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Abstract

The Internet of Things (IoT ) has emerged as a cornerstone technology, transforming how we
interact with our surroundings. Despite their widespread adoption, IoT devices encounter chal-
lenges related to processing capabilities and connectivity, frequently necessitating the delegation
of tasks to remote cloud servers. This offloading, essential for enhancing user experience, poses
challenges, particularly for latency-sensitive applications. Edge-centric paradigms like fog and mist
computing have emerged to address these challenges, bringing computational resources closer to
end-users. However, efficiently managing task offloading in dynamic IoT environments remains a
complex issue. This paper introduces DIstributed COmputing for MIST (dicomist), a methodology
designed to facilitate task offloading in IoT settings. Dicomist utilizes wireless mesh networks to
organize mobile nodes, employing clustering and classification techniques. Tasks are treated as con-
sensus problems, enabling distributed computation among selected nodes. Real-world experiments
demonstrate dicomist’s effectiveness, underscoring its potential to enhance task offloading in IoT
environments.

Keywords: Distributed Processing, Consensus, Fog Computing, Mesh Network.
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1 Introduction
The Internet of Things (IoT ) has evolved into an indispensable technology. The significance of

IoT devices is unparalleled in today’s interconnected world, revolutionizing the way we interact with
technology and the environment around us. These devices have become essential components in various
industries, ranging from healthcare and agriculture to transportation and manufacturing. The use of
IoT devices grows exponentially, devices such as smartphones, laptops, and smartwatches used by the
end-users are examples of this trend. Nevertheless, the functionality of these devices is limited by
factors such as battery life, storage capacity, and processing power. As a result, the tasks they handle
are typically transferred to the cloud to ensure a superior quality of service for users. This process of
transmitting a fraction of a local task to another device for its remote computation is called offloading,
and the amount of offloaded task is called the offloading fraction [96]. Cloud computing has long been
the backbone upon which IoT devices heavily depend. The cloud provides on-demand pay-per-use
resources of servers, storage, and networks following several paradigms such as Infrastructure-as-a-
Service (IaaS), Platforms-as-a-Service (PaaS), and Software-as-a-Service (SaaS). However, offloading
tasks to cloud services presents hurdles for latency-sensitive applications like healthcare and fraud
detection, mainly due to the physical distance between the cloud and end-user devices.

Internet of Things-based technologies with an edge-centric focus, such as fog and mist computing,
provide distributed and decentralized solutions to address the limitations of cloud-centric models [97].
Fog computing represents a paradigm shift, bringing computational resources and services closer to
end-user devices at the edge of the network, thus reducing latency and facilitating connection with
cloud computing resources. It also lowers the device’s energy consumption significantly. Unlike pure
cloud computing, fog resources rely on constrained and heterogeneous nodes, which may experience
unstable connectivity [95]. As the number of IoT devices grows, the challenge is to maintain appro-
priate QoS parameters including throughput, performance, response time, and resource utilization.
Additionally, the selection of a set of fog resources and the offloading fraction can vary drastically
depending on the application scenario. Thereby, the offloading process involves a series of decision-
making stages. In these complex scenarios, efficient task-offloading algorithms are central to the
success of fog computing.

Efficient task-offloading is a non-trivial task due to the nature of the IoT wireless networks. For
instance, fog resources are dynamic, and wireless medium channel conditions are prone to variation over
time due to fading, interference, and many other factors. Moreover, the workload on fog resources
changes often due to the diversity of the applications. As a consequence, it’s crucial to develop
algorithms capable of dynamically adjusting network parameters, allowing smart devices to select
a reliable fog resource for service provisioning. Over the last decade, significant progress has been
made in the field of optimizing task offloading in IoT environments. Advances in machine learning,
optimization techniques, and heuristic strategies have led to more sophisticated algorithms capable
of efficiently managing dynamic fog resources and adapting to changing wireless channel conditions.
However, there is still room for improvement. In contrast to the previously proposed algorithms, the
fog node selection and task offloading scheme presented in this work is implemented in a real-life
testbed.

This paper presents DIstributed COmputing for MIST (dicomist), a flexible methodology to per-
form task offloading in IoT environments. Dicomist is a general methodology since it assumes an
unorganized set of mobile nodes to perform a task offloading. To achieve this end, in the initial phase,
the dicomist deploys a wireless mesh network. Then, organize the nodes based on their capabilities
following clustering and classification strategies. Subsequently, a task is modeled as a consensus prob-
lem, in this way the selected nodes calculate some function of specific parameters in a distributed
manner. Once the selected nodes reach an agreement on the value of the performed task, the response
is retransmitted to the originator of the request in the recovery phase. Real-life results presented in
this work demonstrate the effectiveness of dicomist.
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The remainder of the paper is organized as follows. In Section 2, we present the related works on
task offloading algorithms. Section 3 details the proposed methodology through the phases. Section
4 presents experiments and results with a testbed environment and real hardware. Finally, Section 6
concludes the paper.

2 Related Work
This section describes the most relevant works developed for the Fog Computing paradigm and

consensus scenarios. With an increased research interest in Fog Computing, numerous applications
and data management platforms, and strictly consistent. In [68] performed the analysis of state of
the art and identifying and scrutinizing all the five major domains where task allocation has a crucial
role, i.e., Internet of Things (IoT ), sensor and actuator networks (SANs), multi-robot systems (MRS),
mobile crowdsensing (MCS), and unmanned aerial vehicles (UAVs). In these five domains, scenarios
can be generated in the Fog Computing platform, where there is a relationship between tasks and
devices [25], [51], and [47], the main of which are: interconnection of tasks and the same tasks are
assigned to multiple devices.

The process of selecting fog nodes is both crucial and demanding. While a multitude of fog
nodes may exist within the network, the primary aim of selecting fog resources is to dynamically
choose the most suitable nodes that ensure low latency while being location-aware. As the quantity
of IoT and fog devices grows, the complexity of the problem escalates to an NP-hard level, making
conventional solution methods challenging to implement. To this end, the authors have focused on
heuristic alternatives. For instance, the authors in [98] propose a bio-inspired ant colony algorithm
adapted for task offloading to fog nodes. These fog nodes process tasks in a manner that optimizes
average response time and distributes tasks evenly across the fog network. In [100], the authors
introduced a fruit-fly-based approach for task offloading, prioritizing minimal energy consumption.
This method comprises three key components: a device manager, a broker, and a task tracker. The
device manager oversees the capabilities of nodes within the cloudlet, while the broker assigns tasks
to nodes based on their capabilities. Subsequently, the task tracker executes the assigned tasks. In
[99], a novel approach utilizing smart ant colony optimization is introduced for task offloading within
fog environments. This technique effectively manages task offloading and resource utilization. The
proposed algorithm considers parameters such as latency and bandwidth, although the authors have
not explicitly tackled aspects related to energy, power, and cost.

When performing the tasks, the factors that impact them are heterogeneity [82, 86, 89], devices
resource availability [22, 26, 71, 88, 93],mobility [6, 27, 73, 81], communication range [43, 66], and
application complexity[75].

Consensus problems have a long history in computer science and form the foundation of distributed
computing. In distributed systems and networks, it is often necessary for some or all of the nodes to
calculate some function of specific parameters; for example, in IoT, nodes in sensor networks may be
tasked with calculating all the sensor’s average measurement values [30]. Similar concepts include state
agreement [37], rendezvous [38, 39], and observer design [50] in control theory, and gossip algorithms
[17] in computer science.

In [16] represent, the IoT is a heterogeneous network consisting of different physical objects such
as sensors, actuators, RFID, smart devices, and servers. These objects must cooperate dynamically
and utilize their resources effectively and distributed, which is ideal for using consensus algorithms.
Consensus algorithms are widely applied for synchronization, resource allocation, and security, and
this is due to their simple execution, robustness to topology changes, and to be distribution. The
Laplacian matrix is applied for r-regular and q-triangular networks.

In [67] described, most cloud-based IoT platform implementations rely on a virtualization layer,
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which is used to implement some functions that augment the capabilities of the physical devices.
Specifically to use of the concept of Virtual Object (VO), which consists of the virtual counterpart
of the physical devices (i.e., the Real World Objects, RWOs) to achieve consensus-based resource
allocation. In [80], work shows that the edge dynamics in the complex network may also be of great
importance [49]. For example, friendships in social networks, synapses in neural networks, natural
systems [30, 41, 94], cars [19, 48, 63, 90], and networked multi-agent systems [53, 70, 84] may be
changing over time.

In [72] aims at solving challenges by proposing a distributed consensus algorithm for the decision-
making of services at edge nodes in the service-oriented IoT. Specifically, a service provider framework
is proposed, where services representation, discovery, detection, and composition are investigated. In
[65] was a proposed consensus algorithm inspired by gossip[40] and asynchronous iteration[52] to solve
the average consensus problem in IoT environments. The proposed protocol in [65] can deal with
packet losses, delays, asynchronism, and multi-rate behavior, all of which are pervasive in any IoT
deployment. In [64] the algorithm is implemented using gossip with the rust programming language.
In the search for information today do not exist an article needs to describe IoT networks with
infrastructure and how to solve them dynamically and temporarily.

3 The Proposed Methodology
When reviewing the literature, the consensus has yet to be addressed in the Fog Computing

paradigm that solves various scenarios with mobile devices by bringing together various techniques
applied in other domains (wireless mesh network deployment, cluster formation, graph theory applied
to consensus).

The proposed DIstributed COmputing for MIST (dicomist) methodology, implements a consen-
sus in the paradigm of Fog Computing where the following operations (processes, send/receive data,
and perform actions) at a given time ∆t through seven phases: initial, configuration, consensus, re-
configuration, distribution, execution, and recovery. Figure 1 shows the phases of the dicomist time
algorithm, which is executed in a ∆t time, while Figure 2 shows the flow diagram of the methodology.

The main contribution of Dicomist is to have a flexible methodology for distributed processing
about the Fog Computing paradigm through a set of nodes to solve complex tasks. The algorithm
consists of seven phases. The initial phase solves the problem of the set nodes with a temporary
network. Once the network generates, the scenario has many nodes because one person has several
mobile devices [9]. Considering the cluster formation (second phase), the convenience in the consensus
(fourth phase) is that they converge quickly due to the energy limitation due to the data communication
of the above with all the nodes. The nodes classification (third phase) to compute the complex tasks.
The graph theory for fast convergence in small networks is applied in the consensus when it has clusters
[16].

Some factors to consider when executing the dicomist methodology:

• The network configuration does not exist originally.

• To suppose that the nodes are heterogeneous.

• The time interval is known, so there is a deadline such as ∆t.

• Latency and location awareness.
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Figure 1: Phases of dicomist methodology

Figure 2: Flow diagram dicomist methodology

3.1 Phases of dicomist Methodology

3.1.1 Initial phase

The first phase, called initial, performs several steps to generate the two sets of nodes to be used
later in the configuration phase. The initial phase is divided into two stages, deploying a wireless
mesh network (WMN) and cluster formation. The stages are described below.

Stage A Deploy Wireless Mesh Network (WMN).
Set of heterogeneous devices without connection to one network, these devices have a wireless

interface (Wi-Fi). Wireless networking technology is evolving as an inexpensive alternative for building
federated and community networks. Besides its cost effectiveness, a wireless network brings operational
efficiencies, namely mobility, and untethered convenience, to the end user. A wireless network can
operate in the ad-hoc mode, where users are self-managed, and in the infrastructure mode. An ad-hoc
network generally supports multi-hopping, where a data packet may travel over multiple hops to reach
its destination [3].

The ad-hoc networks are unorganized and without infrastructure networks. The nodes in such
types of networks perform many operations along with the routing functionalities. In Wireless Mesh
Network (WMN), the nodes processing power and energy are always assumed to be very limited [29].
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One of the main advantages of WMNs is that they do not needan infrastructure: the deployment
phase, thus, is faster, less expensive, and less invasive for networks (either wired or wireless) that
operate in a centralized way and need infrastructures [14].

One of the conditions described in the scenario is the lack of infrastructure for connecting the
devices. For that reason, the WMN is ideal for these conditions. Let be a set of m devices to be
connected with an algorithm mesh of type A (m), where A is the algorithm’s function, and m is
the set of nodes to be interconnected. Therefore N=A (m). N is a vector containing the m nodes
interconnected with the function A WMN algorithm.

N =



n1
n2
...
...
...
nm


(1)

Figure (3a) shows the set m of devices, and when applying function A ; as a result, a vector N is
generated, where the n interconnected devices are found, as shown in Figure (3b). For further details
on the WMN deployment, see Appendix A.

(a) Set nodes (b) WMN

Figure 3: Deploy WMN

Stage B Cluster generation. Once the WMN is deployed, using a proactive protocol with multi-hop
and decentralized reduces the overhead on the network and the amount of information stored [46].
The criteria that the available devices in the WMN must have are to know the availability and to
generate a set of clusters where a cluster is a group of interconnected devices that work together and
perform computationally intensive tasks. In order to implement clustering in WMN, it is necessary to
form clusters using a clustering algorithm. Regarding sharing tasks between nodes, two categories of
nodes have been defined: Cluster Head and Cluster Member. The Cluster Head (CH) is elected to be
in charge of generating a transmission schedule, gathering data from all the CM in the cluster, and
transmitting the assembled data back to the base station. The CH is a node with the best conditions
for the variables. The Cluster Member (CM) is a node that belongs to a cluster but is not a CH,
and its function is to iterate with the CH. A clustering algorithm has two main steps CH Election
and Cluster Formation [87].

1. CH Election. The CH is the leader of a cluster and is in charge of gathering data and transmitting
it to the BS. The CHs will consume more energy than typical CMs. Three CHs election
schemes are adopted: Deterministic, Random, or Adaptive.
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2. Cluster formation. After being elected, the CHs will advertise by broadcasting their information
to other CMs. Several metrics can be used to determine the communication properties between
a CM and a CH, such as communication cost, hop count, or physical distance. In some cases,
the size of clusters is also considered when CMs join a cluster.

The CH election, in this case, will be Adaptive and is based on some particular parameters to
design to adapt to the network and environment variations. The criteria to generate the cluster are
defined:

I. Node processing capacity. The metric used for processor performance is the concept of floating
point operations per second (FLOPS). The theoretical calculation of the FLOPS is shown in the
following equation [58]:

FLOPS = cores ∗ cycles
sec ∗ flops

operations ∗ operations
instruction ∗ instruction

cycles
(2)

II. Node storage. The capacity of memory (RAM) to perform read and write operations by the
processor. This metric is a node characteristic measured in Gigabytes (GB).

III. Distance between nodes. Given a CH and a CM, you need to find a way to define the distance
between them. The most common one is, of course, the Euclidean distance.

IV. Battery. The alleged ability to deliver a variable voltage as its chemistry changes from charged
to discharged sends the necessary power to the node—value range from 0 to 100% according to
the use of the device.

V. Path loss. The reduction in the power density (attenuation) of an electromagnetic wave as it
propagates through space. To assign the received power, the following expression is used[4]:

PRx = PT x + K − 10γ ∗ log10( di

d0
) + Xσ (3)

Where:
PT x is the transmission power from source to destination. The signals of the WiFi is 20 dbm.
γ is the path loss exponent. This value is 2 or 2.4 depending on the obstruction in the medium:
di is the distance between a transmitter and a receiver.
d0 is one constant value for outdoor scenarios. The values between are 1 to 10 meters.
Xσ is a zero-mean Gaussian random variable with σ representing the shadow fading factor [23].
K is a constant equal to:

20 log10( λ

4 ∗ π ∗ d0
) (4)

Where:
λ. Speed of light/frequency. In WiFi signals is 2.4 Ghz.
d0 is one constant value for outdoor scenarios. The values between are 1 to 10 meters.

The representation of the set nodes. From equation 1, an additional index applies to the vector
N, which will be the dimensional variable of the node, renamed as node variables. These attributes
are node processing capacity, node storage, the distance between nodes, battery, and path loss. The
attribute declares with the index d. So the value nm is now denoted nm,d, and the vector N is
transformed into a matrix. Let be a matrix N represented with two indices; the first represents the
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population of nodes, and the range between them is from 1 to m. The second index has a range from
1 to d, where d are the dimensional variables of the node.

N =


n1,1 n1,2 n1,3 ... n1,d

n2,1 n2,2 n2,3 ... n2,d

... ... ... ... ...
nm,1 nm,2 nm,3 ... nm,d

 (5)

A set of clusters generate from the set N (equation 5). Maybe one or more clusters configuration
for the nodes used (better case) due to the heterogeneity of the nodes. When applying the function
B, to Ñm,d, (N normalize matrix), the result is the set of CH (size w) that contains the nodes with
the best characteristics, so the compliment is the CM set. CHw,d=B(Ñm,d) and Ñ(m−w),d = CMj,d

= CM as shown in Figure 4. For further details on the Stage B, see Appendix B.

Figure 4: Step Cluster Formation of dicomist methodology

Where:

CHw,d = CH

CH =



ch1,1 ch1,2 ch1,3 ... ch1,d

ch2,1 ch2,2 ch2,3 ... ch2,d

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
chw,1 chw,2 chw,3 ... chw,d


Ñ(m−w),d = CMj,d = CM

CM =



cm1,1 cm1,2 cm1,3 ... cm1,d

cm2,1 cm2,2 cm2,3 ... cm2,d

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
cmj,1 cmj,2 cmj,3 ... cmj,d



3.1.2 Configuration phase

The configuration phase is necessary because it wishes to know which CMs can process the task
τ . One solution is distributed classification if a centralized system is infeasible due to geographical,
physical, and computational constraints. The objectives of the classification include robustness to
changes in the network topology [92], efficient representation for high-dimensional, and good decision
precision [44]-[20].

The classification problem is essential in data mining. The support vector machine (SVM) is one
of the most popular classification algorithms in many fields [13], [18], [10], [36], [31]. For this reason,
recent designs of distributed SVM classifiers rely on Support Vectors obtained from local training
sets [20] and [91]. These Support Vectors obtained locally per node are incrementally passed on to
neighboring nodes [21].
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Figure 5: CH and CM sets

Once the CH and CM sets, the local conditions of CM’s are verified: processing, memory, battery,
position, path loss, and link quality; the nodes will classify by Support Vector Machine (SVM).

Each CH requests the local conditions of the nodes for the devices to perform their classification
using SVM. An example is calculating the path Loss, battery, and others. Three variables are used:
S, D, and A.

I. Variable S. The variable S value is binary and calculated (see appendix C); the classified nodes
have the following deal: 1 or 2 and will have a binary value of 0. The nodes classified with zero
values will have a binary value of 1.

II. Variable D. The variable D value is binary, and the value is 1 (one) if the distance is more
significant than xmax; otherwise, the binary value is 0 (zero).

III. Variable A. The variable A value is binary; if the value of PL is greater or equal to zero, the
binary value of A is 00. Between PL < 0 and PL>=-44, the value of A is 01. If PL <-44 and
PL>-90, A is assigned the binary value of 10. If the PL<=-90, then A is defined with the binary
value of 11.

The relationship of Wv,j will be between the CHv and the CMj . The binary value (Wv,j) is the
weighted sum of the variables Wv,j = Av,j + Dv,j + Sv,j . W can obtain values between 0 and 15, and
Wv,j obtain them with the following classification:

a) 0-4 (0000-0100) is assigned the value two.

b) 5-9 (0101-1001) is assigned the value one.

c) 10-15 (1010-1111) is assigned the value of zero.

Given a set of nodes is represented by:

CH=CHv,d and CM=CMj,d

CH1=ch1,1, ch1,2, ..., ch1,d
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CH2=ch2,1, ch2,2, ..., ch2,d

...
CHv=chv,1, chv,2, ..., chv,d

and

CM1=cm1,1, cm1,2, ..., cm1,d

CM2=cm2,1, cm2,2, ..., cm2,d

...
CMj=cmj,1, cmj,2, ..., cmj,d

C is the SVM function with the parameters (S, D, A) and the assigned kernel. Therefore W =
C (ch, cm), where:

w1,1=C (ch1,cm1),
w1,2=C (ch1,cm2),
w1,3=C (ch1,cm3),
,...,
w1,j=C (ch1,cmj)

W1 =



w1,1
w1,2
w1,3
...
...

w1,j


W2 =



w2,1
w2,2
w2,3
...
...

w2,j


, ..., Wv =



wv,1
wv,2
wv,3
...
...

wv,j


Obtaining the vector W of all the nodes, SVM with kernel Radial Basis Function (RBF) is used

for the classification, and the result is shown in the Figure 6:

K(cm, cm′) = exp(−γ||cm − cm′||2) (6)

Where: S1CM=classified(W1,CM) and S1CM ⊆ CM

S1CM =



s1cm1,1 s1cm1,2 s1cm1,3 ... s1cm1,d

s1cm2,1 s1cm2,2 s1cm2,3 ... s1cm2,d

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
s1cml,1 s1cml,2 s1cml,3 ... s1cml,d


l≤ w
SvCM=classified(Wv,CM) and SvCM ⊆ CM
To finish the configuration phase, will to generate v subsets. S1CM ∪S2CM ∪S3CM ∪ ....SvCM =

CM

Rename subsets S1CM = S1X, S2CM = S2X,
S3CM = S3X, ...., SvCM = SvX
For further details on the Configuration phase, see Appendix D.

3.1.3 Consensus phase

Consensus problems have a long history in computer science and form the foundation of distributed
computing [7, 8, 15, 45, 78, 83]. A consensus algorithm (or protocol) is an interaction rule that specifies
the information exchange between a node and all of its neighbors in the network [30]. In distributed
systems and networks, it is often necessary for some or all of the nodes to calculate some function of
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Figure 6: Classified set CM with SVM

specific parameters, for example, in the case of multi-agent systems, where all agents communicate
with each other to coordinate their speed and direction. Another example is that IoT nodes in sensor
networks may be tasked with calculating all the sensors average measurement values [30].

When considering a CM as an IoT device (due to its limited capabilities), the network generated
by CH and CM (Fog Computing network) is similar to an IoT -type network. Consider a network
with v nodes modeled by an undirected graph G(V,E) with vertices V:=1, . . . ,v representing nodes,
moreover, edges E describe links among communicating nodes. Potential application scenarios include
but are not limited to the following ones: Wireless Sensor Networks, Distributed medical databases
and Collaborative data mining [21], [2], [35] and [74].

Consensus phase is an agreement is achieved within the CMs minimum requirements. Let X
one set of clusters to carry out a global consensus and information exchange, a Fog Computing type
network must generate when necessary and local consensus must be carried out. A Fog Computing
network can be modeled as a graph G=(V, E) where V=V(G)={1,2,. . . ,v} is the set of vertices
and E=E(G)={e1, e2, . . . , eo} is the set of edges of the graph. Change of variable S1CM1 = X1,
S1CM2 = X2, ..., S1CMv = Xv.Where Xv = [x1, x2, ...xv] (Figure 7a) is the node dimension. A
function considers xv(t) where: v is the node in time t where the calculation for the consensus estimate
performed at each node v, where (v ∈ V ), given xv(0) denotes the initial measured value in v, which
can update through iterative exchanges between neighboring nodes, and consensus or average can
reach across all nodes with the following expression and Figure 7b:

xk(t + 1) = xk(t) − µ
∑

(jεNk)
(xj(t) − xk(t)) (7)

Where:
xk(t) represents the state value (used to evaluate the matching value for new incoming services)

at node k at time t, which can be intuitively understood as the estimate of the consensus value of k.
µ denotes the step size in each iteration.
Nk denotes the neighbor list of k ∈ E.
k where k=1,2,. . . v
xk(0) ∈ R and x(0)=[x1(0), x2(0), . . . , xd(0)]

The cluster in Figure 7b is used as an example to represent the adjacency matrix (AM) with rows
and columns labeled by graph vertices, with a 1 or 0 in position (vi, vj) according to whether vi and
vj are adjacent or not.
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(a) Rename node to Xv (b) Consensus with X set

Figure 7: Consensus WMN

AM =



0 1 0 ... 0
1 0 1 ... 0
1 0 0 ... 0
... ... ... ... ...
... ... ... ... ...
0 0 0 ... 1


The convergence properties of 7 are largely determined by the Laplacian matrix [16] L, thus

L(t + 1) = f(x) =


dk, k = j
−1, (k, j) ϵ E
0, else

(8)

Where:
dk is the degree at node k.

LP =



dk −1 0 ... 0
−1 dk −1 ... 0
−1 0 dk ... 0
... ... ... ... ...
... ... ... ... ...
0 0 0 ... dk


Let an nx1 vector x(t) denote the states vector of all nodes at time t, which can be written as:

x(t + 1) = x(t) − µLx(t) = (I − µL)x(t) (9)

It can be simplified as:

x(t + 1) = Wx(t) (10)

Where W=I-µL. For a graph, its Laplacian matrix L with eigenvalues λ0 λ1 . . . λ(n−1) and λ0 is
always 1 because every Laplacian matrix has an eigenvector. ε0[1, 1, . . . , 1]. The convergence time is
[85]:

τ = 1
log(1/ρ) (11)
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3.1.4 Reconfiguration phase

A change in the nodes triggers a reconfiguration, but it does not activate immediately. Nodes that
join are held in a member state but are not considered in commit-level decisions or leader selection
until a quorum of them is reached. This means they have seen all previous transactions up to joining
the network. Similarly, nodes about to retire acknowledge when their state changes.

3.1.5 Distribution phase

CH sends tasks to CM.

3.1.6 Execution phase

CM executes tasks, and this tasks depends to the capability of the node.

3.1.7 Recovery phase

The results found from the CM sent to the CH and after to the leader.

4 Experiments and Results
In this section, we implement the proposed protocol in real hardware to demonstrate the effec-

tiveness of the design methodology for one group of heterogeneous devices (m). The initial phase
environment consists of a set of 13 heterogeneous devices. The hardware used is shown in Table 1

The Figure 8 is obtained by applying N=A (m) to the sets of nodes described in Table 1, resulting
in the deployment of the WMN.

Figure 8: WMN Topology

The WMN deployment in the building is in Appendix A. The next stage in the initial phase is
cluster generation. Delete the links with a weak connection; the topology of the mesh network is shown
in Figure. 9a. From the previous Figure, the stage of cluster generation is applied with CHw,d=B
(Ñm,d), the dimension is CH1,5=B (Ñ13,5), and the result is one CH is shown Figure 9b and 10

The resulting vector in the configuration phase W = C (ch, cm) function, the vector is graphed
to visualize it, resulting in the Figure 11.

In Figure 12, the representation of nodes is as follows. The nodes in purple are the CMs classified
with the value 0 (zero), which cannot perform the processing. The nodes in blue are CMs that can
perform the processing, and the yellow node is the CH.

The consensus phase has one set of nodes in Figure 12,the purple nodes are removed, and the two
links become the bidirectional link, giving the result in a new set called X, which is shown in Figure
13. When executing the consensus algorithm, the topology generated with the nearest neighbor and
the communication as shown in the Figures 14 and 15.
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Device Description
1.Seven Raspberries Pi 3B+

i) CPU Cortex-A53 (ARMv8) 64-bit SoC@1.4GHz.

ii) 1GB LPDDR2 SDRAM/32GB micro-SD card

iii) Fedora 33(3 devices), Ubuntu 20.04(3 devices) and Raspbian 10(1 device)

iv) batctl 2021.4

2.Two Raspberries Pi 4

i) Quad Core Cortex-A72(ARM)64-bit @1.5GHz

ii) 4GB LPDDR4 RAM/32GB micro-SD card

iii) Ubuntu 20.04 and Fedora 35

iv) batctl 2021.4

3.Two Arduino’s Yun

i) MCU Atmel AVR 8 bits ATmega32U4 and CPU MIPS Qualcomm

ii) Atheros AR9331 @ 400 MHz

iii) 16MB Flash Memory

iv) OpenWRT (LEDE Yun 17.11)

4.Two TP-Link TL-WDR3600

1. CPU MIPS 74Kc

i) 8 MB Flash Memory

ii) OpenWRT 20.21.3

iii) batctl 2021.4

Table 1: Heterogeneous devices specification

(a) WMN without weak link (b) Result of Cluster Formation

Figure 9: Cluster Formation

When carrying out another scenario with less complex tasks, more nodes that comply with the
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Figure 10: Result of CF with one CM

Figure 11: Result of SVM with CH1

Figure 12: Topology with SVM

capacities to perform the task processing participate; the clusters can be seen, and how they agree to
carry out the tasks later, as shown in Figures 16a, 16b and 17.

Figure 16b shows different topologies based on a ring structure. The idea behind the chosen
topologies is to test the protocol’s performance for the minimum quantity of links, i.e., the ring
structure, and then evaluate its behavior. The idea behind these topologies is to emulate networks with
mobility where clusters have environments with multiple interfaces. An agent bridges two subnetworks
with different technologies at the physical layer of the protocol stack.
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(a) Two links (b) Bidirectional links

Figure 13: Set X

Figure 14: Pure ring topology

Figure 15: Results of the communication topology shown in Figure 14
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(a) Scenario with two clusters (b) Topology with two clusters

Figure 16: Results with two clusters

Figure 17: Consensus with two clusters

5 Future work
Future research will focus on expanding the scope of real testbed scenarios and increasing the

number of wireless nodes to enhance the robustness and applicability of the findings. By incorporating
more real-world environments and scenarios, the research aims to provide a more comprehensive
understanding of the practical implications and effectiveness of dicomist. Additionally, increasing the
number of wireless nodes will enable a more thorough exploration of scalability and performance under
varied network conditions, further refining the efficacy of the proposed solutions in Fog Computing
environments.

6 Conclusion
The manuscript outlines a strategy for Fog Computing, delineating five main stages crucial for

creating an effective distributed cluster computing system. These stages encompass Federated Com-
puting, configuration consensus, reconfiguration distribution, and processing, with a focus on utilizing
low-cost processors. Establishing a stable computing system relies heavily on accurately configuring
the cluster and selecting a Cluster Head within a precise time interval. Validation of the consensus al-
gorithm ensures feasible agreement among nodes, facilitating timely processing of information. While
the manuscript primarily explores processing tasks already installed at nodes, it acknowledges the po-
tential for task migration, albeit not explored due to its time-consuming nature. The study showcases
promising results for a heterogeneous platform but underscores the need for further investigation into
additional stages for Fog Computing. This framework enhances computing capabilities among nodes
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with varying processing abilities, yet addressing configuration, reconfiguration, and migrations remains
a challenge in an open network environment. Performance was evaluated on a device benchmark with
a low scale in a realistic environment. Experimentally, the results were both for static communication
and variable topology in time.

A Deploy WMN
Create the virtual interface, and then the mesh network will use the B.A.T.M.A.N. protocol [56],

[55], [54], [1], [32], [42], [12] and [79]. Each B.A.T.M.A.N. packet is encapsulated in a single UDP
data packet. A B.A.T.M.A.N. packet consists of one OriGinator Message (OGM) and zero or more
attached HNA extension messages, since its function is to find other B.A.T.M.A.N. nodes and define
the best neighbor to reach others nodes. It also keeps track of new neighboring nodes and informs
neighbors of their existence, OGM packets are used for this purpose, headers of this packet are shown
in Table 2.

Concept Description
Originator Address Identify the node that created the B.A.T.M.A.N.

package

Sequence Number Used to measure link quality and detect dupli-
cates.

Transmit Quality Describe the link quality of the total route to the
originator.

Address of the pre-
vious sender

Used to discard the OGMs already transmitted by
the receiving node.

Time to Live (TTL) Limits the number of nodes an OGM can traverse.

Host Network An-
nouncement (HNA)

Describe the number of non-batman nodes capable
that can be accessed through the creator. Infor-
mation about each DNA is attached to the GMO
message.

Gateway Flags Used if the node offers a connection to another
network

Table 2: Headers of B.A.T.M.A.N. protocol

To estimate the link quality to an originator, the transmission quality (TQ) in an OGM is changed
during its passage through the network. The TQ describes the probability that one packet will reach to
destination and is calculated. The value is stored in an eight bits value between 0 and 255 (decimal),
which provides greater granularity without increasing the packet size. The quality of the link is
measured with the help of three packages Figure 18.

(a) Transmit Quality (b) Receive Quality (c) Echo Quality

Figure 18: The three link qualities used in B.A.T.M.A.N

The transmission quality on a route can be computed using Equation 12, as follows:

EQ = TQ ∗ RQ : TQ = EQ

RQ
(12)

Where:
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Figure 19: Path to calculate to transmission quality

TQ(n1,n2)=PT (n1, n2)*PR(n1, n2)
PR is represented as:
TQ(n1,n2)=PT (n1,n2) (1 − (1 − PR(n1, n2))3)

Now the quality of the transmission is expressed in a general way:

TQ(P) = (1 − α)k−1 ×
k−1∏
i=1

TQ(ni, ni+1)

Where: P is path.

HOP PENALTY = (1 − α) where 0< α < 1

At the end of the generation of the mesh network, the number of nodes involved in the mesh
network is of size m, called the set N. Applying N=A (m).

The logical distribution of the WMN topology of Figure 8 is shown in the following Figure 20:

Figure 20: Deploy WMN

B Cluster Formation with crow search algorithm
The ultimate goal for clustering is to divide devices in a WMN into different clusters. After joining

a cluster, a device typically only needs to communicate with CH. The routing scheme is either a single
hop or multi-hop because it has one WMN included. They selected the CHs with one of the following
three schemes in this part [87].

Deterministic: In this scheme, the CHs are preset and placed at fixed locations in a network.
This case is different when super nodes (with powerful processing ability and high energy storage)
exist since the devices in fields are usually homogeneous, and the super nodes can die for unexpected
reasons.

Random: CHs can be selected among devices based on randomly generated values. A random
CH election scheme is a simple and beneficial strategy if a network is homogeneous.
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Adaptive: The adaptive CH election is based on parameters such as remaining residual energy
or distance. With different system objectives, a clustering algorithm can use a specific combination
of these parameters. An adaptive CH election approach is designed to adapt to the network and
environment variations.

The CH election, in this case, will be Adaptive and is based on some particular parameters. To
generate the clusters, we must know how many CHs are going to be needed; for this, the bio-inspired
algorithm called Crow Search Algorithm (CSA) is used; below are the steps to execute the algorithm
[5]:

Step 1. Initialize the problem and adjust the parameters.
Step 2. Initialize positions and memories.
Step 3. Evaluate the fitness position.
Step 4. Generate new positions.
Step 5. Verify the feasibility of the new positions.
Step 6. Evaluate fitness function for new positions.
Step 7. Update memory.
Step 8. Verify the termination criteria.

Each node variable has your measurement units, normalization to the set N is performed in order
to eliminate sensitivity and the influences effect. Used to normalize the standard score, which is
reflected in the following expression:

Nnorm = N̄ = X − µ

σ
(13)

Apply to the N matrix

xm,d = n̄m,d = nm,d − µm,d

σm,d
(14)

N̄ =



n̄1,1 n̄1,2 n̄1,3 ... n̄1,d

n̄2,1 n̄2,2 n̄2,3 ... n̄2,d

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
n̄m,1 n̄m,2 n̄m,3 ... n̄m,d


Rename N̄=X :

X =



x1,1 x1,2 x1,3 ... x1,d

x2,1 x2,2 x2,3 ... x2,d

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
xm,1 xm,2 xm,3 ... xm,d


(15)

Xm,d where m is the population and d is thedimension node. Xm is the vector described as
Xm = [xm,1, xm,2, . . . , xm,d]

When executing the CSA algorithm for each iteration, the following expression is evaluated to find
the nodes with the best conditions:

Xiter+1
m =

{
Xiter

m + ri ∗ fliter
m ∗ (M iter

j − Xiter
m ) rj ≤ AP iter

j

random value else

(16)

Where:
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ri is a random number with uniform distribution between 0 and 1.
AP diversification parameter in optimization algorithms. Value is 0.1.
fl is the intensification parameter for diversification algorithms. Value is 2.0.
M is the memory matrix that is updated with the fitness function.
iter is the number of iterations that the execute algorithm.

M iter+1
m =

{
Xiter

m if f(Xiter+1
m ) is better f(M iter

m )

M iter
m else

(17)

Where: f(m) is fitness function.
The fitness function. This function will optimize the variables of the node m and the best charac-

teristics will be obtained, these nodes will be selected how CH. The fitness function is shown below:

f(m) = RAMm + FLOPSm + (X−1
m + Y −1

m )
PLm + B−1

m
(18)

Where:

RAMm. The RAM metric is the amount of memory the m node.
FLOPSm. Defines the floating point operations performed by the m node.
X−1

m . The random position on the X axis of the node m in a scenario, where X−1
m is equal to 1

Xm

Y −1
m .The random position on the Y axis of the node m in a scenario, where Y −1

m is equal to 1
Ym

PLm. The PL metric is the reduction in power density from the m node towards the destination
to be transmitted.

B−1
m . The percentage of the battery charged to send power to the node. Where B−1

m is equal to
1

Bm

The fitness function generates the following behavior in the variables, by having a quotient, where
the metrics that need to be increased are placed in the numerator and the desired metrics in the
denominator to reduce.

The maximum number of iterations defined by itermax is determined. The iterations are the
number of times the algorithm performs in the following steps (4 to 7). In this case, the maximum
iteration will have a direct relationship with the number of CHs that are going to be used to generate
a set of clusters, generally ranging between 5-15% of the population[77]; this percentage is the quantity
CH to find, the value w is w = m

10 . A continuation is shown as the result of the execution of cluster
formation with the crow search algorithm; we change the value w and obtain two CM.

C Appendix Classification of the two variables nodes
Classification of the two variables nodes: RAM and FLOPS.

I. It is labeled with 0 (zero) if the device has characteristics less than 2 Gb RAM. In this case, the
characteristics of the FLOPS do not matter since they do not exceed 50 GFLOPS.

II. It is labeled with 1 (one) if the device has the characteristics: Memory is between 2 to 4 Gb in
RAM. FLOPS ranges from 44.8 to 100 GFLOPS.

III. The label with value 2 (two) is assigned if the device has the following characteristics: Memory
greater than 3GB in RAM. FLOPS greater than 80 GFLOPS, the average of these devices is
104.13.
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 21: Execution CSA

Figure 22: Result of Cluster Formation

(a) One CM (b) Two CMs

Figure 23: Results of the Cluster Formation
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D Appendix Classified set CM with SVM
Support Vector Machine (SVM) is one of the most effective supervised machine learning algorithms

currently available. It is possible to get good results without much adjustment to the problems it wishes
to solve. Figure 24 shows the ACM’s computer classification system (CSS) [57] for the SVM level.

Figure 24: CSS for the SVM level

Once the CH and CM sets, the local conditions of CM’s are verified: processing, memory, battery,
position, path loss, and link quality; the nodes will classify by Support Vector Machine (SVM).

Sometimes polynomial or linear kernels need to be more sophisticated to work with a complex
data-set. This case uses another, more complicated, kernel: the Gaussian kernel. It is also named
RBF kernel, where RBF stands for Radial Basis Function. A radial basis function is a function whose
value depends only on the distance from the origin or some point. The RBF kernel function is:

K(cm, cm′) = exp(−γ||cm − cm′||2) (19)

Each CH requests the local conditions of the nodes for the devices to perform their classification
using SVM. An example is calculating the path Loss, battery, and others. Three variables are used:
S, D, and A.

I. Variable S. The variable S value is binary and calculated (see appendix C); the classified nodes
have the following deal: 1 or 2 and will have a binary value of 0. The nodes classified with zero
values will have a binary value of 1.

II. Variable D. The variable D value is binary, and the value is 1 (one) if the distance is more
significant than xmax; otherwise, the binary value is 0 (zero).

III. Variable A. The variable A value is binary; if the value of PL is greater or equal to zero, the
binary value of A is 00. Between PL < 0 and PL>=-44, the value of A is 01. If PL <-44 and
PL>-90, A is assigned the binary value of 10. If the PL<=-90, then A is defined with the binary
value of 11.
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The relationship of Wv,j will be between the CHv and the CMj . The binary value (Wv,j) is the
weighted sum of the variables Wv,j = Av,j + Dv,j + Sv,j . W can obtain values between 0 and 15, and
Wv,j obtain them with the following classification:

a) 0-4 (0000-0100) is assigned the value two.

b) 5-9 (0101-1001) is assigned the value one.

c) 10-15 (1010-1111) is assigned the value of zero.

Generate the SVM graphs, the parameters C and gamma of the RBF kernel must be adjusted.
Therefore, a heat map is generated to obtain the parameters as shown in Figure 25a. The Figure 25b
is the set nodes training about SVM and yours classification.

(a) Heat map with RBF kernel (b) Set Nodes

Figure 25: SVM Results

The prediction was made with data in original and normalized scales, the comparison with different
performance indices and the results are shown in Table 3.

Performance indexes Originals values Normalized values
Jaccard index 0.7930 1.0
Confusion matrix 29 0 6

0 0 1
0 0 2


35 0 0

0 1 0
0 0 24


F1 Score 0.8777 1.0
Log Loss 0.2750 0.0321

Table 3: Performance indexes

Others concepts to measure are the sensitivity indexes with original and normalized values,where
the results are compared in Table 4.

E Appendix Consensus
Consensus (also called common consensus) is specified in terms of 2 primitive functions: propose

and decide. Each process (or node) has an initial value for the agreement through the primitive propose.
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Concept Originals values Normalized values
Precision 0.8833 1.0
Sensitivity value 0 0.82857 1.0
Sensitivity value 1 0.0 1.0
Sensitivity value 2 1.0 1.0

Table 4: Sensitivity indexes

Proposed values are private of the process, and the action of proposing is local. This action launch
broadcast events on which the processes exchange the proposed values to reach the deal eventually.
All correct processes must decide on a value via the primitive decide. This value would be one of the
proposed values [24], [33], [34], [45] and [61]. Consensus must satisfy the following properties:

Termination. Every successful process eventually decides on some value.

Validation. If a process decides v, then v was proposed by some process.

Integrity. No process decides two times in the same round.

Agreement. Two correct processes do not decide a distinct value.

With the previous concepts, the consensus algorithm is programmed with the following scope.
A Fog Com-puting network can be modeled as a graph G=(V, E) where V=V(G)={1,2,. . . ,v} is
the set of vertices and E=E(G)={e1, e2, . . . , eo} is the set of edges of the graph. Change of variable
S1CM1 = X1, S1CM2 = X2, ..., S1CMv = Xv. Where Xv = [x1, x2, ...xv] is the node dimension.
Various executions of the algorithm depend on the task’s complexity. The results have been similar
and are shown below in the following Figure 26.

Figure 26: Results for topology with two clusters
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