x3 2 24 1
1 Fused-MBConv1, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6
5 MBConv6, k3x3, SE0.25 1 160 9
6 MBConv6, k3x3, SE0.25 2 256 15
7 Conv lxl & Pooling & FC - 1280 1

Table 1: Structure and parameters of EfficientNetV2S. MBConv and Fused-MBConv blocks are de-
scribed in Figure 1. Source: [31]

factor of n – the initial 1x1 convolution receives C channels and expands the output to n*C channels.
SE0.25 refers to the reduction ratio of the squeeze and excitation block used to model channel-specific
relations.

Stage Operation Stride Channels No. Layers No.
0 Conv3x3 2 32 1
1 Fused-MBConv1, k3x3 1 16 2
2 MBConv4, k3x3 2 32 3
3 MBConv4, k3x3 1 56 3
4 MBConv4, k3x3, SE0.25 2 104 4
5 MBConv6, k3x3, SE0.25 1 120 6
6 MBConv6, k3x3, SE0.25 2 208 10
7 Global Average Pooling & FC - 1408 1

Table 2: Structure and parameters of EfficientNetV2B2 model variant used in this research. MBConv
and Fused-MBConv blocks are described in Figure 1

Table 2 presents the structure of the EfficientNetV2B2 model (stages 0-6), which we primarily
utilized as our backbone. For simplicity of notation in this paper, we will use B2 in parallel with Effi-
cientNetV2B2. EfficientNetV2B2 is suggested in [31] as a scaled-down alternative to EfficientNetV2S.
In contrast, the EfficientNetV2S model, shown in Table 1, requires twice as much training time and is
prone to overfitting, that do not grant any significant advantages over the smaller and more stream-
lined version of the model. At Stage 7 we have placed a global average pooling layer resulting in a
vector of 1408 fully connected units.

Zhang et al. [37] have introduced a multi-level representation model consisting of several Gram
matrices of shallow features and a backbone CNN model. They are claiming that deep neural networks
namely CNNs mainly rely on deep semantic information making the learned shallow features less
important. However, according to Zhang et al. [37], these shallow features are essential for detecting
emotions, too.

Therefore, their introduced shallow visual representation model adopts a Gram matrix to extract
the correlation between feature sub-maps. They state that the Gram matrix succeeds in capturing
low-level visual features retaining the color and texture details of the image, in addition to eliminating
the interference of the image content. They are also suggesting that their proposal allows better repre-
sentation of the low-level features, which supposedly are significant for detecting visual emotion. Their
backbone is the ResNet-50 network, which is treated as a high-level semantic feature representation
extractor.

The network part that extends the ResNet-50 consists of visual feature representation extraction
by computing Gram matrices, which are transformed into one-dimensional vectors and fused with a
1x1 convolutional result. They have chosen to connect and aggregate the set of visual representations
by fully connected layers. Through experiments, the authors have determined that the best result is
obtained when the chosen number of fully connected units for visual feature representation aggregation
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matches the dimension of the semantic feature annotation of ResNet which would be 2048.
Thus, inspired by the research of Zhang et al. [37], we propose improvements to the Gram ma-

trix module, which we then integrate with the backbone CNN model. Our main contributions and
improvements upon the previous work of Zhang et al. [37] are as follows:

• We propose enhanced Gram matrix modules that include additional activation functions, thus
improving the robustness of feature extraction.

• We extend the capabilities of the convolutional neural network, especially EfficientNetV2, to
leverage both deep and shallow layer feature maps.

Figure 2: General schema of the proposed network, k = 3

Figure 2 shows the general scheme of the model we propose. EfficientNetV2 CNN network was
chosen as the backbone due to the smaller number of parameters and competitive results on the
ImageNet [24] challenge as compared to the ResNet, VGGNet 16, Xception [4, 10, 28]. The final
output of the key backbone EfficientNetV2 CNN model consists of 1408 neurons – a layer of 1408
fully connected units. The subsequent layer compresses a vector of 1408 elements to a vector of k ∗ 56
elements by applying compression, where k corresponds to the number of Gram matrix modules,
which is k = 3 as shown in Figure 2. EfficientNetV2B2 network has 91 convolutional layers, forming 6
convolutional stages (see Table 2). In our extension of EfficientNetV2B2, we choose a feature map that
is an output of the selected convolutional layer of the backbone model, in our case that is block3b project
conv. The name of this layer in the overall backbone network corresponds to the Stage 3 and second
repeating block, which performs convolutional projection – reduces dimensions of feature sub-maps
(see Table 2). The output of the mentioned layer is passed to several Gram matrix modules. Each
Gram matrix module outputs one-dimensional sized output. These outputs are concatenated alongside
each Gram matrix module and then finally fused by addition operation with k∗56 fully connected units
outputting layer from the backbone CNN output branch. The final output of the network corresponds
to the predicted class softmax summed probability of 2 units ranging between 0 and 1, where each
unit represents prediction to what class given emotion image belongs to – image expressing sadness
emotion, or the image does not contain sadness expression. Our proposed structure allows adding
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more Gram modules, granting flexibility in terms of modeling and determining the effectiveness of
modules.

We have chosen one feature map extracting layer named block3b project conv. This feature map
is passed in parallel as input to three Gram matrix modules. Each Gram matrix module produces
vectors of equal size of 56 elements and these vectors are fused by applying a concatenation fusion
strategy granting one vector of 168 elements. Backbone CNN and auxiliary Gram matrix modules
were fused by applying summation operation. Other fusion options were considered such as addition,
and concatenation.

Figure 3: Proposed Gram matrix module schema with detailed flow

Figure 3 shows the proposed Gram matrix module structure. Each module obtains input, whose
shape is RH×W ×C corresponding to the extracted layer’s feature map, consisting of C feature sub-
maps. Feature sub-maps are defined by height and width H × W spatial dimension. It should be
noted that the output of the Gram matrix is in quadratic form and is expressed as C × C squared
matrix. The gram matrix is further flattened into 1 1-dimensional vector consisting of C × C units,
which is further compressed by a dense layer resulting in C units, which then are applied by activation
function and batch normalized. Accordingly, the other side of our proposed module consists of a 1x1
convolution operation, corresponding activation function – for each feature sub-map among C ones,
a singular average value is computed from all H × W values of the sub-map. As a result, we obtain
a vector of C length that contains average values of all C sub-maps. The final result of the Gram
matrix module is fused by multiplication from each side of the branch as shown in Figure 3. We also
considered the concatenation, addition, and average fusion strategies, but those options yielded no
gains.

Gram matrix G ∈ Rc×c can be written as:

G = FF T and F ∈ RC×HW , F T ∈ RHW ×C , (1)

where in equation (1) C refers to the convolutional layer channels (filters), H and W to the height
and width accordingly. F ∈ RC×HW refers to the flattening into C rows and HW column matrix, and
F T ∈ RHW ×C is accordingly consists of HW rows and C column matrix.
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The question is why repeating the Gram matrix module three times yields different output results
even though the input to the module is the same for all instances. This can be explained by the fact
that the dense layer, when preceded by the flattened layer, possesses trainable weights. Similarly, the
1 × 1 convolution also involves trainable filters.

We might also consider the rationality for selecting a specific layer in the backbone network for
the Gram matrix module. Following the approach of Zhang et al. [37], we advocate for the extraction
of features from shallow layers for the computation of the Gram matrix and further application in
the training process. Utilizing shallow layer features brings several advantages: whereas the backbone
model outputs a high number of fully connected units — 1408, the aggregated Gram matrices modules
yield only 168 units. The output units from the backbone neural network are compressed by applying a
subsequent standard dense layer, and both outputs are fused by a summation operation. This method
helps to reduce the overfitting of the model.

4 Experimental setup

4.1 Data

WEBEmo [20] may serve as a set for our stated problem. WEBEmo dataset contains about 268000
images. It is a large-scale weakly-labeled image emotion dataset for possible training of convolutional
neural networks. We have downloaded a part of the WEBEmo dataset and managed to retrieve
220854 images. This dataset contains images of a general nature, however, part of the images have
some text. Textual data may carry some emotion and influences the emotion of the picture. In our
case, we should discard these mentioned images. Finally, after the additional undersampling, we have
obtained 61074 filtered images dataset, where about 46 % of images represent sadness emotion. Our
constructed dataset has been divided into 80 % training, 10 % validation and 10 % testing subset
splits. WEBEmo training subset contains 26445 images expressing no sadness emotion, and 22413
images conveying sadness emotion. Similarly, the WEBEmo validation subset consists of 3284 images
expressing no sadness emotion, and 2823 images expressing sadness emotion. Finally, the testing
subset split is divided into the same ratio as validation subset, consisting of the same number of
images in each class.

4.2 Methodology

Like the authors of [37], we took such a pre-trained network EfficientNetV2B2 that recognizes 1000
objects as an initial state for further its training for the sadness emotion classification.

We experienced a strong over-fitting problem and inability to generalize over unseen images using
EfficientNetV2B2 (see Stages 0-6 in Table 2), so a fine-tuning improvement approach was done. We
suggested including additional layers to reduce over-fitting (see Stage 7 in Table 2). Dropout and
fully connected layer combinations were applied after the primary pre-trained model outputs. After
the subsequent Stage 7, we applied dropout with rate p = 0.5, used leaky Rectified Linear Unit ReLU
activation [19] with a = 0.2 value, and compressed result to a vector sized of 168 fully connected units
as shown in Figure 2. This allows to reduce over-fitting and ensures that output shapes from the
backbone branch match with the Gram matrix modules side.

Training process of both networks (EfficientNetV2B2 variant given in Table 2 (Stages 0-7) and
its generalization using Gram matrix modules given in Figure 2) was carried out as follows: 61074
total filtered images dataset (without images with text) was split into 80 % subset for training, 10 %
subset for validation and remaining 10 % for testing. The validation set in general helps in tuning
hyperparameters of the model and detecting whether a trained network is overfitting, thus allowing to
estimate of the ability of the model to generalize on the unseen data. In our case, the most relevant and
important hyperparameters for fine-tuning were the following ones: learning rate, batch size, which
directly influences the number of training steps, and selected learning rate feasibility [26]. Adagrad
optimizer [8] for training was used with a 0.002 learning rate, which was scaled (multiplied) with the
number of used GPUs in training – in our case, it was 2. Also, we have chosen a batch size equal to
64 per GPU. The general loss function is expressed as below:
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L = − 1
N

N∑
i=1

log(pyi),

where L is the average loss for the entire subset (training or validation), i.e. it is a sparse categorical
cross-entropy. In our case, number of classes is K = 2. N corresponds to the number of training
or validation samples depending on the phase of the learning process. pyi represents the predicted
probability of the true class for the i-th sample and yi is the index of the true class for the i-th sample.
The negative logarithmic function is used because probabilities are calculated between 0 and 1.

Figure 4: Filtered out text from WEBEmo dataset example

Input images were provided as 256x256 colored images. We have used augmentations in order
to reduce the network over-fitting and to improve the generalization capabilities of the model. Such
an augmentation does not increase the amount of data. In Figure 4, an example of augmented
images with RandAugment [5] is shown. This augmentation procedure has parameters, where N
refers to the number of transformations to apply and M refers to the augmentation magnitude and
strength. We have chosen N = 3 and M = 7. Our reasoning for these given values is that we
have conducted several tests on the baseline model and we have determined those values as the most
appropriate experimentally. Note that this augmentation process does not create additional samples
in the dataset. Each image is augmented during the training phase, with different random distortions
applied in every training epoch. Interestingly, from the authors of RandAugment [5], we have also
found out that relatively low distortion magnitude gave us the best performance. Therefore, our tests
confirm their statement. In this example, we see images of a really general nature despite the fact
that there are human faces in the images. However, particular details of the pictures can convey a
certain emotion.

In order to evaluate model performance and efficiency in predicting sadness emotion, we take
advantage of overall accuracy, F1, precision, and recall metrics. These metrics have been defined as
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follows [1]:
Accuracy = TP + TN

TP + TN + FP + FN
,

Precision = TP

TP + FP
,

Recall = TP

TP + FN
,

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
,

where TP is a number of true positive classification instances – in our case it is correct sadness
emotion class prediction, TN is similarly representing to the true negative classification instances –
correct no sadness emotion classification labeled as Others class. FP is a model prediction, where it
incorrectly predicted the positive class – i.e. incorrect prediction of the sadness emotion in a given
image, while the true class of image was named as others. Accordingly, FN is a model prediction,
where it incorrectly predicted the negative class – incorrect prediction of no sadness emotion class,
which means that the true class of the given image was named as expressing sadness emotion. For our
problem, Precision measures the percentage of images predicted as expressing sadness emotion, that
were correctly classified. Conversely, Recall measures the percentage of actual sadness emotion images,
which are correctly classified. F1 score is the most appropriate metric, because of the imbalance of our
classes in the emotion image sets. In addition, F1 score is a metric that balances Recall and Precision
metrics, since emotion image datasets are inherently imbalanced. In this case, it is worth exploring
the prediction of sadness emotion using other metrics. Often, Accuracy is expressed in percent for
easier its interpretation.

It follows from the above that Accuracy and Precision are the most relevant metrics for evaluating
proposed network performance. Accuracy metric is suitable, because the classes in the datasets are
fairly balanced and it is sufficient to estimate how well model performs across all the classes. Precision
focuses on the accuracy of positive predictions, meaning a ratio of correct positive predictions.

5 Results
The aim of the experimental study is to compare the proposed new model with the backbone

using the above metrics and a dataset of images where emotions are annotated. It is also necessary
to determine the appropriate number of Gram modules to be connected in parallel.

Network Accuracy (%) SD
Baseline B2 81.368 0.174
Zhang et al. [37] 81.313 0.186
Improved B2, 2 Gram modules 81.772 0.118
Improved B2, 3 Gram modules 81.806 0.177
Improved B2, 4 Gram modules 81.826 0.086
Improved B2, 5 Gram modules 81.816 0.235

Table 3: Accuracy of versions of B2 averaged over 5 runs and compared to the baseline. B2 corresponds
to the backbone EfficientNetV2B2

In Table 3, the averaged accuracy with standard deviations SD are shown. Our proposed network
outperforms the baseline network with around 0.4 % higher Accuracy. Using two Gram matrix feature
extraction modules (k = 2 case) gives us a slightly worse result as compared with the case of three
modules (k = 3). The main reason for increased Accuracy after the inclusion of more Gram modules
might be that more Gram modules provide greater generalization capability, as computations (learn-
ing) are performed in parallel for different initial values of respective parameters of Gram modules,
and then the results are combined. Using four parallel Gram matrix modules produces encouraging
results. Trained network with k = 5 Gram matrix modules obtains slightly lower Accuracy and higher
standard deviation suggesting unstable and unreliable performance of this model choice. We have
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also evaluated the performance of Zhang et al. [37] model. The total number of training epochs and
training parameters were set as used in [37]. Here number of training epochs was equal to 60. Note,
that baseline B2 and our improvements of B2 use 25 epochs, only. We see that EfficientNetV2B2
outperforms Zhang et al. [37]. As mentioned above, applying RandAugment augmentation procedure
[5] allowed us to improve our trained network overall accuracy at around 3 % – 4 % on the test sets.
Note, that the augmentation improves the accuracy of the backbone network similarly. Let us note,
that the standard deviation is smallest when k = 4. Here, we can assume that a greater number of
Gram modules produces some stability of the results and of the network in general. However, case
k = 3 gives almost the same standard deviation as baseline B2, but Accuracy is better.

Network Others Others Others Sadness Sadness Sadness
Precision Recall F1-score Precision Recall F1-score

Baseline B2 0.8374 0.8088 0.8229 0.7862 0.8174 0.8015
Improved B2, 2 Gram modules 0.8257 0.8368 0.8312 0.8071 0.7946 0.8008
Improved B2, 3 Gram modules 0.8253 0.8392 0.8322 0.8092 0.7932 0.8011
Improved B2, 4 Gram modules 0.8252 0.8427 0.8339 0.8125 0.7924 0.8022
Improved B2, 5 Gram modules 0.8242 0.8414 0,8327 0.8109 0.7911 0.8009

Table 4: Precision, Recall and F1-score results of versions of B2 averaged over 5 runs and compared
to the baseline. B2 corresponds to the backbone EfficientNetV2B2

In Table 4, the averaged over 5 runs classification results are shown. Our proposed network
consisting of k = 3 Gram matrix modules shows a stronger performance on the other class Recall
and sadness class Precision metrics. However, the baseline network, when compared against proposed
networks, has better performance when evaluating others class Precision and sadness emotion Recall
metrics. Proposed networks also have better F1-score in the other class, and no significant difference
for the sadness class. Trained network with k = 5 Gram matrix yields no gains in any metric when
compared to the network consisting of k = 4 Gram matrix modules. This means that there is an
optimal number of modules, and achieves the best performance for k = 3 or k = 4. Networks, which
were trained with Gram matrices, resulted in a lower precision, but higher Recall scores for others
class, when compared to baseline network. However, proposed networks also produced slightly higher
F1-score against baseline network. For sadness class at Table 4, we can notice such trends: proposed
networks provide higher Precision, lower Recall and similar F1-score when compared with the trained
baseline network.

5.1 Applying the trained networks on other datasets

In this section, we present results of using our suggested trained networks by WEBEmo data on
other emotion image datasets. In addition, the trained baseline network performance is presented
for comparison, too. Our proposed network consists of k = 4 Gram matrix modules. The networks
were trained using WEBEmo dataset as described in Section 4. Then, we use UnbiasedEmo [20] and
Emotion-6 [20] subsets for analysis using the trained networks. The goal of experiment is to estimate
the generalization capability of trained networks on other unseen datasets.

Class Precision Recall F1-score Support
Others 0.8607 0.8025 0.8307 467
Sadness 0.7603 0.8283 0.7928 353

Table 5: Testing report of the trained network of 5 averaged runs with k = 4 Gram matrix modules
using UnbiasedEmo subset

When looking at Tables 5 and 6, where a trained model with four Gram modules was used, it
can be noted that the proposed model on the particular cases has the highest F1-score for sadness
emotion class. On the UnbiasedEmo testing set, the proposed network performs comparatively well
across both classes. Support in the given tables is the number of emotional images of the particular
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Class Precision Recall F1-score Support
Others 0.8365 0.7198 0.7737 888
Sadness 0.5907 0.7417 0.6576 484

Table 6: Classification report of Emotion6 testing subset using trained network of 5 averaged runs
with k = 4 Gram matrix modules

class. The network demonstrates reliable results in terms of sadness class precision and F1 values.
However, on the Emotion6 testing set, the proposed network performs worse in terms of discerning
sad image emotions. The reason might be that there is a slight class imbalance, where the majority
group is highly favored. Interestingly, the trained networks on the UnbiasedEmo and Emotion-6 as
shown in Tables 5 and 6, have even better precision performance for the others class than in WEBEmo
dataset testing subset as described in Table 4.

In Figure 5, the experimental results with test data from subsets of the UnbiasedEmo and Emotion-
6 datasets are presented, with an evaluation of the area under the receiver operating characteristic
curve (AUC-ROC).

We use the Area Under the Receiver Operating Characteristic curve (AUC-ROC) as an additional
measure to evaluate the performance of our proposed model. This measure typically means the area
under the curve. The area varies between 0.5, indicating no discriminative ability, and 1, meaning
perfect classifier. Since it is possible to calculate predictions at different classification thresholds –
not just at the highest probability, we can evaluate the proposed network effectiveness using the ROC
curve. The threshold is a value that serves as a decision boundary (of classification probability)
choosing to what class a given image emotion belongs. When the probability output of the model is
above the chosen threshold, the image emotion is classified as expressing sadness emotion; if it is below,
the image instance is classified as not expressing sadness emotion. The true positive rate (TPR) is
the proportion of actual positive cases that are correctly identified, while the false positive rate (FPR)
is the proportion of actual negative cases that are incorrectly identified as positive. Furthermore,
AUC-ROC is also valuable for the following reasons: summarizes binary classifier under a single value,
handles class imbalances, and sadness emotion in images is usually a minority category. AUC-ROC
metric is commonly interpreted and used in clinical research due to its inherent applications of false-
positives, however, this metric is only a measure of model predictive capability [15].

In Figure 6, baseline network testing results on UnbiasedEmo and Emotion-6 subsets are presented.
It can be said that the baseline has slightly higher sadness emotion discriminative capability on the
UnbiasedEmo testing subset as compared to the network with three Gram matrix modules. The
baseline network performs worse on the Emotion-6 testing subset as compared with our baseline
network shown on the right side in Figure 5.
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Figure 5: Proposed network AUC-ROC curves for identifying
sadness image emotion on unseen test image sets

Figure 6: Baseline network AUC-ROC curves for identifying
sadness image emotion on unseen test image sets
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Figure 7: AUC-ROC curves of baseline and proposed networks for identifying sadness image emotion
on unseen test image sets

In Figure 7, aggregated baseline and proposed network testing results on UnbiasedEmo and
Emotion-6 subsets are presented. AUC-ROc value differences compared our proposed model against
baseline model are comparatively small. Proposed network has slightly higher area under the curve
on the Emotion-6 image set. However, the proposed network has slightly worse area curve compared
to the baseline model on the UnbiasedEmo image set.

5.2 Practical case study on the artwork images

Figure 8: Sadness emotion recognition on the artwork images

The aim of this section is to illustrate the recognition of emotions in the images of general nature.
We do not intend to compare our solution with a baseline, but we want to illustrate the possibilities
of the analysis.

In Figure 8, several image artworks conveying emotion are shown. The first three artworks are
by Vincent Van Gogh. The remaining two are by 8-year-old child. In our given example, we are
classifying images using a network trained with k = 4 Gram matrix modules. Above the pictures,
we present the predicted class and probability of dependence of the picture to the predicted class. It
can be noted that the network recognizes some of Van Gogh’s artworks as expressing the emotion of
sadness. Interestingly, the trained network confidently predicts no sadness in the first image, which
is a painting of a flower bouquet. We might wonder that the trained network recognizes emotion on
these features: colors, textures, physical expressions. From the given example, it can be observed
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that there are common feature details, such as darker colors, texture, and physical shapes, among the
images that are recognized as expressing the sadness emotion.

6 Conclusion
The proposed model, which fuses Gram matrix modules, offers the competitive sadness emotion

recognition ability. The research shows an improvement at recognizing sadness emotion in images of
general nature. The proposed extensions to the EfficientNet network show a new way to increase the
quality of recognition by connecting multiple Gram-matrix modules.

In this paper, we have demonstrated improvements to the EfficientNetV2B2 convolutional neural
network backbone to address our problem. We have successfully demonstrated the potential of the
Gram matrix module as a means to compute feature sub-map correlations and improve visual emotion
recognition. Our proposed network architecture allows us to improve the feature extraction capabil-
ities, as shown in Figure 2. In the results section, we have provided results showing improvement of
the performance across the metrics. We used EfficientNetV2B2 fine-tuned network as baseline model
for evaluating and comparing the efficiency of our proposed network. It can be noted, that accuracy
of our proposed models is superior to the baseline model. Our model variants do not significantly
improve accuracy compared to the baseline. However, computational costs with the new modules are
almost the same as in the baseline case. In addition, the computational cost of training the network
is not essential for good classification. This is the main argument to use our model.

Possible new approaches to feature map extraction using the Gram matrix module need to be
further explored. One of the main reasons for this may be that sophisticated design of choosing layers
of the baseline network can be used as inputs to the Gram matrix modules. This means that there is
an unexplored area of research that could lead to an even better emotion image recognition network.
Also, the research could be extended to other image datasets.
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