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Abstract: Telemonitoring systems have been shown to greatly reduce medical costs
while improving the quality of medical care. Today, the main factors restricting
the development and popularization of Telemonitoring systems include scalability
and compatibility. The challenge for the remote healthcare lies in the variety of
heterogeneous medical sensors which need to be dynamically removed or added to
the environment according to the health care needs. This paper presents the design
for an ontology-based context model and related middleware that provides a reusable
and extensible application platform for Remote Healthcare. We designed the ontology
context model to describe physiological parameters, medical tasks and the patients
personal profile. Developers may extend the ontology model by considering new
requirements as needed.
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1 Introduction

Increasing life expectancy, due to medical progress, and decreasing birth rates lead to a
change in the population structure of Germany. As illustrated in Fig. 1, the percentage of
people over the age of 65 is steadily increasing while the number of people under the age of 25 is
declining [1]. This results in continuously rising costs for healthcare, especially for elderly people.
One approach to this problem is the utilization of telemonitoring systems to enable a relocation
of the therapy to the patients home, thus shortening the expensive periods of hospitalization.

A Medical Telemonitoring System can be defined as a technological means for sending remote
physiological information and medical signals through a communication network to a monitoring
center for analysis and diagnostics. The system generally include three components: a monitoring
center, medical sensors, and a communication network connecting the two components.

However Telemonitoring systems are still in the early stages of development and currently
face many challenges. Compared to a general monitoring environment, a remote healthcare
environment has the following features: (1) Dynamistic: the remote healthcare environment
usually requires a number of medical sensing devices and, unlike air conditioning which is fixed in
an environment, some medical sensors need to be removed or added to the environment according
to the health care needs; (2) Complexity: in the healthcare environment, a wide variety of medical
terminology are used, and the relationships between them are very complex [2].

In order to solve these problems, we designed a Mobile Context and Ontology-based Rea-
soning/Feedback (MCOM) health-monitoring system which monitors a patients health status
using a Smartphone. On the Smartphone, a Context-Aware Middleware is developed to connect
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Figure 1: Projected Percentage of Elderly People in German Population

different types of medical sensors. In addition, MCOM uses an ontology-based context model to
process and determine a patients health status.

2 Healthcare Context-Aware Middleware (HCAM)

2.1 Context-Aware Middleware

The first problem above mentioned can be solved by establishing a Context-Aware Middleware
[3]. Context-Aware computing refers to a general class of mobile systems that can sense their
physical environment, and adapt their behavior accordingly [4]. In order to extricate remote
medical applications from tedious sensor data acquisition and management, this paper proposes
a Healthcare Context-Aware Middleware (HCAM). With HCAM, the upper-layer applications
would not be concerned about acquiring the context data, but only about the business logic
itself.

As shown in Table.1, applications based on HCAM are divided into three layers. HCAM
separates the collection of context information and the development of aware applications. It
provides a Subscriber API (i.e. Subscriber Application Programming Interface [5]) for the devel-
oper of the upper-layer application; HCAM is then responsible for completing the data collection
of various kinds of sensors.

Table.1 Healthcare Context-Aware Middleware
Context aware applications
Healthcare Context-Aware Middleware Subscriber API
Pub/Sub framework
Provider API
Data collection

All kinds of sensors

2.2 Ontology Modeling

The second problem can be solved using the Ontology Context Model and Reasoning. On-
tology can be defined as, an explicit and formal specification of a shared conceptualization [6]
and provides a kind of shared vocabulary, including object type or concepts, their properties,
and relationships existing in special fields. In this work, it is used to define information and re-
lations, including sensor data, medical tasks, control strategies, and a patients personal domain
knowledge. A medical task, like an Emergency Alert, can be triggered by Context Information
reasoning based on the analysis of physiological parameters.
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Figure 2: Telmonitoring System Architecture: Management Modules and Communication link

2.3 System structure

This work aims at describing the ontology-based context model and middleware that have
been developed in order to ease the development of Context-Aware applications for remote health-
care |7]. The system architecture is shown in Fig.2. From a physical perspective, it is based on
a C/S architecture which includes the sensor terminal, Smartphone client terminal, and remote
server terminal. From a functional perspective, the whole system can be divided in to three
modules: Client Management Modules (CMD), Server Management Modules (SMD), and com-
munication mechanisms.

1. The core module at the Smartphone client is the HCAM Middleware. It is responsible
for communicating with various sensors and performing data collection. Other core com-
ponents include data processing, analysis, and display modules plus server communication
modules. It should be noted that, unlike other Telemonitoring systems, the communication
between client and server is bidirectional. In addition to sending data to a server, the client
terminal can also synchronize information with the server. The design concept of the client
terminal is to offload as much processing as possible to the server, so that the Smartphone
client operates only as gateway to display and transfer data.

2. On the Server-side, the core component is the knowledge-base, based on ontology. Other
components on Server include a communication module that is responsible for transmitting
information between the server and the client terminal, a data management module, plus
a web service module. These modules communicate through a task bus.

3. As shown in Fig.2, the communication between CMD and SMD is implemented through
HTTP/HTTPS, SOAP (18] and SOCKET. HTTP is used in synchronous XML workflow
description; SOAP is used to transmit ontology instance information; SOCKET connection
is used in high real-time demand, for example, transmitting ECG (1024Byte/Sec) and
Acceleration (200Byte/Sec) data.

2.4 HCAM Structure

The HCAM proposed in this paper is designed and developed based on the Android system for
Mobile Phone. Its architecture is shown in Fig.3. According to the previously mentioned three-
layer structure, HCAM include these three layers, i.e. context data acquisition, context data
transmission and distribution, etc. HCAM first uses the context provider to collect the original
context data provided by the sensors, then transmits the data to the upper layer applications via
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the Pub/Sub framework. The Pub/Sub framework [8] completes the context data transmission
and distribution. The following are the core components of the HCAM .

1. Sensor Layer All the original context of physiological data are derived from the sensor,
which is the basis of any Context-Aware application. This paper divided sensors into two
categories; internal sensors (located in the Smartphone) and external medical sensors.

2. Data Provider Data provider (Internal) 1 and data provider (External) 2 are shown in
Fig. 3. A data provider usually exists in the form of a plug-in and is written using Provider
API. Once the providers are completed, the Provider API will transmit the data to the
upper sensing applications. During the actual realization process, data provider 1 and data
collector 1 are usually combined and exist as many different system plug-ins. However, data
provider 2 and the data package resolver, are combined and exist as an independent plug-in.
Under these circumstances, the data provider can directly transmit the data, read by the
data collector, and the data analyzed, by the data package resolver, to the upper sensing
applications via Data-Bus [9].

3. Context Discovery and Access (CDA) CDA consists of the context provider, Pub/-
Sub framework, and context transfer. The context provider serves as a context discovery
protocol to connect different sensors. The Pub/Sub framework collects context information
from the context provider, and the context transfer uploads the data to the central server

4. Context Handler (CH) CH reasoning is accomplished through the context instance
from the client sensor data. The context information uses an inference engine based on
conditions to conduct reasoning via OWL/RDF [10] modeling (Knowledge-base). Once the
conditions are met, the context handler module will send information to the Context-Aware
task and monitoring server.
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3 Knowledge-base design

Before processing the Context Information, we first need to construct the Context Model.
In an ubiquitous medical environment, a large number of medical devices and domain terms are
used. With the advancement of technology, new domain terms can be joined very quickly. In
addition, in the rescue and medical care process, the pathological conditions of a patient usually
cannot be identified directly; medical professionals must filter and integrate information from a
variety of different sources. Therefore, the context model permits not only adding the description
of a new concept, but also supports the context reasoning.

By using ontologies and various reasoning methods, the system can process the sensor data
gathered in a more parameters to create a method by which the engine can infer the patients
health status [11].

The context knowledge-base has two parts. The first part stores the ontology and their
instances in the system. The other part provides a reasoning interface and context discovery,
i.e., how to inquire and to add modules. Ontology instances may be pre-defined in the profile or
may be retrieved from the device and other Webservice. The pre-defined profile is dynamically
imported into the system at the start of system operation. The context information also includes
some fixed information from a specific time; for example, the patients blood type, emergency
telephone number, clinical records, etc. Fig.4 shows a UML diagram of the context ontology
specialized for the Patient Personal Domain. In the Patient Personal Domain, relevant context
items include Measurements, Patient Profile, Device, and Task. These data can be used by the
system to automatically deduce the patient health status and detect possible medical tasks.

The Class Patient, (see Fig. 4), constitutes the core of the ontology. Each defined patient
will be configured as an instance of this Class. One patient personal profile instance is generated
and associated for one particular patient, but this patient could have more than one patient
profile instance associated to him [12]|. A specialization of the Measurements Class is added for
each specific physiological parameter which is gathered from a sensor (e.g., HeartRate Class).
Measurement values are used to determine patient health status by comparing these values
with a set of parameter ranges (MeasurementsRange Class) or results of the specialized Data-
processing-algorithm (like the Stress-assessment algorithm in [13]). When a measured value falls
outside the limits, a task (e.g., Alarm Task) of the corresponding level is then triggered. For
Example, Class HeartRate (see Fig. 4) is a subclass of the Measurements Class ,and in this
case, there are three alert rangeslow, medium, and high which can be modified by the Expert to
adapt to patients’ specific needs. In the case of HeartRate, the three ranges indicate HeartRate
is too low, Normal or too high. And the model can be easily extended to include further levels.
The hasCurrent Value attribute contains the most recently received sensor value from the mobile
client.

This system uses OWL to construct the model and process it using Sample Semantic Web
Rule Language [14]|. The reason for using the context to construct the model is that, it can not
only express the context information, but can also use the inference engine based on conditions
to conduct inference to the subtle context to get higher level information [2| The context models
have the following forms: (Subject, Predicate, Value)

e Subject belongs to S*: set of subject names. a patient, a place , a Smartphone, or an
Emergency Task for example.

e Predicate belongs to P*: the set of Predicate names, the patients current body temperature
for example.

e Value belongs to V*: the overall value of the Subject.
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Figure 4: Patient Remote Healthcare Domain Ontology UML Representation

For example, we have a patient with ID 001, body temperature 37°C and use a PDA to connect
to the monitoring center, then information would be recorded as follows:

e (PDA, online, true), (Patient001, Temperature, 37)

Table 2 shows a few example rules, which the system uses to predict the sensor-data-specific
task and Table 3 shows basic example policy we defined for each Emergency Task level [7]. The
HeartRateHigh rule assigns the Emergency Task level when the heart rate is abnormally high.
The hasMinRange and hasMaxRange properties specify a normal heart rate in each instance of
the HeartRate Class. If a patients heart rate is greater than the specified normal maximum,
then the system sets the Heartrate alarm and starts the Emergency Task .

Table 2: rules for the systems alarm management
RULE DESCRIPTION
HeartRateHigh (?patient rdf:type HeartRate) ,
(?parl hasCurrentValue ?v1) ,
(?parl hasMaxRange ?Max) greaterThan(?v1, ?Max) ,
— > (7taskstate hasAlarmLevel HES)
HeartRateLow (?patient rdf:type HeartRate) ,
(?parl hasCurrentValue 7v1) ,
(?parl hasMinRange ?Min) , greaterThan(?v1, ?Min) ,
— > (7taskstate hasAlarmLevel LES)

Table 3: Alarm Task Notification Policy Examples

Alarm TASK LEVEL NOTIFICATION POLICIES

Low Alarm Task (LES) sensor alarm

sms to patient relative

Medium Alarm Task (MES) sensor alarm
sms , mail and call to relative

High AlarmTask (HES) sensor alarm
message to emergency operator

call to relative




650 W. Zhang, K. Thurow, R. Stoll

Unlike common ontology systems, in this paper the medical task is also included in the
ontology; the task will invoke specific activities. There are two advantages in doing this: the
first advantage is that the specific details of the task and the sub-actions are divided. Under
these circumstances, the description of the task doesnt need to be changed when the device
information, used by a sub-activity, changes. The other advantage is that the description of task
by ontology, can make inference to the changes that should be made by the task; the inference
processing depends on the task status, context information, and the custom rule. At the root
node, is the design of a type of named task and a specific task level taking task. After inference
is completed and the instances of task type exist, SOAP objects are sent to the task response
components and then to the client terminal, including all task information. We use the following
attributes to describe a task (see experiment):

1. TaskName: the name of the task;
2. TaskType: The type of task and function description information;
3. Todo: describes the current sub-activities of the task;

4. TaskState: indicates the current state of a task. There are three values to be chosen:
-CLOSE. , -INIT and -OPEN and they respectively indicate the task has not been started,
or the task needs to be initialized or is started for use.

5. RelatedTo: indicates which specific function in the ontology the task is related to, and
what kind of device instances the task is related to.

6. DataDescription: data description describes the data type and format that needs to be
collected by the task. The information is stored in the task profile and uploaded when the
system is operational.

3.1 Simulation

In this section we will use an emergency assistance task as a practical example to describe
the above described design pattern: how new devices are added to the ontology knowledge-base
and medical treatment begins via conditional reasoning.

The specific scenario for an emergency assistance task is as follows: An anomaly has been
detected for a patient suffering from heart disease or high blood pressure; based on system
reasoning, emergency assistance is requested. According to this task profile, the response time of
the task is one minute, meaning that medical personnel must respond within one minute, react to
the patients condition and initiate corresponding measures. After the response, the tasks mode
is set to CLOSED. If the patient’s condition remains abnormal, the task is started again.

The first step is to add new devices: In the experiment we used the wearable
multi-parameter sensor Equivital01l produced by (Hidalgo Ltd., Cambridge).

When a new device is connected to the HCAM sensor adapter, context information must be
converted into ontology instances before being sent to the knowledge base. The HCAM context
handler inquires whether classes with identical names already exist in the knowledge-base. If
not, a new class is added with the new < device >. The following example shows the class of an
Equivital device being added:

o < owl: Classrdf : ID = Equital >
< rdfs : subClassO frdf : resource = xDevice/ >
< owl : disjointWithrdf : resource = x/ >
< Jowl : Class >
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Then a new class is added which acts as subclass of Measurement. Below the classes
HeartRate and BloodPressure are added for the Equital device.

o < owl : Classrdf : about = xHeartRate >
< rdfs : sublassO frdf : resource = xMeasurement/ >
< owl : disjointWithrdf : resource = %/ >
< Jowl : Class >
< owl : Classrdf : about = *Blood Pressure >
< rdfs : sublassO frdf : resource = xMeasurement/ >
< owl : disjointWithrdf : resource = %/ >
< Jowl : Class >

With the establishment of the above-mentioned ontology, it is ensured that the device descrip-
tion file and the ontology name match. When the HCAM context provider receives data from
the device, it looks for the parameters in its own device files and device task files and creates an
instance. The above-mentioned Equivital device might, for example, receive event messages
from the HCAM detailing HeartRate-hasCurrentValue = 60(Beats/Minute), BloodPressure-
hasCurrentValue = 120(systolic, mmHg). In this case the practical example would look as
follows:

e < HeartRaterdf : about = xEquital HeartRate >
< hasCurrentValuerdf : datatype = double > 60.0 < /hasCurrentValue >
< /HeartRate >
< BloodPressurerdf : about = xEquital Blood Pressure >
< hasCurrentValuerdf : datatype = double > 120.0 < /hasCurrentValue >
< BloodPressure >
< Equitalrdf : about = xEquital001 >
< measurementsrdf : resourcee = xEquital HeartRate/ >
< measurementsrdf : resource = x*Equital Blood Pressure/ >
< /Equital >

After the context information is converted, the context handler will send the aforementioned
information to the knowledge-base.

The second step is to execute the task.
When the middleware is executed, the system automatically generates an instance for every task
class, which is saved in the knowledge-base. The important information in these task instances
is as follows:

o < MedicalTaskrdf : about = xEmergencyT ask >
< taskType > External < [taskType >
< taskState > CLOSE < /taskState >
< todordf : resource = xAlarmTask/ >
< todordf : resource = xPrepareEmergencyOperator/ >
< /MedicalTask >

With the previous scenario in mind, we can define the specific conditions for the emergency
task to be triggered: e.g. the Heart Rate of the patient drops below 40, or the blood pressure
(systolic) exceeds 170. Reasoning may be carried out according to the rules of the language itself,
for example:

o (?a?p?h), (?prdf : subPropertyOflq)— > (Ta?q?b)
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User defined rules may also be used in the reasoning process, e.g.:

o (?patient, Equital Blood Pressure001,vl), GE(?vl, 170), (?patient, Equital Blood Pressure,vl),
LE(?vl,40)— > (?patient, healthStatus, danger)

o (?patient, healthStatus, danger), (? Patient, healthStatus, movement fail),
(EmergencyTask, taskState, CLOSE)— > (EmergencyTask, taskState, OPEN)

3.2 Deployment and Execution

The deployment configuration includes at least two Context Manager nodes as shown in
Fig.5: We used a SonyEricsson-Xperia smartphone as Client Manager (CM) node, connected
with the medical sensor module Equivital [15] via Bluetooth; and a Server Manager (SM) node,
which is deployed on a Central Application Server, in the domain of the organization which is
responsible for the integration and delivery of Emergency Web Task.

The Home Smartphone hosts the Client and communicates with the Central Application
Server via 2G/3G/WiFi. The Central Application Server hosts the Server SM and other assis-
tance and information task applications. These tasks include: a Emergency Task as Webservice,
Data management, and a web application which offers web-based access to health operators via
mobile device.

4 Results and Discussion

Fig.6 shows the sensor data for a patient. The graphic curve represents any changes in the
data for a given day. Date and time can be changed easily, access a patients historical data; this
data are stored in a central server database. The alarm is normally triggered automatically by
context reasoning and, in some cases, the medical professionals can manually send a message
to the client. Directly above the line chart in Fig.6, a message window is located. Medical
professionals can send a message to the patient’s Smartphone through it.

In this technical approach, the system structure improves the scalability and interactivity of
telemonitoring systems; In our current work, we improve the reliability of the system by adding
layers of redundancy, in case a particular system or function fails. In addition, we created a
back-up system on the mobile client to save sensor data locally, in the event of a loss (or lack)
of internet connection. Security issues can be divided into two parts: one is the security of local
data transferred from the sensor to the mobile client; another is the security of remote data
transferred from the mobile client to the central server. On the client side we implement the new
128-bit lightweight cryptographic algorithm Hummingbird-2 [16] cipher to encrypt the sensor
data with java code. On the server side, we use Secure Socket Layer (SSL) to encrypt vital data
and utilize 3P-AAA-SPs [17], Authorization and Accounting Task Providers to authenticate the
client access.
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Figure 6: mHealth Prototype System Architecture

This paper designs an innovative Telemonitoring platform based on context and ontology
technology. A Context-Aware Middleware is developed to support the scalability of the telemed-
ical system; new sensor device and data formats can be integrated into the system conveniently.
In the context reasoning module, ontologies are used to construct target medical tasks and cir-
cumstances. This paper, however, does not address the handling of context conflicts in the
process of constructing ontologies and reasoning conditions. Further research will focus on the
reliability and energy consumption problem of remote medical systems. Concerning the energy
consumption problem, some new ultra low power transmission protocols, like BLE and ANT,
have appeared that can greatly improve the sustainability of remote monitoring. Other chal-
lenging tasks will include the development of an intelligent error discovery and system recovery
mechanism to maintain the stability of the system over time.
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