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Abstract

Timely fault diagnosis and localization of transmission lines is crucial for ensuring the reliable op-
eration of increasingly complex power systems. This study proposes an optimized R-Net algorithm
based on a feature pyramid network (FPN) and densely connected convolutional network (D-Net)
for transmission line fault diagnosis and localization. The R-Net network is enhanced by reshaping
the anchor points using an improved K-means algorithm and incorporating an FPN for multi-scale
feature extraction. The backbone network is further optimized using D-Net to strengthen inter-layer
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connections and improve feature reuse. Experimental results demonstrate that the optimized R-Net
achieves an overall average accuracy of 0.64, outperforming the original network by 1.30%. The
accuracy improvement is particularly significant for ground wire defects (2.40%). The D-Net-based
R-Net, despite having fewer parameters, maintains high accuracy (0.6502). Compared to other
object detection algorithms, such as YOLO-v3 and Faster R-CNN, the optimized R-Net exhibits
superior performance in terms of mean average precision (15.58% and 2.45% higher, respectively)
and parameter efficiency (17M vs. 38M and 81M). Considering both performance and speed, the
optimized R-Net achieves a processing rate of 10.5 frames per second. This study provides an
efficient and accurate tool for transmission line fault diagnosis and localization, with significant
practical implications for power system operation and maintenance.

Keywords: Deep learning; Transmission lines; Fault; Convolutional neural network; Feature
pyramid network.

1 Introduction
Transmission lines are the primary means of power transmission in modern power grid systems.

Their safe and stable operation is crucial for the entire power system. Common faults in transmission
lines include short circuits, open circuits, insulator faults, and cable connection faults. These faults
may lead to power transmission interruption, leakage, or breakdown, thereby affecting the reliability
and safety of power supply. However, due to long-term exposure to the external environment, trans-
mission line components are often affected by various factors, such as weather erosion, mechanical
stress, etc. These may lead to component damage or functional decline, thereby bringing potential
operational risks. To timely detect and address these issues, transmission lines need to be regularly
inspected and fault diagnosed [1, 2, 3]. Traditionally, these inspection tasks mainly rely on manual
labor. However, this method is not only inefficient, but may also pose security risks. With the ad-
vancement of technology, especially drone technology and computer vision, they are gradually being
applied to various types of fault diagnosis. Drones equipped with high-definition cameras and com-
bined with deep learning technology for automated inspection and fault diagnosis can not only greatly
improve inspection efficiency but also reduce errors caused by human factors [4, 5, 6]. Automatic fault
diagnosis using deep learning can effectively overcome the limitations of manual inspection methods
and automatically extract and analyze features. This can help improve equipment reliability and
production efficiency in industrial production. It is estimated that equipment failures causing produc-
tion shutdowns result in billions of dollars in losses worldwide every year. However, the current deep
learning object detection algorithms still have some limitations in the application of transmission line
fault diagnosis, especially in identifying small faults in complex backgrounds. For instance, actual
transmission lines may have complex background interferences, such as trees, buildings, and towers.
Additionally, minor faults, like damaged insulators and wires, are often imperceptible in images, mak-
ing it difficult for deep learning object detection algorithms to accurately identify and locate the fault
point. Therefore, a transmission line fault diagnosis and localization algorithm based on an improved
R-Net has been proposed.

The aim of this study is to enhance current object detection algorithms and improve the perfor-
mance of models for diagnosing and locating faults in transmission lines. Specifically, the focus is on
accurately and stably identifying small faults in complex backgrounds to better suit real-world trans-
mission line scenarios. The research’s primary contribution is enhancing the maintenance speed and
accuracy of transmission line equipment, shortening fault handling time, and providing more efficient
technical support for health monitoring and fault handling of transmission line equipment. Addition-
ally, it improves the application of object detection algorithms in the power systems field. The study’s
innovation lies in combining feature pyramid network (FPN) and densely connected convolutional
network (D-Net) to optimize R-Net and improve its detection accuracy. The research structure is di-
vided into four main parts. The text summarizes the research achievements and shortcomings of deep
learning and transmission lines both domestically and internationally. It introduces object detection
algorithms and discusses their improvements. The text also includes experiments and analysis of the
improved algorithm, comparing it in detail with traditional algorithms. Finally, the text summarizes
the experimental results, identifies research shortcomings, and proposes future research directions.
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2 Related works
With the rapid and rigorous development of smart grids and power structures, efficient fault de-

tection methods have become the key to ensuring system anti-interference and reducing maintenance
costs. Among them, transmission lines play a crucial role. Deep learning is closely related to the de-
tection and diagnosis of transmission line defects[7]. Some scholars have conducted relevant research.
Tong et al. proposed a fault detection method for transmission lines based on graph convolutional
neural networks (CNNs). This method combined spatial information and powerful feature extraction
to establish a detection and classification framework. Based on the adjacency matrix of the topol-
ogy and voltage signal, this method quickly provided prediction results. The experimental results
showed that this method was more effective than existing methods, with high speed, robustness, and
strong generalization ability. It was suitable for online transmission line protection [8]. Athamneh et
al. proposed a new fault diagnosis method for distance protection of transmission lines, which only
used real-time voltage signals. This method combined CNNs and high-order spectral estimation for
deep learning classification. A two-dimensional CNN model was developed. The short time Fourier
transform of the signal was used to achieve high-precision fault detection. The results indicated that
this method had high numerical performance and consistency [9]. Tan et al. proposed a insulator
automatic detection technology based on deep learning. A single multi-box detector network was uti-
lized to locate insulators in aerial images and enhance classification functionality. To address the data
shortage, data expansion techniques were adopted, including image combination, affine transforma-
tion, and brightness adjustment. The experimental results demonstrated the robustness and accuracy
of this method in insulator detection [10]. To ensure the reliability and elasticity of electrical energy,
rapid and accurate fault detection tools were crucial. Considering the high cost of faults, there was
an urgent need to adopt intelligent detection methods, especially powerful machine learning methods.
Therefore, Mohammadi et al. delved into various machine learning techniques, such as random forests,
support vector machines, and CNNs. They were widely applied in fault detection and classification of
transmission lines [11].

Shakiba et al. proposed a transfer learning strategy based on CNNs. By transferring knowledge
from the source network, fast and effective fault diagnosis for different transmission lines was real-
ized. Even in the absence of a large amount of label data, this method also outperformed traditional
methods. The robustness of this method in various fault scenarios was investigated using seven dif-
ferent datasets, further confirming the reliability in transmission line fault detection [12]. Azizi et al.
proposed a transfer learning strategy based on pre trained VGG-19, aimed at detecting transmission
line faults in aerial images. By fine-tuning some layers, the new deep CNN successfully distinguished
between damaged and intact insulators. In image testing in various environments, this method demon-
strated higher superiority compared to other existing methods [13]. Qiu et al. proposed a method for
detecting birds that pose a threat to transmission lines. The method combined lightweight CNNs and
used 20 bird image datasets related to transmission line faults. The YOLOv4 tiny model was used
for training and after adopting various optimization strategies, an average accuracy of 92.04% was
achieved on the test set. The comparison with other algorithms verified the efficiency of this method
[14]. Gao et al. proposed a power tower anomaly detection system that combined computer vision
and the Internet of Things. Sensors that could monitor the status of power towers were designed and
drones were used to collect images in case of abnormalities. Cascaded CNNs were used for image
analysis, achieving high average accuracy. This scheme had significant value for automatic detection
of large-scale power lines[15].

In summary, many cutting-edge experts and scholars at home and abroad have conducted in-depth
research and exploration on transmission line fault diagnosis technology. However, there are still some
limitations and challenges in practical applications. To this end, a diagnosis and localization method
based on the deep learning is proposed to efficiently detect and diagnose faults in transmission lines.
This method has a positive promoting effect on the stable development of the power industry and the
improvement of diagnostic efficiency.
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3 Research method
An improved object detection algorithm is proposed for transmission line defect fault detection.

Firstly, CNN is applied to identify defects and faults in transmission lines. Secondly, to more accurately
identify small changes, an optimized K-means algorithm is used to reshape the size and quantity of
anchor points to adapt to the types of actual transmission line defects and faults. Finally, a FPN in
R-Net is established.

3.1 CNN and Fault Identification of Transmission Line Defects

With the rise of deep learning technology, the innovation of CNN has brought a leap in accuracy
and speed for defect and fault detection. In the deep learning, CNN has become an indispensable tool
in computer vision tasks. The position is becoming increasingly important. In fault recognition using
CNN, the features of the input data are extracted by the convolutional layer through the convolutional
operation of the filter. The pooling layer reduces the spatial dimension of the feature mapping, the
number of parameters, and enhances the model’s robustness. The fully connected layer unfolds the
feature maps extracted through the convolutional and pooling layers into one-dimensional vectors and
classifies them through neural networks. Compared with traditional neural networks, CNN optimizes
feature extraction through specific connection methods, reducing computational complexity. The core
convolution step captures key information of the image and then upgrades it to advanced semantics.
The selection of convolutional kernels is crucial [16, 17]. The relevant convolution calculation is shown
in equation (1).

hW,b(x) = f(
J−1∑
j=0

I−1∑
i=0

Wijxm+i,n+j + b), (0 ≤ m ≤ M, 0 ≤ n ≤ N) (1)

In equation (1), hW,b(x) represents convolutional output. f represents the activation function. x rep-
resents the input. Wij is the convolutional kernel. b is the bias term. Feature maps are generated after
image convolution. To simplify information, the feature map area is fused according to algorithms,
converting advanced features into basic features, accelerating processing speed, and highlighting the
core features of the image. Figure 1 shows examples of maximum and average pooling.

Figure 1: Examples of maximum and average pooling

The neural network includes a fully connected layer in addition to the convolutional and pooling
layers to integrate features. This layer connects each node in the feature map to its respective nodes.
The activation function maps the output to a specific range, reducing the impact of input changes
due to the fluctuation of CNN output. Furthermore, pure linear CNNs are unable to handle complex
problems. The activation functions are used to correct nonlinear outputs. Commonly used activation
functions include Sigmaid, Tanh, and ReLU. Sigmaid converts real numbers to values of 0-1, as shown
in equation (2).



https://doi.org/10.15837/ijccc.2024.4.6608 5

S(x) = 1
1 + e−x

(2)

The hyperbolic tangent function Tanh has a similar curve to equation (2), but the tanh center is
at 0 and the range is -1 to 1. Tanh maintains a large gradient over a large range, which is less likely
to cause the gradient to disappear, making it more practical. The tanh is shown in equation (3).

S(x) = ex − e−x

ex + e−x
(3)

ReLU, also known as the slope function, is currently the most commonly used activation function.
It frequently appears in many network structures. The definition is shown in equation (4).

f(x) = max(0, x) (4)

Although ReLU is widely used, when the learning rate is too high, it may cause neurons to no longer
activate. Therefore, corresponding improvement method is proposed. Among them, Leaky-ReLU is
negative and assigned a small non zero slope. The loss function, also known as the cost function, is
a key indicator for evaluating the deviation between network output and expected results. It plays
a core role in model learning and optimization. Mean-square error (MSE) is a common evaluation
method. The reduction reflects the progress of model learning. The definition of MSE is shown in
equation (5).

L(y, ŷ) = (y, ŷ)2

2 (5)

Detection techniques often use the cross entropy (CE) function as the evaluation criterion, as
shown in equation (6).

L(y, ŷ) = − [y log ŷ + (1 − y) log (1 − ŷ)] (6)

The detection network using convolutional techniques needs to evaluate the output accuracy. In
the best case, the correct category output is 1, and the rest is 0. CE loss helps to measure the closeness
of network output and overcomes the disadvantage of slow learning speed in MSE. When training a
large number of samples, the loss is often the average of the CE function for all samples, as shown in
equation (7).

J(w, b) = − 1
m

m∑
i=1

[yi log ŷ + (1 − y) log (1 − ŷ)] (7)

3.2 Improved R-Net Algorithm Based on Feature Pyramid Network Model

Some minor deviations or slight shaking of components may be missed. Remote detection may
lose some information. Therefore, the recognition accuracy of small changes needs to be further
improved. The R-Net is introduced. R-Net uses FPN to integrate image features and achieve multi-
scale prediction. A specific loss function is constructed to solve the class imbalance and achieve
high accuracy in small target detection. Traditional single-scale feature extraction networks may not
be able to fully extract features at different scales, resulting in poor object detection performance at
small or large scales. To solve this multi-scale problem in object detection, FPN introduces multi-scale
feature layers in the network, thereby improving the performance of object detection. The receptive
field (RF) describes the mapping range of feature images on the original image. The central pixel has
the greatest impact on the output. In Figure 2, the input feature mapping of 5×5 is obtained through
two 3×3-convolutions.

To estimate the receptive region characteristics of each CNN layer, the number of features in each
dimension is first calculated. Meanwhile, the details of each layer are also tracked, including the
spacing between features, the size of the receptive region, and the starting position of the upper left
feature center. The obtained feature mapping expression is shown in equation (8).
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Figure 2: Receptive field diagram

nout =
[

nin + 2p − k

s

]
+ 1 (8)

In equation (8), p represents the filling amount. s represents convolutional step. n represents the
receptive area for input feature mapping. k is the scale of the convolutional kernel. jout is the spacing
of the output feature mapping. jin represents the spacing of the input mapping. jout is based on jin ,
as shown in equation (9).

jout = jins (9)
rout represents the receptive region of the output feature map. rin is the receptive region of the

input mapping. The value of rout is determined based on rin , as shown in equation (10).

rout = rin + (k − 1)jin (10)
startout represents the center position of the first receptive region in the output feature map. The

calculation method is shown in equation (11).

startout = startin + (k − 1
2 − p)jin (11)

In equation (11), startout represents the first receptive region center of the input feature. In
convolutional networks, shallow features have accurate localization, while deep features have rich
information but rough localization. Pyramid structures are often used to combine the advantages of
these two aspects. The FPN is shown in Figure 3. An effective feature extraction approach is provided
for target detection.

Specific algorithms have demonstrated excellent capabilities for detecting small targets, especially
those using focus loss functions. A two-stage detection method such as region-based convolutional
neural network (Faster R-CNN) first eliminates most of the background by generating candidate
regions. Then the precise classification is performed. However, the processing process is relatively
slow. It is worth noting that category imbalance can lead to accuracy differences in some algorithms.
CE loss is a commonly used evaluation standard, as detailed in equation (12).

CE(p, y) =
{

− log (p), if y = 1
− log (1 − p), otherwise

(12)

In equation (12), p ∈ [0, 1] represents the prediction probability. y ∈ {±1} represents the positivity
and negativity of the sample. The detailed description of is shown in equation (13).
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Figure 3: Feature pyramid network

pi =
{

p, if y = 1
1 − p, otherwise

(13)

To address the type imbalance, the conventional strategy is to introduce a weight coefficient a ∈
[0, 1] . It is also the fundamental part of the focusing loss function, as shown in (14).

CE(p, y) = CE(pt) = − log pt (14)

When using focus loss for training, if the detector misjudges the training data sample, the pt value
will be very close to 0. For samples with easy classification, the pt value will be close to 1. The
debugging coefficient will be close to 0. The network structure of R-Net is shown in Figure 4.

Figure 4: Network structure of R-Net

The R-Net structure utilizes a FPN as its core, supplemented by two task sub-networks. The
candidate region generation in this method is similar to the anchor points in RPN networks. Each
layer of feature map has 9 anchor points associated with it, based on three sizes and three aspect ratios.
This network forms a feature pyramid on the P3 ∼ P7 − layer. With the help of FPN structure and
unique focus loss function, R-Net exhibits excellent detection performance on small and medium-sized
targets, while maintaining high accuracy for large targets. This provides a powerful tool for defect
and fault diagnosis and location on transmission lines.

3.3 Transmission Line Feature Pyramid Network Based on D-Net

The severe regional conditions, climate change, and different equipment qualities encountered have
led to various types and characteristics of power transmission channels. The difficulties mentioned
above impede the accuracy and precision of conventional skill property extraction. As a result, the
technology has been modified to suit the unique situation of power transmission lines. This includes
optimizing the size of each feature map, the various sliding windows of the FPN, as well as the
predetermined three scales and three aspect ratios. Anchors are densely generated and mapped to
their regions on the original map. The set values are shown in equation (15).{ {

20, 21/3, 22/3
}

{1 : 2, 1 : 1, 2 : 1}
(15)
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To improve adaptation to the target, the strategy for generating anchors has been enhanced.
Traditional methods rely on prior knowledge to design anchors, but this approach may not always be
suitable for all objectives. To solve this problem, the K-means++algorithm is combined to cluster the
target boxes in the dataset to obtain more accurate anchor size. The K-means algorithm first sets K
clusters and randomly selects K data points as cluster centers in the dataset. The specific process is
shown in Figure 5.

Figure 5: K-means algorithm flowchart

However, the traditional K-means algorithm may produce significant errors in the results if the
position of the cluster center is not selected properly. To address this issue, the K-means++ algorithm
is developed. This method first selects a center, and then selects the point farthest from this center as
the next center. The process is repeated until K centers are selected. The obtained anchor points can
better match targets of various sizes, thereby improving recognition accuracy. Anchor generation is
achieved by embedding a region proposal network into a FPN. Each feature layer generates multiple
anchors with different sizes and aspect ratios [18, 19, 20]. The loss function of R-Net is also adjusted
accordingly. The specific process of the K-means++ algorithm is shown in Figure 6. Transmission

Figure 6: K-means++ algorithm flowchart

lines have numerous defects due to geographical and equipment factors. Traditional algorithms are
difficult to extract accurate features, so the algorithm is adjusted. The R-Net is converted to D-Net to
adapt to the transmission line environment. The structure of D-Net is efficient and straightforward. It
combines the multi-scale feature extraction ability of R-Net, which reduces the number of parameters
and computational complexity of the network. This improvement enhances operational efficiency and
better adapts to multi-scale defects caused by geographical and equipment factors in the transmission
line environment. Experiments have shown that this adjustment improves speed and accuracy. Deep
neural networks, as the core of object detection, typically rely on network depth to fit parameters
[21]. For example, residual networks and GoogLeNet can improve performance by adjusting network
depth and width. However, increasing network complexity can lead to a decrease in training speed
and accuracy [22]. A concise network structure can avoid overfitting, accelerate training, and improve
accuracy. Therefore, the D-Net is adopted as the core network. The structure is shown in Figure 7.
Unlike traditional networks, it strengthens inter layer connections and provides more information flow
channels.

The D-Net network consists of multiple D-Net blocks, as shown in Figure 7. The growth rate
K = 4 represents the number of channels output per layer. The input layer receives the feature map
of N × N × C, and then passes through the bottleneck layer, BN, ReLU, and 3 × 3 convolutional layer
to reach the output layer, generating the feature map of N × N × 4 [23]. The output of each layer is
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Figure 7: D-Net network structure diagram

concatenated with the input of the previous layer to obtain more channel feature maps. This process
is repeated in five layers. The final output is N × N × 4 .

xl = Hi([x0, x1, ..., xl−1]) (16)

In equation (16), [x0, x1, ..., xl−1] is the concatenation result of feature maps between the current
layer and all previous layers. Hi represents a series of operations, including BN layer, ReLU activation
function, and 3×3 convolutional layer. This design ensures the deep transmission of information in
the network and enhances the feature reuse. The experimental environment utilizes the Ubuntu LTS
operating system and Python programming language, along with Tensorflow, OpenCV, and other
tools [24]. The network initialization for the experiment is based on the parameters of the MS COCO
training set. All parameters for the ResNet and DenseNet networks are initialized with a Gaussian
distribution with a mean of 0 and variance [25]. The experimental setup involves using the stochastic
gradient descent method in a single GPU environment to optimize the loss function in the training
data. The initial learning rate is set at 0.01 and is reduced to 10% for further training after specific
iterations (50,000 and 70,000 rounds). A total of 40 epochs are trained, with each epoch containing
5,300 iterations, one image per iteration. The weight attenuation coefficient is set to 0.0001 and
momentum to 0.9. For focus loss, alpha is set to 0.25 and gamma is set to 2. To address focus
loss, the values of alpha and gamma are set to 0.25 and 2, respectively. The initialization process
for ResNet101 and F-RCNN networks is also based on a Gaussian distribution, but the learning rate
is adjusted differently, only being reduced at the 50th round. During F-RCNN training, each batch
processes 256 images, and a total of 70,000 batches are trained. YOLO-v3 initialization follows a
similar Gaussian distribution rule. Unlike other models, YOLO-v3 maintains a constant learning rate
throughout the training process, training a total of 80,000 batches, each processing 64 images. It has
a weight attenuation coefficient of 0.0005 and a momentum of 0.9. To improve the accuracy of fault
diagnosis and location in transmission lines, 5840 high-resolution images are collected using unmanned
aerial vehicles. The images cover four main defect types: grounding wires, insulators, fittings, and
transmission towers. The defects of the tower foundation are also classified as transmission tower
defects due to the small amount of data. In total, these images cover over 10000 faulty targets. After
annotation, the data is converted into P-VOC format and an XML file is generated containing defect
categories and coordinates. A total of 5240 images are used for network training, while 603 images
are used for performance evaluation.

4 Result and discussion
The deep learning method is utilized to analyze and diagnose faults in transmission lines. The

scheme demonstrates significant superiority in detecting various types of defects, particularly in terms
of overall mean average precision (MAP), where the MAP value is reached 0.64, a 1.30% increased from
the previous value. The study reveals that in various defect subcategories, such as guide wire defects,
the detection accuracy increased by 2.40%, while for tower defects, the increase is only 0.49%, but
this result is still significant because it includes irregular defects such as bird’s nests. Additionally, the
R-Net using the DenseNet121 skeleton has also achieved an overall improvement in detection accuracy,
reaching an increase of 1.25%. Significant advancements have been achieved in identifying defects in
fittings and guide wires. R-Net, in comparison to other models like F-RCNN and YOLO-v3, not only
has a smaller parameter scale but also exhibits superior detection accuracy. For instance, R-Net’s
MAP outperforms YOLO-v3 by 15.58 percent and F-RCNN by 2.45 percent.
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4.1 Training Effects of R-Net on Transmission Line Faults

To ensure network accuracy, the study uses K=12 as the number of anchor boxes. Additionally, to
avoid increased computation time resulting from a higher K value, all anchor boxes below a threshold
of 0.2 are filtered out. The initial learning rate is set to 0.01, with 5000 iterations, a batch size of
1, weight decay of 0.0001, momentum of 0.9, and focus loss of 2, 0.25. To verify the effectiveness
of the new anchor box generation strategy, the performance of the R-Net algorithm before and after
improvement is compared. The changes in losses during the training process are shown in Figure 8.

Figure 8: R-Net training loss changes

In Figure 7, the optimized R-Net exhibits significantly lower losses in the initial training phase
compared to traditional R-Net. After 40 rounds of training, the loss is 0.46%, which is 0.05% lower than
that of traditional R-Net, indicating better stability. This improvement lies in the use of parameters
from the MS COCO training set to initialize the anchor box. Based on the optimization, the network
has strong object detection capabilities in the early stages, resulting in higher adaptability to targets.
In the next 40 iterations, the improved R-Net algorithm continues to exhibit low loss rates. The
performance of traditional R-Net and improved R-Net on the test set is shown in Figure 9.

Figure 9: R-Net and improved R-Net algorithm performance

According to Figure 8, the improved R-Net has progress in various defect types. The overall MAP
reaches 0.64%, an increase of 1.30%, significantly higher than the traditional R-net (P<0.05). The
recognition accuracy for metal and insulator are 0.61% and 0.82%, respectively, both higher than the
traditional R-Net. For specific minor defects, the accuracy of ground wire defects increases by 2.40%.
The accuracy of tower defect increases by 0.49%, with a relatively small increase, which may be due
to the irregular shape of such defects, such as bird nests. It is difficult to significantly improve the
recognition effect by using the anchor box method. After optimization, the network running speed re-
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mained at 10-12FPS, which is equivalent to before optimization. Overall, the recognition performance
of this algorithm is significantly enhanced by optimizing the anchor box generation strategy. While
improving recognition accuracy, it also maintains a high operating speed.

4.2 Analysis Results of Backbone Network Improvement Based on Transmission
Line

ResNet101 and DenseNet121 are chosen as the base structures to improve the performance of
R-Net. The backbone network training and testing performance of R-Net optimized with these two
different infrastructures are compared to demonstrate the effectiveness of D-Net in enhancing object
detection. The difference in the loss curve between the two is shown in Figure 10.

Figure 10: R-Net and D-Net loss curves for different backbone networks

In Figure 9, R-Net with DenseNet121 as the backbone network has a higher loss value than R-
Net based on ResNet101 in the initial stage due to the lack of transfer learning. When the iteration
exceeded 36 rounds, the version loss value based on DenseNet121 has decreased and exceeded the
model based on ResNet101. After deep training, R-Net with DenseNet121 as the backbone network
has better adaptability to data. The MAP performance of the two in different defect classifications is
shown in Table 1.

Table 1: Comparison of R-Net performance parameters for different types of network optimization
/ Improved R-Net
Backbone network ResNet101 DenseNet121
Parameter quantity 56M 17M
The average accuracy of tower detection AP 0.8338 0.8310
The average accuracy of hardware detection AP 0.6029 0.6245
The average accuracy of insulator detection AP 0.8004 0.8038
The average accuracy of ground wire detection AP 0.3130 0.3390
MAP 0.6370 0.6490
FPS 11.5 10.5

Table 1 shows that although R-Net based on DenseNet121 requires only 17M parameters, the
MAP reaches 0.6502, which is approximately 1.25% higher than the initial network. In terms of tower
defects, R-Net based on DenseNet121 is slightly inferior to the original network, with a decrease of
0.0030%. However, in terms of hardware and ground wire defects, it increases by 2.16% and 2.60%,
respectively, enhancing the overall detection accuracy. R-Net, based on DenseNet121, enhances inter
layer connectivity and a more complex structure. Although the parameters decreased, the compu-
tational requirements increased, resulting in a decrease in FPS to 10.5FPS, lower than the initial
model. In summary, the overall defect classification performance of R-Net based on DenseNet121 is
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good. However, in practical applications, it is recommended to increase the training depth to improve
the network’s adaptability and stability. Figure 11 shows the R-Net defect fault detection results
optimized based on DenseNet121.

Figure 11: Detection results of four types of transmission line defects

4.3 Comparative Analysis of Different Algorithms Based on Transmission Line
Faults

To evaluate the recognition ability of transmission line defect faults, the improved R-Net is com-
pared with different algorithms, including traditional F-RCNN and the third version of YOLO (YOLO-
v3). The relevant comparison results are shown in Figure 12.

Figure 12: F-RCNN and YOLO-v3 loss curves

As the iterations increased, the loss values of each algorithm showed a downward trend. However,
different algorithms had different loss scales due to their specific loss calculation methods. Thus,
evaluating the matching ability of various algorithms for transmission line defects based solely on these
values is challenging. F-RCNN processed 256 images per iteration, resulting in significant fluctuations
in the loss function. On the other hand, YOLO-v3 processes 65 images per iteration, resulting in
relatively mild oscillations. However, the region recommendation network and target classification
network in the F-RCNN algorithm are relatively complex, which may affect real-time performance
and efficiency. Additionally, YOLO-v3 may have difficulty accurately detecting small or complex
defects. In comparison, the optimized R-Net processes one image at a time, resulting in relatively
small oscillations. From the overall number of training iterations, F-RCNN requires approximately
2.6M images, approximately 9900-10000 times. The YOLO-v3 requires approximately 0.39M images,
approximately 5500-6000 times. The optimized R-Net based on DenseNet121 requires about 0.25M
images and about 39 times. Compared to the YOLO-v3 and YOLO, the optimized R-Net training is
more efficient. The test results of optimized R-Net based on F-RCNN, YOLO-v3, and DenseNet121
are shown in Table 2.

In Table 2, the optimized R-Net network has the best average accuracy in identifying common
defects in transmission lines, followed by F-RCNN. YOLO-v3 has the weakest performance. In terms
of accuracy, the MAP of the optimized R-Net network is 15.58% higher than YOLO-v3, and also
exceeds F-RCNN by 2.45%. The R-Net, which is optimized by combining DenseNet121 and FPN,
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Table 2: Comparison of different algorithms
/ F-RCNN YOLO-v3 Improved R-Net
argument 81M 38M 17M
Tower testing AP 0.8049 0.5945 0.8310
Hardware testing AP 0.6084 0.5710 0.6245
Insulator detection AP 0.7985 0.5580 0.8038
Ground cable detection AP 0.2805 0.2500 0.3390
MAP 0.6245 0.4932 0.6490
FPS 4.5 29 10.5

can extract features at different scales and fuse them. This leads to better adjustment of the network
parameters and structure, resulting in improved sensitivity and accuracy of the network. In terms
of network complexity, F-RCNN has the highest number of parameters, followed by YOLO-v3. The
R-Net has the lowest number of parameters, including 81M, 38M, and 17M parameters, respectively.
This indicates that R-Net model is relatively streamlined. Considering that YOLO-v3 has an simple
algorithm architecture and fewer anchor boxes, the speed could reach 29FPS. The optimized R-Net
achieves 10.5FPS.

4.4 Discussion

This paper proposes an improved target detection algorithm designed for transmission line defect
detection. The algorithm utilizes CNNs to identify transmission line defects and the optimized K-
means algorithm to reshape the size and number of anchors for more accurate identification of small
changes. Additionally, a FPN is built in R-Net. The experimental results support this hypothesis
and demonstrate the clear benefits of the R-Net optimization scheme across various defect types. The
scheme’s essence is to modify the anchor frame strategy and enhance the network skeleton, resulting
in a substantial improvement in the MAP. A dataset of transmission line defects was constructed, and
the R-Net algorithm proposed in this paper was tested against the existing comparison algorithms
F-RCNN and YOLO-v3. The experimental results showed several significant findings. Firstly, the
accuracy of transmission line defect detection was significantly improved by implementing improve-
ments to R-Net, such as the anchor frame selection mechanism and skeleton network optimization.
The improved R-Net was slightly slower than YOLO-v3 in terms of speed, but significantly faster than
F-RCNN. In terms of accuracy and recall rate, R-Net demonstrated significant improvement compared
to the other two algorithms, indicating a lower miss rate with a lighter model. Additionally, the ex-
periment showed that the detection accuracy and speed are impacted by the depth of the backbone
network, even when using the same algorithm model. A deeper network can improve accuracy to some
extent, but it can also affect detection speed. Based on the above discussion, this study confirmed
the potential of deep learning technology in the field of transmission line fault diagnosis and location.
The study also highlighted the significant improvements in detection accuracy and efficiency achieved
through improved algorithms. Applying the proposed method to the operation and maintenance of
power systems can achieve accurate and rapid fault diagnosis, improving the reliability and stability of
transmission networks and enhancing the automation level of power systems. However, challenges in
data acquisition and annotation may arise in practical applications, particularly for large-scale trans-
mission line image datasets, which may require significant manpower and time. Customized model
training and parameter adjustment are necessary to improve the generalizability of the method for
different regions and types of transmission lines. However, this process can be complex and cumber-
some. Additionally, the study’s treatment of irregular defects is limited and needs to be strengthened.
Therefore, future research can utilize data augmentation techniques to expand the training dataset.
Targeted data augmentation strategies can also be designed specifically for irregular defects to en-
hance the ability of R-Net to handle them and improve accuracy and robustness in transmission line
fault diagnosis. This research provides new ideas and directions for future research and application of
related technologies.
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5 Conclusion
This study presents an optimized R-Net algorithm for diagnosing and localizing faults in trans-

mission lines. The proposed algorithm showed significant improvements in accuracy, efficiency, and
robustness compared to traditional object detection methods. The optimized R-Net achieved an over-
all average accuracy of 0.64, outperforming the original network by 1.30%. The improvements were
achieved by incorporating techniques such as improved anchor point generation, FPN, and D-Net.
The proposed approach demonstrated superior performance in terms of mean average precision and
parameter efficiency compared to state-of-the-art algorithms like YOLO-v3 and Faster R-CNN. This
study’s practical value lied in its potential to improve the reliability, safety, and efficiency of power
system operation and maintenance by enabling timely and accurate fault diagnosis and localization.

However, the study has limitations, particularly in dealing with irregular defects, which require
further investigation. Future research should focus on improving the algorithm’s robustness and
generalizability, as well as exploring its integration with other sensing and monitoring technologies.
The advancement of transmission line fault diagnosis and localization can be improved through the
development of online learning and adaptation mechanisms, as well as multi-task and multi-modal
fault diagnosis frameworks.

In conclusion, this study contributes significantly to the field of power system operation and main-
tenance by proposing an optimized R-Net algorithm for transmission line fault diagnosis and local-
ization. The proposed approach has the potential to improve the stability, security, and efficiency of
transmission networks, thereby contributing to the reliable and sustainable operation of modern power
systems. Further research and development can lead to a more intelligent, resilient, and secure energy
infrastructure by integrating deep learning techniques with power system monitoring and control.
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