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Abstract

The anterior cruciate ligament (ACL) is a major ligament in the knee that helps to stabilize
the joint and prevent excessive forward movement of the shinbone. An ACL tear is a common in-
jury, especially among athletes who participate in sports that involve pivoting and sudden changes
in direction. This paper proposes an ensemble model, which includes three deep learning models
(EfficientNet-B7, ResNet-152V2, and DenseNet-201) and a genetic algorithm, to detect and classify
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ACL tears using knee magnetic resonance imaging (MRI). The ensemble model was trained on the
KneeMRI dataset, which comprises labeled MRI images. The deep learning models can learn to
identify subtle changes in ligament structure and signal intensity that are associated with ACL
tears and the genetic algorithm is used to find the optimal prediction. The proposed ensemble
model was evaluated using the KneeMRI dataset. The dataset was preprocessed using data aug-
mentation techniques. Then, the ensemble model was applied to the KneeMRI dataset, evaluated,
and compared with previous models. The accuracy, recall, precision, specificity, and F1 score of our
proposed ensemble model were 99.68%, 98.73%, 99.52%, 99.62%, and 98.94%, respectively. Thus,
our ensemble model has an unrivaled perceptive outcome and could be used to accurately identify
and classify ACL tears, improving patient outcome.

Keywords: acute knee injury, deep learning, classification, detection acute knee injury, mag-
netic resonance imaging.

1 Introduction
The knee is one of the largest and most complex joints in the human body. It is a pivotal joint

that allows movement and stability in the lower limb. The knee joint consists of three major bones:
the femur (thigh bone), tibia (shin bone), and patella (kneecap). The ends of these bones have
smooth, articular surfaces covered in cartilage that allow them to move against each other with
minimal friction [1]. Knee injuries are common and can result from a variety of causes, including
sports activities, accidents, overuse, and degenerative conditions [2]. Meniscus tears are among the
most commonly diagnosed knee injuries. The menisci are C-shaped cartilage structures located in the
knee joint between the femur (thigh bone) and the tibia (shin bone). They act as shock absorbers,
help distribute weight across the knee joint, and provide stability during movement. Meniscus tears
can be caused by sudden twisting or pivoting movements, sports-related activities, and degenerative
changes over time. The rate of meniscus tears is estimated to be 60–70 for every 100,000 people each
year, with a high occurrence among individuals of all ages [3]. Additionally, in the USA, meniscus
tears are the most common type of intra-articular knee injury. These tears can result in a range of
symptoms, such as pain, swelling, stiffness, and a limited range of motion. In some cases, individuals
may experience a locking or catching sensation in the knee. The diagnosis of a meniscus tear typically
involves a combination of clinical evaluation, patient history, and imaging studies, such as magnetic
resonance imaging (MRI) scans and X-rays [4, 5].

Knee osteoarthritis (OA) is a common joint condition caused by the wearing of the articular surface
between the knee joints. The incidence of knee OA can vary depending on various factors, including
age, genetics, lifestyle, and other health-related factors. While the exact statistics vary by region and
population, it is clear that knee OA is a significant health concern. It is often considered one of the
most prevalent forms of arthritis. There is a high likelihood of developing knee OA in the general
population, with one in three people developing the condition [6, 7].

Knee OA is characterized by gradual degeneration of the knee joint, leading to symptoms such
as pain, stiffness, and reduced mobility. It can affect people of all ages but is more common in older
people, with a greater proportion of individuals aged 65 years and older having indications of knee
OA. Knee OA affects more than 250,000 people overall and ranks among the 50 most common illnesses
[8]. It is the most common joint illness in the USA, occurring in 13% of women and 10% of men older
than 60 years. More than one-quarter of Americans will reach the age of 65 by 2030, increasing their
chances of developing OA [9]. Risk factors for knee OA include aging, obesity, joint injuries, genetics,
and lifestyle factors. Knee OA affects the life satisfaction of advanced-aged individuals [10].

Anterior cruciate ligament (ACL) tears are a common and significant knee injury. ACL injuries
account for more than half of knee injuries, affecting 200,000 people in the USA every year. ACL
injuries are a significant healthcare concern in the USA and globally. The financial cost associated
with ACL injuries is more than 7 billion dollars and includes various components, such as medical
expenses, surgical procedures, rehabilitation, and indirect costs related to lost productivity and work-
days [11]. When athletes engage in high-impact occupational and recreational activities, especially
those involving repetitive stress on the knees, ACL injuries increase [12].

The ACL is one of the four major ligaments in the knee and plays a crucial role in stabilizing
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the joint by preventing excessive forward movement of the tibia (shinbone) relative to the femur
(thighbone). An ACL tear can occur due to various factors, such as the following:

• Trauma: A sudden, forceful impact or twisting motion of the knee can result in an ACL
tear. This often occurs during sports activities, such as football, basketball, soccer, skiing, or
gymnastics.

• Noncontact Injuries: ACL tears can also occur without direct contact with another person
or object. These noncontact injuries typically involve rapid changes in direction, deceleration,
or pivoting.

•

Individuals who sustain an ACL tear often experience a popping sensation in the knee at the time
of injury. Other common symptoms include pain, swelling, instability, and difficulty bearing weight
on the affected leg. Healthcare professionals typically diagnose ACL tears through a combination of
clinical evaluation, imaging studies such as MRI, and a review of the patient’s medical history. ACL
outcomes can be classified into three categories: Grade 0 (healthy), Grade I (partial tear), and Grade
II (complete tear), as shown in Fig. 1. The treatment approach for ACL tears depends on the grade
of the tear, the patient’s activity level, and the goal of knee function. Treatment options include [13]:

• Non-Surgical Options: Some individuals with partial ACL tears or limited activity require-
ments may not require surgery. Rehabilitation and physical therapy are often sufficient.

• Surgical Reconstruction: For complete tears or individuals who have high activity demands
(e.g., athletes), surgical reconstruction of the ACL is a common approach. This procedure
involves replacing the torn ACL with a graft (typically from the patient’s own tissues or a
donor) to restore stability and function.

• Recovery: Recovery from an ACL tear and surgery can take several months, and a structured
rehabilitation program is needed to regain strength, stability, and range of motion in the knee.
The return to sports or high-impact activities should be gradual to minimize the risk of re-injury.

• Prevention: Many sports organizations and athletes use specific training programs and tech-
niques to reduce the risk of ACL tear injuries, particularly in high-risk sports.

Figure 1: (a) A healthy ACL, (b) a partial tear, and (c) a full tear.

The health and proper function of the knee joint are critical for an individual’s overall mobility and
quality of life. An ACL tear has a significant impact on a person’s daily activities and well-being. ACL
tears are significant injuries with the potential for long-term consequences if not treated appropriately.
Given the crucial role of the knee in mobility and daily life, timely and appropriate medical care
is important when patients experience ACL tears. Proper diagnosis of ACL tears, treatment, and
rehabilitation are essential for achieving the best possible outcome and returning to normal activities.

Knee MRI has a high negative predictive value for injuries such as ACL tears and meniscus
tears. This means that when knee MRI shows no evidence of these abnormalities, it is highly reliable
for ruling out the presence of such conditions. Hence, MRI can help prevent unnecessary surgical
interventions. MRI is cost-effective for patients; however, interpreting knee MRI results requires
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a high level of expertise, often by specialized radiologists or orthopedic surgeons who are trained to
recognize the nuances of the images. They must differentiate between normal anatomical variations and
pathological findings. Therefore, MRI interpretation is time-consuming and has inherent challenges.
Moreover, when radiologists must deal with many MRI scans in a short period of time, the risk of
errors in interpretation increases. Kim and Mansfield highlighted that radiologists will generally make
blunders in 30% of situations when assessing X-rays, and 66% of these blunders are of an outer muscle
nature [14].

Computer-aided (CAD) systems can assist radiologists in diagnosing ACL tears, thus reducing their
workload and potential for error. Artificial intelligence (AI) has become an increasingly prominent and
dynamic field within the realm of medical research and healthcare. AI can analyze medical images,
such as X-rays, MRI, and computerized tomography (CT) scans, to assist in the early and accurate
diagnosis of diseases, including ACL tears, cancer, heart conditions, and neurological disorders. AI has
been particularly impactful in radiology, where it can detect and highlight abnormalities in medical
images with high accuracy.

Deep learning (DL) is a subset of machine learning (ML), which, in turn, is a branch of AI [15]. DL
models are designed to mimic the way the human brain processes and understands data. These models
use artificial neural networks (ANNs) that consist of multiple layers (hence the term “deep”) to learn
and make predictions or decisions from large volumes of data. DL has made substantial contributions
to the field of healthcare and medicine, revolutionizing various aspects of patient care, medical research,
and healthcare management. DL models, especially convolutional neural networks (CNNs), have
demonstrated exceptional performance in medical image analysis, detecting and diagnosing diseases
from medical images, and identifying and delineating regions of interest in images, such as ACL tears,
tumors, blood vessels, or organs [16, 17, 18].

Early detection of knee injuries, especially ACL tears, using DL is an important and promising
area in healthcare. DL has the potential to revolutionize medical image analysis and improve the
accuracy and efficiency of knee injury diagnosis. In this paper, we propose a fine-tuned ensemble
model, which includes three DL algorithms, EfficientNet-B7, ResNet152V2, and DenseNet201, and
a genetic algorithm (GA). The proposed ensemble model will help in the identification and classi-
fication of ACL tears. The GA was used to obtain the optimal epoch solution that has maximum
val_accuracy and minimum loss (min_loss) from the pre-trained learning models. The ImageNet
dataset was used to pre-train the three models. The three models utilized the global max pooling
(GAP) 2D (GlobalMaxPooling2D) layer to reduce the spatial dimensions of the feature maps produced
by convolutional layers while retaining essential information. For each feature map or input channel,
GlobalMaxPooling2D calculates the maximum value across all the spatial locations. This operation
results in a single value for each channel, effectively summarizing the information in that channel.
Hence, we have a set of maximum values, one for each channel, which collectively form the feature
vector representing the input data. Finally, we fine-tuned the resulting feature vector with a training
dataset from the KneeMRI dataset, which was published online by Clinical Hospital Centre Rijeka,
Croatia. The KneeMRI dataset was preprocessed by applying resizing, rescaling, flipping, rotation,
zooming, and contrasting techniques.

The proposed ensemble model aims to alleviate the workload and responsibilities of primary radi-
ologists. In a medical setting, radiologists play a crucial role in interpreting medical images, such as
MRI scans. However, the increasing volume of medical images and the demand for timely diagnosis
can place a significant burden on radiologists. The proposed ensemble model provides solutions that
can assist radiologists in their tasks, reducing their workload and potential for error. The ensemble
model achieved an accuracy, precision, recall, and F1-score of 99.68%, 99.52%, 98.73%, and 98.94%,
respectively. The research contributions are summarized as follows:

• We proposed a robust ensemble model for the early diagnosis of ACL tears via MRI.

• The proposed ensemble model determines the grade of the ACL tear more accurately than the
previous techniques.

• The proposed ensemble model achieves a high level of accuracy in diagnosing ACL tears. This
finding implies that it can be used to effectively distinguish between patients with and without
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ACL tears, reducing the likelihood of misdiagnosis.

• The proposed model offers fast diagnosis. This speed can be crucial in the healthcare setting,
where rapid diagnosis enables healthcare providers to initiate treatment and care plans sooner.

• We used a GA to obtain the optimal prediction from the pre-trained learning models.

• The KneeMRI dataset was preprocessed by applying resizing, rescaling, flipping, rotation, zoom-
ing, and contrasting techniques.

• The proposed ensemble model achieved an accuracy, precision, recall, and F1-score of 99.68%,
99.52%, 98.73%, and 98.94%, respectively.

This research is structured as follows: a literature review is presented in Section 2. In Section 3, the
methodology and materials of the proposed ensemble DL model are described. The ensemble model
implementation and its evaluation are presented in Section 4. Section 5 discusses the results. Section
6 presents the conclusion.

2 Related Work
Bien et al. [19] proposed a DL model called MRNet for diagnosing ACL tears and meniscal tears

from knee MRI scans. MRNet uses a CNN architecture designed for the specific task of diagnosing
knee injuries using 3D MRI. MRNet is designed to map 3D MRI images to 2D images for the purpose
of classification, enabling the identification of various knee conditions and pathologies. The knee MRI
dataset was preprocessed by scaling the images to 256 × 256 pixels and converting them to PNG
format. The accuracy and area under the curve (AUC) of the proposed model for diagnosing ACL
tears were 86.7% and 96.5%, respectively.

Azcona et al. [20] compared DL models based on transfer learning and DL models trained from
scratch to detect meniscus tears and ACL tears from MRI. The authors used ResNet-18 and the
KneeMRI dataset. The fine-tuned DL model based on transfer learning with data augmentation
achieved the best performance. The fine-tuned DL model based on transfer learning for detecting
ACL tears achieved an AUC of 96%.

Chang et al. [21] compared three CNN models with different dimensionalities and views for
diagnosing ACL tears. The input views included dynamic patch-based sampling, cropped slices,
and full slices. The dimensions were single, three, or five slices. The authors used the KneeMRI
dataset. The images in the dataset were rescaled to 256 × 256 voxels and normalized using the z score
algorithm. The model with dynamic patch-based sampling achieved the best performance, with an
AUC of 97% and an accuracy of 96.7%.

Liu et al. [22] proposed a DL system for detecting ACL tears. The proposed system used LeNet-5
and YOLO, which are two CNNs, to isolate ACL tears from MRI. The DenseNet CNN was used to
classify abnormalities in isolated ACL tears. The KneeMRI dataset was used. The specificity and
sensitivity of the proposed system were 96%. The sensitivity of the radiologists ranged from 96% to
98%, and the specificity ranged from 90% to 98%. There was no statistically significant difference in
analytic execution between the proposed system and clinical radiologists. The AUC of the receiver
operating characteristic (ROC) curve for the proposed system was 98%, which means that the proposed
system achieved good performance.

Namiri et al. [23] used two CNN models to detect ACL tears. The first CNN model had 3D
kernels, and the second had 2D kernels. The authors used 1243 MRI images from 224 patients. The
3D-CNN model achieved an accuracy of 89% and a weighted Cohen k of 0.83. The 2D-CNN model
achieved an accuracy of 92% and a weighted Cohen k of 0.83 for intact ACL tears, the 3D model
achieved a sensitivity of 89% and a specificity of 88%, and the 2D model achieved a sensitivity of
93% and a specificity of 90%. For full ACL tears, the 3D model achieved a sensitivity of 76% and a
specificity of 100%, and the 2D model achieved a sensitivity of 82% and a specificity of 94%. All the
reconstructed ACL tears were correctly classified by the 2D CNN model.
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Table 1: Class distribution of the KneeMRI dataset
Class Count

Healthy 690
Partial tear 172

Complete tear 55

Zhang et al. [24] proposed a DL model based on the 3D DenseNet model to classify ACL tears.
The authors used the KneeMRI dataset. The dataset was split into a training set (70%), a test set
(10%), and a validation set (20%). A comparison among 3D DenseNet, VGG16 and ResNet revealed
that 3D DenseNet achieved the highest accuracy (95.7%).

Germann et al. [25] used a deep convolutional neural network (DCNN) for the diagnosis of ACL
tears. The DCNN was trained on knee MRI. The MRI images were preprocessed by rescaling and
cropping sagittal fluid-sensitive and coronal views. The sensitivity for clinical use was 97.5–97.9%,
where all p values were ≥ 0.118, and the sensitivity was 96.1% for DCNNs. The sensitivity of the
DCNN was 93.1%, and it was 99.6–100% for clinical use, where all p values were < 0.001.

Awan et al. [26] proposed a DL model based on the ResNet-14 model for the detection of ACL tears.
The ResNet CNN model had 14 layers and was combined with six different directions by utilizing data
augmentation and class balancing. A total of 917 sagittal MRI images of knees were used. The MRI
images were in grayscale. The MRI dataset was normalized, the regions of interest were labeled, and a
hybrid approach with undersampling and oversampling was applied. By using 5-fold cross-validation,
the proposed model achieved a sensitivity, accuracy, precision, specificity, and F1-score of 91.6%, 92%,
91.6%, 94.6%, and 92.3%, respectively. Moreover, the proposed model achieved AUCs of 99.9%, 97%,
and 98% for full ACL tears, partial tears, and healthy patients, respectively.

Jeon et al. [27] proposed a 3D DL model for classifying ACL tears. The KneeMRI dataset was
used. The authors assumed that the features required for detecting ACL tears are highly homogeneous
and locally confined. The homogenous features were presented using fewer convolutional filters and
squeeze modules. The search for local features was implemented using Gaussian positional encoding
and attention modules. The proposed model achieved ROC curves of 98% and 98.3% on the KneeMRI
and Chiba datasets, respectively.

Astuto et al. [28] proposed 3D CNNs for diagnosing regions of interest within MRI, including ACL
tears, bone marrow, menisci, and cartilage grade abnormalities. The KneeMRI dataset was used. The
sensitivity of the binary lesion for all tissues was 88%, the specificity was 89%, and the AUC was 90%.

3 Materials and Methods

3.1 Material Description

The KneeMRI dataset was assembled reflectively from test records made on a Siemens Avanto 1.5T
MR scanner and obtained by the proton thickness weighted fat concealment method at the Clinical
Medical Clinic Community Rijeka, Croatia, from 2006 to 2014. The KneeMRI dataset comprises 917
images of left or right knees, where each image is in a 12-bit grayscale. The KneeMRI dataset has
three classes: healthy (intact ACL), partial ACL tear, and complete ACL tear as shown in table 1.
The regions of interest were determined by rectangles, extracted from the original images manually,
and annotated [29]. Ensemble models are beneficial because they leverage the diversity of different
models, combining their strengths to improve overall performance and generalizability. They are
particularly effective when individual models have complementary strengths and weaknesses. This
approach can make the ensemble more robust to variations in input data and more accurate in its
predictions. Therefore, to diagnose ACL tears early using MRI, we propose a fine-tuned ensemble
CNN model utilizing EfficientNet-B7, ResNet152V2, and DenseNet201, which are DL models. In
the proposed ensemble, we used a GA to obtain the optimal prediction solution that has maximum
val_accuracy and minimum loss (min_loss) from ensemble pre-trained learning models. The three
models utilized the global max pooling (GAP) 2D (GlobalMaxPooling2D) layer to reduce the spatial
dimensions of the feature maps produced by convolutional layers while retaining essential information.
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For each feature map or input channel, GlobalMaxPooling2D calculates the maximum value across all
the spatial locations. This operation results in a single value for each channel, effectively summarizing
the information in that channel. Hence, we have a set of maximum values, one for each channel, which
collectively form the feature vector representing the input data. Finally, we fine-tuned the resulting
feature vector over the training set of the KneeMRI dataset. Figure 2 depicts the architecture of the
proposed fine-tuned ensemble model. The steps of the proposed ensemble model are as follows:

Phase 1 : KneeMRI dataset preprocessing: The KneeMRI dataset [29] was preprocessed by applying
resizing, rescaling, flipping, rotation, zooming, and contrasting techniques.

Phase 2 : KneeMRI dataset splitting: The preprocessed KneeMRI dataset was split into a training set
(70%), a test set (15%), and a validation set (15%).

Phase 3 : Pre-training for the EfficientNet-B7, ResNet152V2, and DenseNet201 models: Through the
supervised pre-training phase of the transfer learning process, the models used were pre-trained
on ImageNet. Moreover, the three pre-trained models utilized the GlobalMaxPooling2D layer
to reduce the spatial dimensions of the feature maps produced by convolutional layers while
retaining essential information.

Phase 4 : Integrating the pre-trained individual feature vectors: For each feature map or input chan-
nel, GlobalMaxPooling2D calculates the maximum value across all the spatial locations. This
operation results in a single value for each channel.

Phase 5 : Fine-tuning the resulting feature vector: We fine-tuned the resulting feature vector and trained
it on the training set and validation set of the KneeMRI dataset.

Phase 6 : Measuring the performance: The fine-tuned proposed ensemble model was evaluated on the
test set of the KneeMRI dataset using evaluation metrics, such as recall, precision, accuracy,
specificity, and F1-score.

Figure 2: Architecture of the proposed ensemble model.
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3.2 Dataset preprocessing

Image preprocessing is a critical step in image analysis and computer vision applications. It involves
a series of techniques and operations applied to raw or captured images to prepare them for further
analysis or interpretation. The importance of image preprocessing lies in its ability to enhance the
quality of images, improve feature extraction, and make subsequent tasks more accurate and efficient.
In our proposed ensemble, we applied a resizing method to resize the images to a size of 224×224, a
rescaling method to rescale the values of the images to intervals of [0,1], a flipping method to flip the
images horizontally, a rotation of 0.1, a zooming in on the images of 0.1, and a contrast of 0.1.

3.3 EfficientNet-B7

EfficientNet-B7 is a deep neural network (DNN) with many layers, making it capable of capturing
complex patterns in images. EfficientNet-B7 is a specific variant of the EfficientNet family of CNNs
known for its efficiency and performance in image recognition tasks. EfficientNet was introduced in
[30]. The “B7” in the name indicates the scaling factor used in designing this model. EfficientNet
models are scaled in terms of depth, width, and resolution to balance performance and computational
efficiency. A higher scale number (e.g., B7) typically indicates a larger and more powerful model.
EfficientNet-B7 is suitable for a wide range of computer vision tasks, including image classification,
object detection, and image segmentation. It can be used in applications such as autonomous driving
and medical imaging [30].

4 ResNet-152V2
ResNet-152V2, or residual network-152 version 2, is a deep convolutional neural network with a

152-layer architecture that is part of the ResNet family. The depth of the network allows it to capture
intricate features in images, making it suitable for a wide range of computer vision tasks. ResNet
is known for its ability to train DNNs effectively using skip connections or residual connections,
which help mitigate the vanishing gradient problem. Skip connections allow information to flow
directly through the network without significant degradation. This enables the training of much
deeper networks and helps prevent the vanishing gradient problem. ResNet-152V2 is an improved
version of the original ResNet-152, offering better performance and accuracy [31].

4.1 DenseNet-201

DenseNet-201, short for Densely Connected Convolutional Network 201, is a popular CNN archi-
tecture used in computer vision tasks, particularly for image classification. It is part of the DenseNet
family and is known for its densely connected layers and efficient use of parameters. DenseNet-201 is
one of the variants within this family with 201 layers in the network. DenseNet-201 introduces densely
connected blocks, where each layer is connected to every subsequent layer within a block. This dense
connectivity allows for feature reuse, better gradient flow, and more efficient training. DenseNet-201
includes transition blocks that control the growth of feature maps as they progress through the net-
work. Transition blocks typically consist of 1x1 convolutional layers and pooling layers to reduce the
spatial dimensions.

4.2 Genetic Algorithm

A genetic algorithm (GA) is a type of evolutionary algorithm that is inspired by the process of
natural selection. GAs are used to solve optimization problems by iteratively evolving a population
of candidate solutions. Each candidate solution is represented as a chromosome, which is a string of
bits. The chromosomes are evaluated using a fitness function, which assigns a score to each solution
based on how well it satisfies the problem constraints. At each iteration, the GA selects the fittest
solutions to be parents. The parents are then used to create offspring through crossover and muta-
tion. Crossover is the process of combining the chromosomes of two parents to create a new offspring.
Mutation is the process of randomly changing bits on a chromosome. The offspring are then evaluated
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using the fitness function, and the fittest offspring are selected to be the parents of the next generation.
This process is repeated until a satisfactory solution is found or until a maximum number of iterations
is reached.

Main steps of a genetic algorithm
1. Initialize the weights using the prediction matrix.
2. Generate population.
3. Evaluate the fitness of everyone in the population.
4. Select the parents for the next generation. The parents have the highest fitness value.
5. Create offspring. This is done by combining the chromosomes of two parents using crossover
and mutation.
6. Replace the current population with the offspring.
7. Repeat steps 3-6 until a satisfactory solution is found or until a maximum number of
iterations is reached.

The GA prevents learning models’ epochs from being selected as the optimization step in the pro-
posed ensemble. The GA commences with a population of potential solutions, which, in this case, are
the ensemble epochs transformed into a set of possible parameters. These solutions are then evaluated
using a fitness function that aligns with the goal of achieving high validation accuracy (val_accuracy)
and low loss (min_loss). The elite solutions are then used to generate a new population, replacing the
previous one through crossover and mutation operators, and run for a sufficient number of generations,
usually limited by a predefined maximum or fixed value if the fitness improvement rate is slow.

The stopping criteria for the DNN learning process are different from the stopping criteria based on
the output of a four-dimensional vector as derived by GA but are embedded in the metrics evaluated
by GA. In DNN training, validation accuracy and loss values are measured for each epoch to identify
overfitting. Subsequently, the GA adapts the epoch selection depending on these values after the
training phase is accomplished. The performance of the GA process depends more on the convergence
of the epoch combinations; hence, the GA process halts with a combination that produces the best
performance where there are no drastic improvements in the fitness scores or where a fixed number of
generations have been reached.

5 Experimental Results and Discussion

5.1 Performance Metrics

The performance of the proposed model was assessed using the following metrics: specificity,
accuracy, precision, recall, and F1-measure, which are defined in Equations (1)-(5).

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Specificity = TN

FP + TN
(5)

False positives (FPs), false negatives (FNs), true negatives (TNs), and true positives (TPs) are all
measures of how well a model performs. Accuracy is the proportion of predictions that are correct.
Precision is the proportion of positive predictions that are actually correct. Recall is the proportion of
actual positives that are correctly predicted. The F-measure is a measure of how well a model predicts
both positive and negative cases.
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5.2 Model Implementation

The KneeMRI dataset was divided: 70% for training, 15% for validation, and 15% for testing. The
computer used for the experiment had a 64-bit operating system, an x64-based processor, an Intel(R)
Core(TM) i7-3612QM CPU @ 2.10 GHz and 2.1 GHz, and 10 GB of RAM. The Python programming
language was used to implement the model.

Figure 3 and Table 2 show the results for the EfficientNet-B7 deep learning model applied to
the KneeMRI dataset. We distinguished between healthy, partially torn, and completely ruptured
ACLs. Table 2 shows that the EfficientNet-B7 model had an accuracy, precision, recall, specificity,
and F1-measure average of 70.77%, 69.94%, 74.73%, 66.67%, and 72.25%, respectively.

Figure 3: Accuracy and loss of the training and validation metrics for EffeicientNet-B7

Table 2: Performance of the EfficientNet-B7 model

EfficientNet- B7

Class Precision Recall F1-Measure Specificity Accuracy
Healthy 0.7007 0.7558 0.7287 0.6634 0.7076
Partially torn 0.6946 0.7557 0.7219 0.6674 0.7069
Completely ruptured 0.7028 0.7303 0.7173 0.6692 0.7084

Average 0.6994 0.7473 0.7226 0.6667 0.7077

Figure 4 and Table 3 show the results for the ResNet152V2 deep learning model applied to the
KneeMRI dataset. We distinguished between healthy, partially torn, and completely ruptured ACLs.
Table 3 shows that ResNet152V2 had an accuracy, precision, recall, specificity, and F1-measure average
of 71.43%, 70.30%, 76.02%, 66.67%, and 73.05% respectively.

Figure 5 and Table 4 show the results for the DenseNet201 deep learning model applied to the
KneeMRI dataset. We distinguished between healthy, partially torn, and completely ruptured ACLs.

Figure 4: Accuracy and loss of training and validation metrics for ResNet152V2



https://doi.org/10.15837/ijccc.2024.5.6648 11

Table 3: Performance of the ResNet152V2 model

ResNet152V2

Class Precision Recall F1-Measure Specificity Accuracy
Healthy 0.7043 0.7688 0.7367 0.6634 0.7142
Partially torn 0.6982 0.7687 0.7298 0.6674 0.7135
Completely ruptured 0.7064 0.7430 0.7251 0.6692 0.7150

Average 0.7030 0.7602 0.7305 0.6667 0.7143

Table 4: Performance of the DenseNet201 model

DenseNet201

Class Precision Recall F1-Measure Specificity Accuracy
Healthy 0.7186 0.7873 0.7529 0.6928 0.7371
Partially torn 0.7123 0.7873 0.7458 0.6971 0.7364
Completely ruptured 0.72070.7 0.7608 0.7411 0.6990 0.7379

Average 0.7172 0.7785 0.7466 0.6963 0.7372

Table 4 shows that DenseNet201 had an accuracy, precision, recall, specificity, and F1-measure average
of 73.72%, 71.72%, 74.66%, 69..63%, and 74.66%, respectively.

Figure 5: Accuracy and loss of training and validation metrics for DenseNet201

Figure 6 and Table 5 show the results for the ensemble deep learning model (EfficientNet-B7,
ResNet-152V2, and DenseNet-201) applied to the KneeMRI dataset. We distinguished between
healthy, partially torn, and completely ruptured ACLs. Table 5 shows that the ensemble had an
accuracy, precision, recall, specificity, and F1-measure average of 99.68%, 99.52%, 98.73%, 99.62%,
and 98.94%, respectively.

For the healthy class, the precision, recall, and F1-measure were 99.71%, 99.85%, and 99.78%,
respectively. For the partially torn class, the precision, recall, and F1-measure were 98.84%, 99.84%,
and 99.84%, respectively. For the completely ruptured class, the precision, recall, and F1-measure
were 100%, 96.49%, and 98.21%, respectively.

Table 6 shows the confusion matrices for the ensemble model, EfficientNet-B7, ResNet152V2, and
DenseNet201. The test dataset had three classes: healthy, partially torn, and completely ruptured.
Table 6 shows that the ensemble model correctly predicted 688 samples out of 690 samples for the
healthy class, 171 out of 172 samples for the partially torn class, and 54 samples out of 55 samples
for the completely ruptured class. EfficientNet-B7 correctly predicted 488 samples for the healthy
class, 122 samples for the partially torn class, and 39 samples for the completely ruptured class.
ResNet152V2 correctly predicted 493 samples for the healthy class, 123 samples for the partially torn
class and 39 samples for the completely ruptured class. DenseNet201 correctly predicted 509 samples
for the healthy class, 127 samples for the partially torn class, and 41 samples for the completely
ruptured class.

Hyperparameters are the parameters that have an impact on the final performance of the op-
timizer or any other method, including the one proposed herein, and their selection and tuning is
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Figure 6: Accuracy and loss of training and validation metrics for the ensemble model

Table 5: Performance of the ensemble model.

Ensemble model

Class Precision Recall F1-Measure Specificity Accuracy
Healthy 0.9971 0.9985 0.9978 0.9912 0.9967
Partially torn 0.9884 0.9984 0.9884 0.9973 0.9957
Completely ruptured 1 0.9649 0.9821 1 0.9978

Average 0.9952 0.9873 0.9894 0.9962 0.9968

vital. Hyperparameters were identified using a systematic methodology where initial values were set
according to industry standards and previous research. We used a grid search to compare many dif-
ferent values before implementing a random search to sample hyperparameter values. Moreover, the
hyperparameters are batch size, learning rate , and number of epochs.

Figure 7 shows the effect of the number of batches on the validation accuracy and loss of the
ensemble model. When the batch size goes from 16 to 128, the number of members of a group for
training also increases, which in turn increases the validation accuracy and decreases the validation
loss. The optimization took 0.9968 seconds when we ran it at a batch size of 128. Likewise, the mean
validation loss decreased slightly from 0.6313 to 0.6230 over the same range. This trend seems to
imply that a larger batch size is beneficial for model performance, presumably due to the stabilizing
effect that it brings to gradient estimates during the training process. Therefore, a batch size of 128
was identified as ideal, with the highest validation accuracy and the least validation loss.

Figure 8 shows the effect of the learning rate on the validation accuracy and validation loss of
the ensemble model. The adjustment process for the learning rate has been suspended. The specified
learning rates under review are 0.1, 0.01, 0.001, 0.0001, and 0.00001. The maximum validation accu-

Table 6: Confusion matrices
Healthy Partially torn Completely ruptured

Ensemble model
Healthy 688 1 1
Partially torn 0 171 1
Completely ruptured 0 1 54

EffiecientNet-B7
Healthy 488 90 112
Partially torn 20 122 30
Completely ruptured 6 10 39

ResNet152V2
Healthy 493 93 104
Partially torn 25 123 24
Completely ruptured 6 10 39

DenseNet201
Healthy 509 80 101
Partially torn 15 127 30
Completely ruptured 6 8 41
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Figure 7: Batch size vs val_Accuracy and val_loss of ensemble model

Figure 8: Learning rate vs val_Accuracy and val_loss of ensemble model

racy of the model was 0.9968 and the smallest validation loss was 0.6228. However, the learning rates
may be too small for the model to converge at the highest accuracy and the lowest loss. Therefore,
a learning rate between zero and one seems to offer the best fit for this model, producing the best
accuracy and least loss.

5.3 Comparison with state-of-the-art methods

Table 7 demonstrates that our ensemble model achieves state-of-the-art accuracy in detecting and
classifying ACL tears, outperforming previous methods by 1.68%. Our model’s accuracy for detecting
and classifying ACL tears is 99.68%, compared to the previous state-of-the-art accuracy of 98%. The
improved accuracy of our model could lead to more accurate diagnoses of ACL tears, which could
improve patient outcomes.

6 Conclusion
The proposed ensemble model provides solutions that can assist radiologists in their tasks, reducing

their workload and the potential for errors in ACL tear detection. Early detection allows for timely
medical intervention. In many cases, ACL tears may require surgical repair. Early tear detection
can lead to a quicker surgical schedule and better outcomes. This paper proposes a robust ensemble
model which incorporates DL models with a GA to differentiate between healthy, partially torn,
and completely ruptured ACL states. The KneeMRI dataset was used to create and measure the
performance of the ensemble model. The dataset was preprocessed by resizing, rescaling, zooming,
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Table 7: Comparison between the proposed ensemble deep learning model and previous state-of-the-art
methods

Reference Methodology performance Datasets
Bien et al. [19] MRNet Accuracy: 86.7% KneeMRI dataset
and AUC: 96.5%
Azcona et al. [20] ResNet-18 and transfer learning AUC: 96%. KneeMRI dataset
Chang et al. [21] CNN with different inputs of Accuracy: 96.7% KneeMRI dataset

dimensionalities and view and AUC of 97%.
Liu et al. [22] LeNet-5 and YOLO AUC: 98% KneeMRI dataset
Namiri et al. [23] 3D and 2D CNNs 2D’s accuracy: 92% KneeMRI dataset
Zhang et al. [24] 3D DenseNet Accuracy: 95.7% KneeMRI dataset
Germann et al. [25] DCNN Sensitivity: 96.1% KneeMRI dataset
Awan et al. [26] ResNet-14 Accuracy: 92% % KneeMRI dataset
Jeon et al. [27] 3D CNN AUC: 98% KneeMRI dataset
Astuto et al. [28] 3D CNN AUC: 90% KneeMRI dataset
Proposed approach Ensemble deep learning Accuracy: 99.68% KneeMRI dataset

flipping, contrasting, and rotating images. The proposed model was tested on the KneeMRI dataset
and compared to competitive methods using the same dataset. The proposed ensemble model provided
a maximum precision, recall, F1 measure and accuracy of 99.52%, 98.73%, 98.94%, and 99.68%,
respectively, demonstrating state-of-the-art results.

However, the model has some restrictions. The main drawback of the proposed model is that it is
not effective when working with large datasets. One of the primary limitations therein is that its over-
all evaluation focuses on a single type of imaging, which may not reflect all the details of ACL injury.
Furthermore, it also depends upon the quality of the data used as well as the variations available in the
data set. Despite the comprehensiveness of the KneeMRI dataset, there might be some clinical scenar-
ios not included in the identified and labeled cases, which may affect the generalization of the developed
model. Additionally, the implementation of the ensemble model for many attributes/predictors may
run into a number of difficulties, especially when applied in real-time consultation in hospitals and
clinics.

Future work should focus on improving the performance and generality of the developed model.
Another avenue is to explore the incorporation of other types of images intermediate to traditional
X-Ray and MRI, such as ultrasound or computer tomography. Furthermore, it might be possible
to improve the model’s stability and performance by using a range of more complex forms of data
augmentation and experimenting with the parameters of the GA. Lastly, the use of transfer learning:
using models with similar medical imaging tasks so that they do not have to go through the same
tedious labeling of datasets again.
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