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Abstract

Effective work scheduling for clinical training is essential for medical education, yet it remains
challenging. Creating a clinical training schedule is a difficult task, due to the complexity of curricu-
lum requirements, hospital demands, and student well-being. This study proposes the Collaborative
Control Protocol with Artificial Intelligence for Medical Student Work Scheduling (CCP-AI-MWS)
to optimize clinical training schedules. The CCP-AI-MWS integrates the Collaborative Require-
ment Planning principle with Artificial Intelligence (AI). Two experiments have been conducted
comparing CCP-AI-MWS with current practice. Results show that the newly developed protocol
outperforms the current method. CCP-AI-MWS achieves a more equitable distribution of assign-
ments, better accommodates student preferences, and reduces unnecessary workload, thus mitigat-
ing student burnout and improving satisfaction. Moreover, the CCP-AI-MWS exhibits adaptability
to unexpected situations and minimizes disruptions to the current schedule. The findings present
the potential of CCP-AI-MWS to transform scheduling practices in medical education, offering an
efficient solution that could benefit medical schools worldwide.

Keywords: Healthcare, Rostering, Multi-objective Optimization, Collaboration, Ward Rota-
tion.

1 Introduction
Clinical training is an important part of the medical student curriculum because it bridges theory

and practice, allowing students to gain hands-on experience with patients under the supervision of
senior physicians [8]. The structure and demands of clinical training schedules, however, often pose
the challenges. The workload can be overwhelming, as evidenced by unsatisfactory self-reports by
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students [19]. In addition, the students may also face unbalanced workloads, long working hours,
and a lack of control over their schedules due to unexpected circumstances [18, 21, 24]. High patient
demands and limited medical resources also add pressure on students. These challenges contribute
to chronic fatigue, sleep deprivation, and limited personal time, which affect both the physical and
mental health of the students [13, 20, 26, 28].

Moreover, current research indicates that more than 40% of medical students experience stress from
work overload, especially during their clinical years [9, 19]. The high levels of stress and anxiety during
medical education can negatively impact medical students’ learning outcomes and their clinical-year
success [25], leading to students dropping out of school [5], which consequently results in a shortage
of skilled healthcare professionals in the healthcare sector of the country.

To address this issue, a well-developed scheduling system is essential. Research indicates that a
high-quality work schedule, distinguished by increased control and flexibility, could improve the work
performance of medical personnel [30]. The improvement aims to support the health and well-being
of medical personnel and, at the same time, minimize overall system costs.

A common approach for creating medical personnel work schedules is mathematical modeling, i.e.,
mixed integer programming. For example, Beaulieu et al. [3] implemented a mathematical model to
optimize the schedules of physicians in an emergency department. The model considers working hours,
days off, and personal experiences. Moreover, mixed integer programming has shown its application
in reducing surgeons’ operation completion time, operation room overtime, and makespan [35]. In
addition, Gür et al. [11] utilized mathematical programming to optimize equipment and resource
utilization in hospital operating rooms. For nurse scheduling, mathematical modeling has also been
extensively utilized (see [4] for more details). It is noteworthy that, despite the extensive exploration
of work schedules for medical personnel, such as physicians and nurses, the investigation into the
scheduling of medical students remains scarce in the literature.

Another important aspect of the work scheduling system for medical students is the ability to
respond to real-time issues, e.g., absence of students or fluctuation of demand. To enhance system
ability as well as improve system efficiency, the Collaborative Control Protocol (CCP) is a critical tool.
Because CCP leverages cyber technology to optimize communication processes and enhance collab-
oration among multiple agents, systems developed using CCP tend to exhibit superior performance
and have minimal system conflicts and errors [2]. CCP has been investigated in various domains.
For example, CCP is applied to complex agriculture systems, integrating a human operator, a mobile
robot, and sensors to develop Agricultural Robotics System [27]. The implementation can reduce
system cost and improve system performance compared to alternative approaches [6]. In addition,
CCP not only optimizes resource utilization but also succeeds in addressing real-time problems with
minimal information delay [7]. Therefore, the implementation of CCP allows for the fast resolution of
unforeseen issues in the system that might happen in real-time and, consequently, minimizes impact
on the original plan, which will benefit the healthcare scheduling system.

Therefore, the combination of mathematical modeling and CCP is employed in this research to
solve the medical student scheduling problem. The newly developed CCP, called Collaborative Control
Protocol with Artificial Intelligence for Medical Student Work Scheduling (CCP-AI-MWS), consists of
two modules, that follow the Collaborative Requirement Planning principle in Collaborative Control
Theory [22, 23]: Planning module (M1) and Execution and AI-Control module (M2). M1 utilized the
mathematical model to solve the medical student scheduling problems. The M1 is performed by the
given assumed parameters to deliver the optimal schedule that satisfies all significant constraints of
the situation in clinical training and ward rotation. Constraints include 1) Hospital requirements (i.e.,
a specific number of students for each ward to ensure smooth operation); 2) Student requirements (i.e.,
the attendance of students at each ward to fulfill medical curriculum); and 3) Regulatory requirements
(i.e., limitations on work days for students). In addition, the M1 is executed before the real situation,
assuming a reasonable amount of time to solve and/or create the initial schedule.

When the initial schedule from M1 is implemented; however, in real execution, unexpected situ-
ations can happen. For example, students may be absent without advanced notice due to personal
reasons such as illness, family emergencies, or other commitments requiring them to request work
schedule changes. Hence, M2, which is a module for managing such real-time changes, is necessary.
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M2 utilizes AI and algorithms to deal with unexpected situations with the objective of minimizing the
impact on the overall initial schedule (from M1).

In this research, we selected Thailand’s medical curriculum for our case study. Moreover, we focus
on the first clinical year. This transition period (from pre-clinical to clinical years) is critical for
students as they need to adapt to a new environment. A smooth transition is essential for students
to succeed in their studies and become competent healthcare professionals in the future.

This research differs from general healthcare personnel scheduling by specifically considering the
academic workload, necessary rest periods, equitable workload assignments, and, importantly, com-
munication and control procedures for unexpected circumstances. The objective is to both balance
academic fulfillment and ensure health and well-being of students.

By implementing the proposed protocol at the case study medical school, we aim to demonstrate
an efficient solution to the scheduling challenges that can be applied to other medical schools.

The remaining parts of the article are structured as follows. Section 2 presents detailed explanation
of the problem and methodology utilized. Then, two experiments and results are presented in Section
3. Lastly, Section 4 provides the conclusion, discussion, and future research directions.

2 Problem Description and Methodology

2.1 Problem Description

Consider a medical school with a set of medical students, denoted by I. Each medical student
i ∈ I has his/her preferred working date, denoted by pidw, where d ∈ D represents the operating day,
and w ∈ W is a week of the planning horizon. The hospital has a set of wards, denoted by J , and each
ward j ∈ J has its own requirement, namely the minimum number of medical students needed (Rjdw)
to operate smoothly and effectively. In this regard, Rjdw may vary, depending on the expected number
of patients each day. Another influencing factor that may affect the value of Rjdw is the difficulty of
tasks performed at ward j ∈ J . Particularly, wards with more complex tasks typically require more
medical students.

To fulfill the curriculum requirements, medical student i ∈ I needs at least Cj working days at ward
j ∈ J to guarantee the minimum number of practicing times. Considering the regulatory restrictions,
each week, medical student i ∈ I cannot work more than α days to avoid burnout. In addition,
working consecutively for more than β days is also prohibited.

Furthermore, in real-world scenarios, there is possibility of unexpected situations. For example,
students may be absent without advanced notice due to illness or personal emergencies. Moreover,
although the number of students needed in each ward daily is determined based on historical data
and patient appointments, unexpected walk-in patients can arise, requiring more students to ensure
smooth ward operations [33]. In such situations, wards experiencing a shortage will request additional
students (called an urgent request) to maintain or enhance operational efficiency. Figure 1 presents
the system architecture of the problem.

2.2 Collaborative Control Protocol with Artificial Intelligence for Medical Stu-
dent Work Scheduling (CCP-AI-MWS)

Figure 2 presents the CCP-AI-MWS. The protocol has two main modules: Planning module (M1)
and Execution and AI-Control module (M2). M1 utilized historical data and constraints to develop
an initial schedule, while M2 is needed for dealing with real-time unexpected situations.

2.2.1 Planning module (M1) of CCP-AI-MWS

In this section, the mathematical model utilized in M1 is presented. Note that, because of the
complexity of the model, it may require a sufficient amount of time to solve. M1, however, will run
on a monthly basis (based on the planning horizon), so that computational time is assumed to be
sufficient and is not a primary concern of this module.
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Figure 1: System architecture

The main decision of M1 to be made in this problem is which medical student i ∈ I will be assigned
to ward j ∈ J on day d ∈ D and week w ∈ W . To improve the quality of the work schedule, three
objectives are optimized simultaneously.

• Workload fairness: Each medical student i ∈ I should receive comparable assignments, as
the perception of workload fairness significantly influences job satisfaction [14]. To this end, we
can represent this objective as the minimization of the sum of absolute differences between the
number of assignments (workloads) that each medical student receives and the average number
of assignments per medical student.

• Preference of students: Each medical student i ∈ I may have a different preference in the
working day. Therefore, the schedule must take into account the preferences of the students by
maximizing the minimum number of preferred assignments for each student.

• Overall system workload: Finally, we want to avoid unnecessary assignments, as long working
hours reduce work satisfaction [10]. Therefore, the total workload in the system must also be
minimized.

Mathematical Modeling

Sets and Parameters

I Set of medical students; i ∈ I
J Set of wards; j ∈ J
W Set of weeks; w ∈ W
D Set of days; d ∈ D

pidw

{
1 if student i ∈ I preferred to work at day d ∈ D, week w ∈ W
0 otherwise

Rjdw Minimum number of medical students needed at ward j ∈ J for day d ∈ D, week w ∈ W
Cj Minimum number of days each student needs to be assigned to ward j ∈ J to complete the

curriculum requirement
α Maximum number of days a student can work each week
β Maximum number of consecutive working days
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Figure 2: CCP-AI-MWS

Decision Variables

xijdw

{
1 if student i ∈ I is assigned to ward j ∈ J, day d ∈ D, week w ∈ W
0 otherwise

Objective Functions

min
∑
i∈I

f1i (1)

max f2 (2)
min f3 (3)
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Constraints∑
j∈J

∑
d∈D

∑
w∈W

xijdw

 − x̄ ≤ f1i ∀i ∈ I (4)

x̄ −

∑
j∈J

∑
d∈D

∑
w∈W

xijdw

 ≤ f1i ∀i ∈ I (5)

∑
j∈J

∑
d∈D

∑
w∈W

pidwxijdw ≥ f2 ∀i ∈ I (6)

∑
i∈I

∑
j∈J

∑
d∈D

∑
w∈W

xijdw = f3 (7)

1
|I|

∑
i∈I

∑
j∈J

∑
d∈D

∑
w∈W

xijdw = x̄ (8)

∑
j∈J

xijdw ≤ 1 ∀j ∈ J, d ∈ D, w ∈ W (9)

∑
j∈J

∑
d∈D

xijdw ≤ α ∀i ∈ I, w ∈ W (10)

∑
j∈J

ε+H∑
d=ε

xijdw ≤ β ∀i ∈ I, w ∈ W, ε ∈ {1, 2, . . . , |D|−H + 1} (11)

∑
j∈J

|D|∑
d=|D|−H+ε

xijdw +
∑
j∈J

ε∑
d=1

xi(jd)(w+1) ≤ β ∀i ∈ I, w ∈ W \ {|W |}, ε ∈ {1, 2, . . . , H} (12)

∑
i∈I

xijdw ≥ Rjdw ∀j ∈ J, d ∈ D, w ∈ W (13)

∑
i∈I

∑
d∈D

∑
w∈W

xijdw ≥ Cj ∀j ∈ J (14)

xijdw ∈ {0, 1} ∀i ∈ I, j ∈ J, d ∈ D, w ∈ W (15)
f1i ≥ 0 ∀i ∈ I (16)
f2, f3 ≥ 0 (17)

The model has three objectives: 1) Minimize the difference between total assignments for each
student and the average assignment from all students (Equation 1), 2) Maximize the minimum number
of assignments with student preferences (Equation 2), and 3) Minimize total number of assignments
across all students (Equation 3).

Equations 4 and 5 are the linearization of the first objective. Equation 6 calculates the number
of assignments that align with student preferences and Equation 7 computes the total number of
assignments in the schedule. Equation 8 calculates the average number of assignments per student.
Equation 9 ensures that a student is not assigned to more than one ward a day. The weekly working
limit is calculated by Equation 10. Equations 11 and 12 restrict the number of consecutive working
days. Equation 13 ensures that each ward receives at least the minimum number of students required
per day. Equation 14 guarantees that each student meets the minimum day requirement for each ward
to meet the curriculum requirement. Equations 15 – 17 are variable constraints.

The result from M1 is the assignments for each student, indicating the days and weeks of work
allocated for each ward. In addition, M1 identifies any unassigned dates for the students. Students
with unassigned dates will be placed in a standby position, potentially called upon to address urgent
requests as they arise (by the suggestion from M2).

2.2.2 Execution and AI-Control module (M2) of CCP-AI-MWS

In this section, the M2 is presented. Because M2 deals with the real-time urgent requests discussed
earlier, the AI and algorithms that can deliver fast solutions are preferred [7].
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Medical Students Substitute Algorithm (MSSA)
The MSSA is activated when there is an urgent request. With an AI-supported algorithm, MSSA

identifies a standby student best suited to address the urgent request, to minimize the impact on the
initial schedule from M1. MSSA is presented below.

Algorithm 1 Medical Student Substitute Algorithm (MSSA)
Require: Absent Student, Day, Week, Ward
Ensure: Best Candidate

Initialize Available Students on a specific Day, Week
Initialize Candidate Pool as Empty
Initialize Best Candidate as None
for each student in Available Students do

if student exceeds assignment limits OR impacts curriculum requirements then
Eliminate student

else
Candidate Pool = Candidate Pool + student

end if
end for
Sort students in Candidate Pool in ascending order by total number of assignments
for each candidate in the sorted Candidate Pool do

if candidate preference is 1 then
Best Candidate = candidate
break

end if
end for
if Best Candidate is not Empty then

return Best Candidate
else

return None
end if

3 Experiments and Results
The developed protocol is validated and compared with the alternative in this section. Two com-

puter simulation experiments have been conducted to test the protocol in different perspectives and
situations. The number of students, number of wards, and other parameters were randomly gener-
ated. The first experiment presents the operation in an ideal situation, i.e., no urgent request. The
second experiment illustrates a case where there are urgent requests from unexpected situations, such
as student’s absence.

3.1 Experiment Design

Two protocols are applied in the experiments: 1) CCP-AI-MWS and 2) Current practice. CCP-AI-
MWS is a newly developed protocol. The current practice is the greedy-based algorithm, representing
current scheduling practice that applied simple rules to develop the schedule.

In addition, a total of 30 randomly generated sets of parameters are loaded to each protocol with
the distribution shown in Table 1. Python programming was utilized for the experiments. CPLEX
Studio Optimization with Goal Programming procedure is also employed for solving the multi-objective
mathematical model. Note that, for the multi-objective problem, the priority of each objective function
is pre-set by an intelligent agent such as a scheduling manager [15, 32] to deal with non-dominated
solutions and effectively solve the model [29]. In actual practice, the scheduling manager can also
utilize AI to analyze the current situation and policy to suggest the priorities of the objectives.
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Four metrics are used for determining the performance of each protocol: 1) Difference between
total assignments for each student and the average assignment from all students (z1), 2) Minimum
number of assignments with student preferences for each student (z2), 3) Total number of assignments
in the system (z3), 4) Number of unsolved urgent requests (z4).

As mentioned earlier, z1 represents the fairness of the schedule while z2 indicates the responsiveness
of the schedule to student preferences. The z3 ensures that no unnecessary assignments. Lastly, in the
case of unexpected situations, z4 captures the number of unsolved cases, which should be minimized.

Table 1: Comparison of experimental conditions
Experiment 1 Experiment 2

Number of students [35, 55] [35, 55]
Number of wards [8, 10] [8, 10]
Number of urgent requests per week - [3, 5]

3.2 Experiment 1: No Unexpected Situations

3.2.1 Experiment results and analysis

The first experiment demonstrated the effectiveness of the CCP-AI-MWS compared to current
practice under ideal conditions (i.e., no urgent requests).

Table 2 and Figure 3 presents the experiment results. The results from CCP-AI-MWS are sig-
nificantly better than the current practice in all metrics. Implementing CCP-AI-MWS showed a
reduction in z1, indicating a more equitable workload distribution. Moreover, z2 from CCP-AI-MWS
is significantly higher than the current practice, i.e., the newly developed protocol better accommo-
dates student preferences. z3, which is the total number of assignments in the schedule, is also lower,
indicating a more efficient allocation of workload and assignments. Note that because of the setting
of the experiment, which assumes no unexpected situation happens, there were no unsolved urgent
requests (z4) in either protocol.

The results from experiment 1 highlight the efficiency of the CCP-AI-MWS, especially M1. The
significant reduction in z1 underlines the system’s ability to distribute workloads more evenly among
students, potentially reducing burnout and improving satisfaction. The improvement in z2 suggests
that CCP-AI-MWS better meets students’ preferences, which could enhance their learning experience
and satisfaction with the clinical training program. The decrease in z3 indicates a more optimal use
of student resources, potentially reducing unnecessary work and preventing burnout. The absence of
unsolved urgent requests (z4) in both protocols suggests that both systems can handle the workload
under ideal conditions.

Table 2: Experiment 1 results: Performance metrics
Performance metrics CCP-AI-MWS Current practice p-value

z1 53.59 (8.92) 110.03 (18.09) ***
z2 11.67 (0.66) 3.67(0.84) ***
z3 762.47 (106.04) 869.60 (116.07) **
z4 0.00 (0.00) 0.00 (0.00) -

Note: Standard deviations are given in parentheses;
*** Statistically significant at (p < 0.0001)
** Statistically significant at (p < 0.001)

3.3 Experiment 2: With Unexpected Situations

3.3.1 Experiment results and analysis

Experiment 2 demonstrates a situation where unexpected situations can randomly happen, i.e.,
the system receives urgent requests.
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Figure 3: Results of each simulation run from experiment 1

Table 3 and Figure 4 present the results. In the presence of urgent requests, the CCP-AI-MWS
also outperformed the current practice. It maintained a more equitable workload distribution (z1),
better accommodated student preferences (z2), and ensured a more efficient allocation of assignment
(z3).

Importantly, the CCP-AI-MWS showed the ability to handle unexpected situations, which mini-
mize the number of unsolved urgent requests. While the current practice does not have a procedure to
deal with unexpected situations, CCP-AI-MWS utilizes M2 for selecting and solving urgent requests.
Note that even though the M2 is activated to search for standby students to fill in the absent posi-
tion; in some cases, no replacement happens. The reason may come from the limitation of available
students, which may violate specific constraints (e.g., consecutive working days or number of working
days per week) if M2 select them. Therefore, the unsolved cases can be observed in some simulation
runs even though CCP-AI-MWS is applied.

The results from experiment 2 show the benefits of CCP-AI-MWS in managing clinical training
schedules, particularly in situations with urgent requests. The minimal increase in z1 and z3, and
the minimal decrease in z2 from experiment 1 to experiment 2 suggests the system’s resilience to
unexpected situations. The ability to solve urgent requests in CCP-AI-MWS shows the system’s
capability for real-time problem-solving. This ability is essential for a system like CCP-AI-MWS which
requires the ability to adapt to sudden changes and maintain operational efficiency and fairness.

Table 3: Experiment 2 results: Performance metrics
Performance metrics CCP-AI-MWS Current practice p-value

z1 55.53 (10.17) 118.17 (16.54) ***
z2 10.77 (0.50) 3.90(0.84) ***
z3 771.77 (116.03) 887.93 (134.07) **
z4 0.27 (0.45) 4.60 (1.73) ***

Note: Standard deviations are given in parentheses;
*** Statistically significant at (p < 0.0001)
** Statistically significant at (p < 0.001)
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Figure 4: Results of each simulation run from experiment 2

The two experiments demonstrate the effectiveness of the CCP-AI-MWS in creating clinical train-
ing schedules for medical students. The CCP-AI-MWS can 1) Ensure equitable workload, 2) Accom-
modate student preferences, and 3) Effectively handle both expected and unexpected situations. The
implementation of CCP-AI-MWS could improve student satisfaction, learning outcomes, and overall
system efficiency.

4 Conclusion and Discussion
Clinical training is an important component of medical education. The training offers students

hands-on experience, which is necessary for them to become competent healthcare professionals. The
complexities of clinical training scheduling, however, have presented significant challenges. These
include unbalanced workloads, long working hours, and a lack of flexibility, which can lead to student
burnout and drop-out.

This research addresses these critical challenges by focusing on an important aspect of medical
education: clinical training scheduling for medical students. We introduced the Collaborative Control
Protocol with Artificial Intelligence for Medical Student Work Scheduling (CCP-AI-MWS), a novel
method that combines the Collaborative Requirement Planning principle with AI.

The CCP-AI-MWS was validated with two experiments. In addition, the newly developed proto-
col was compared against current scheduling practice. Our findings show the superior performance of
CCP-AI-MWS in several aspects. First, CCP-AI-MWS delivers a more equitable work distribution,
addressing a source of student dissatisfaction and promoting workload fairness. Second, CCP-AI-
MWS incorporates the preferences of each student into the work schedule. This individual preference
incorporation could potentially improve the educational experience of students by maximizing the
alignment of each student. Third, CCP-AI-MWS reduces the total workload by eliminating unneces-
sary assignments, which addresses one of the major causes of student burnout. Finally, CCP-AI-MWS
exhibits adaptability to unexpected situations and/or urgent requests, minimizing disruptions to the
current schedule.

The implications of this research extend beyond clinical training scheduling problems. Specifically,
the CCP-AI-MWS represents an example of a more client-centric, e.g., student-centric; efficient, and
adaptable approach to scheduling, with the potential to improve both service outcomes, e.g., edu-
cational outcomes, and client well-being, e.g., student well-being. According to our results, similar
scheduling challenges across various domains, such as agriculture and logistics systems, can also benefit
from integrating CCP and AI.
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Building on research’s findings, future studies could explore several directions, as follows:

1. Optimizing resource allocation in response to multiple ward demand fluctuations:
When there are multiple ward demand fluctuations, investigating strategies to dynamically al-
locate resources (i.e., students) could increase overall system efficiency. For instance, given that
some students are idle due to lower actual demand in their assigned wards, it would be better
if the system could reassign them to other busier wards. It will improve overall system perfor-
mance and enhance system service quality. This strategy would require the development of a
new protocol for adjusting current assignments according to real-time demand, and, at the same
time, considering all requirements and constraints, hence optimizing the utilization of available
resources. An example of this approach is the demand-and-capacity sharing protocols developed
for supply networks (e.g., [34]).

2. Developing a new methodology for managing student absences with no standby
position: An important aspect of future research is how to effectively manage situations where
some students are absent. The problem becomes more severe and complex when there are
no standby students available (i.e., all students are fully assigned to wards). Strategies might
include developing a new protocol that can shuffle and/or aggregate medical students from
multiple wards and partially operate all wards, as well as establishing a contingency plan to
reduce overall disruptions to the existing schedule and minimize the impact on patients.

3. Exploring nature-inspired, AI, and learning algorithms and protocols for large-scale
scheduling problems: The mathematical model in M1 may not be able to deliver a solution in
a practical time, especially for a large-scale scenario. It might be beneficial to investigate nature-
inspired algorithms. Algorithms such as genetic algorithms [1, 16], simulated annealing [17], and
other learning protocols [12, 31] can support M1. This approach will increase scalability by
utilizing algorithms to overcome computational challenges and provide optimal or near-optimal
solutions.
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