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Abstract

This article proposes an architecture model for a predictive maintenance solution that can
be used to detect degradation of equipment in industrial units. This platform is compliant with
Industry 4.0 standards and employs machine learning algorithms alongside with data analytics
methodologies to model the kinetics of equipment degradation. This serves the overarching aim of
Industry 4.0 by enabling real-time, data-driven decision making and complex asset management.
To model the deterioration of the equipment, advanced data analysis techniques and machine
learning were used, thus allowing for the early identification of imminent failures and reducing
system downtime. The proposed solution was validated through numerous experiments and a
comprehensive analysis of data. The results indicate not only enhanced operational reliability but
also a reduction in environmental impact, thereby highlighting the value of intersecting Industry
4.0 and Sustainability paradigms in the field of industrial systems.

Keywords: predictive maintenance, machine learning techniques, platform architecture, data-
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1 Introduction
The digitization of activities in manufacturing enterprises, as well as the increased use of smart

devices and control software systems have led to the emergence of numerous data points within man-
ufacturing execution systems (Morariu et al., 2020). The way enterprises can obtain value from
processing large volumes of data and extract significant information provides a competitive advantage
in terms of building control systems that ensures resource protection and production optimization.

Industry 4.0, a concept proposed at Hanovra in 2011, creates through smart enterprises “a world
in which virtual and physical systems of manufacturing cooperate with each other in a flexible way”
(Schwab, 2017). Industry 4.0 aims to build a digital representation of physical processes to understand
much better how these processes unfold (Dalzochio et al., 2020; Panait et al., 2022). Thus, it connects
machines, sensors and IT systems to enhance value across the supply chain (van Dinter, Tekinerdogan
and Catal, 2022). These connected systems named cyber-physical systems can communicate with each
other and transfer data by Internet information exchange protocols.

As production processes and equipment become more and more complex and intelligent, regulations
have been elaborated that require the existence of safer and more reliable systems. The failure of
a machine component can result in machine deterioration, environmental pollution and employees’
injury. Therefore, maintenance is performed to prevent serious machine failure and to maintain its
normal operational state (van Dinter, Tekinerdogan and Catal, 2022).

The predictive maintenance implementation can bring significant advantages to manufacturing
enterprises. Furthermore, maintenance costs have an important share in total operating costs of such
enterprises. Depending on the activity field, the share of these costs varies between 15 and 60% of the
total costs (Mobley, 2002). However, companies do not accurately measure these costs and therefore
it is necessary to use new technologies to monitor properly maintenance activity (Zonta et al., 2020).

Among the advantages of the predictive maintenance, the following are mentioned (Mobley, 2002;
Dalzochio et al., 2020; Coandă, Avram and Constantin, 2020; Moldovan et al., 2022; Nunes, Santos
and Rocha, 2023): decreasing the number of system failures caused by the incapacity to predict
when its components will fail, increasing the productivity within the enterprise, reducing unplanned
downtimes, efficient using of financial and human resources, decreasing costs to increase enterprises
competitiveness and optimising maintenance interventions planning.

Different approaches that can be used to predict the failure of production equipment are described
in the specialized literature. These are represented by physics-based approaches, knowledge-based
approaches and data-driven approaches (Gao et al., 2015; Bektas, Marshall and Jones, 2020; Guo, Li
and Li, 2020; Zhong, Han and Han, 2020; Zonta et al., 2020; Leohold, Engbers and Freitag, 2021;
Soleimani, Campean and Neagu, 2021; Soualhi et al., 2022; van Dinter, Tekinerdogan and Catal, 2022;
Nunes, Santos and Rocha, 2023).

Machine learning techniques can be used to predict and diagnose system failures by estimating the
remaining lifetime of an equipment based on a large amount of data that trains the machine-learning
algorithm (Dalzochio et al., 2020).

This article proposes a cloud-based architecture model for a predictive maintenance solution that
can be used to prevent the degradation of pump seals in an industrial unit. Advanced data analysis and
machine learning techniques have been leveraged in order to model the degradation of the pump seals,
thus enabling early detection of impending failures and reducing system downtime. The proposed
solution has been validated through many experiments and an extensive analysis of pump seal data.
The study has made several key contributions to the domain of pump system analytics related to:
advanced data visualization, time-series analysis, feature engineering, anomaly detection and predictive
modelling framework.

2 Literature Review
The concept of “maintenance” is defined as an action performed to maintain a thing in its current

state and to protect it from failures and deteriorations (Shetty, 2018).
According to the EN 13306:2017 standard, maintenance is “the combination of all technical, ad-
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ministrative and managerial actions during the life cycle of an item intended to retain it in, or restore
it to, a state in which it can perform the required function” (European Committee for Standardization,
2017).

Maintenance strategies have been modified over time based on the concerns and efforts of re-
searchers, experts, engineers and technicians (Nunes, Santos and Rocha, 2023). Thus, these strategies
have evolved (Shetty, 2018) from a reactive approach (“run to failure”) to a predictive approach
(“repair at the right time”).

In the specialized literature, different types of maintenance strategies are presented (Shetty, 2018;
Carvalho et al., 2019; Coandă, Avram and Constantin, 2020; Errandonea, Beltrán and Arrizabalaga,
2020; van Dinter, Tekinerdogan and Catal, 2022; Nunes, Santos and Rocha, 2023). Effective main-
tenance strategies allow: reducing unplanned production downtime, decreasing costs and increasing
the useful lifetime of equipment used in industry (Nunes, Santos and Rocha, 2023). According to
the classification proposed in the literature (Errandonea, Beltrán and Arrizabalaga, 2020; van Dinter,
Tekinerdogan and Catal, 2022; Nunes, Santos and Rocha, 2023), maintenance strategies are classified
as follows: reactive (corrective) maintenance, preventive maintenance, condition-based maintenance,
predictive maintenance and prescriptive maintenance.

The study conducted in 2021 by IoT Analytics showed that predictive maintenance solutions were
nearly non-existent in the market in 2015 (Brügge, 2021), predictive maintenance evolving from an
approach based on statically monitoring of equipment conditions to a viable solution with a favourable
return on investment.

The increased interest of researchers in the predictive maintenance field it is demonstrated in the
specialized literature both by articles that perform a systematic literature review of the studies that
treat this concept in the context of Industry 4.0 (Zonta et al., 2020; Sahli, Evans and Manohar,
2021) and the articles that use the same technique of systematic literature review to identify machine
learning methods and techniques used in predictive maintenance (Carvalho et al., 2019; Dalzochio et
al., 2020; Jain et al., 2022).

Predictive maintenance uses historical data, domain knowledge and models. This type of mainte-
nance can predict behaviour models, trends and correlations through statistical models and machine
learning methods, in order to identify equipment failures in advance, thereby improving decisions re-
garding maintenance activity and reducing downtime (Zonta et al., 2020). The concept of Internet of
Things (IoT) plays an important role in the predictive maintenance process (Parpala and Iacob, 2017;
Jiang, Wang and Jin, 2023; Simo et al., 2023). Industrial IoT (Boyes et al., 2018), a specialization of
this concept, uses IoT technologies, machine learning methods and Big Data in the industry (Sezer et
al., 2018).

Predictive maintenance is a broad research theme that uses knowledge from various fields of activ-
ity. To design an effective predictive maintenance system (Nunes, Santos and Rocha, 2023), data must
be carefully processed to handle common industry situations (missing data, noise, erroneous values
etc.).

Predictive maintenance is considered a component of the Prognostics and Health Management
(PHM) system, along with Equipment Health Monitoring - EHM and Mean-Time-To-Repair – MTTR
(Iskandar et al., 2015). Additionally, predicting the remaining useful life of equipment, that is a part
of PHM (Zonta et al., 2020), is one of the main features of predictive maintenance (Nunes, Santos and
Rocha, 2023). Some authors (Nunes, Santos and Rocha, 2023) connect this type of maintenance with
the five features of Big Data. These features are known as the 5 V’s of Big Data: volume, variety,
velocity, veracity and value (Bazzaz Abkenar et al., 2021).

As it has been mentioned in the introduction, the approaches that can be used to identify the
degradation of equipment can be classified in: physics-based approaches, knowledge-based approaches
and data-driven approaches (Gao et al., 2015; Bektas, Marshall and Jones, 2020; Guo, Li and Li,
2020; Zhong, Han and Han, 2020; Zonta et al., 2020; Leohold, Engbers and Freitag, 2021; Soleimani,
Campean and Neagu, 2021; Soualhi et al., 2022; van Dinter, Tekinerdogan and Catal, 2022; Nunes,
Santos and Rocha, 2023).

Physics-based approaches use analytical patterns of physical systems behaviour that are based on
probability distributions and laws of physics (Wu et al., 2018). Because these models describe physical
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processes, they directly and indirectly influence the operational state of equipment (Nunes, Santos and
Rocha, 2023). Physics-based approaches can be used when precise mathematical models are available
for a production system, based on its physical features (Soleimani, Campean and Neagu, 2021). These
models provide a better way to handle the bias in the measured data and can describe the behaviour of a
system, in different operating conditions. Additionally, the model’s operation is transparent and easily
interpretable because the fundamental equations and principles are explicitly represented (Gao et al.,
2015). They do not require large volumes of data, making them suitable for systems where knowledge
acquisition is costly (Soleimani, Campean and Neagu, 2021). However, these approaches also have
disadvantages (Gao et al., 2015; Soleimani, Campean and Neagu, 2021; Soualhi et al., 2022): require
detailed and complete knowledge of the system’s behaviour, are application-specific and therefore
cannot adapt to the system’s changes, are computationally expensive and involve determining the
mathematical model of the system.

Knowledge-based approaches decrease the complexity of physics-based models (Zonta et al., 2020)
and use expert knowledge obtained based on the experience accumulated over years. The failures of
a system, the deterioration state of an equipment or the root cause that generates the deterioration
can be identified based on this knowledge (Nunes, Santos and Rocha, 2023).The models built based
on expert knowledge can be classified as: rule-based models, case-based models and fuzzy logic-based
models (Montero Jimenez et al., 2020). Knowledge-based models where the knowledge is represented
by production rules have the advantage that the defined production rules are easy to read and the
results are easy to understand and interpret (Leohold, Engbers and Freitag, 2021). They also involve
less programming and data training, do not require the existence of models and can use incomplete
and imprecise information (Soleimani, Campean and Neagu, 2021). One of the disadvantages of this
type of model is that systems built using this approach are at risk of combinatorial explosions as the
complexity of the systems and the volume of data increase. At the same time, these models rely on
expert knowledge that is difficult for experts that build knowledge-based systems to understand and
they do not learn from their own experience (especially rule-based systems). Another drawback of
these approaches refers to the difficulty in acquiring knowledge from sources, as well as transforming
it into the specific format of the system (Turban et al., 2004; Tănăsescu, 2016).

Data-driven approaches process data collected from sensors to extract significant knowledge from
it (Nunes, Santos and Rocha, 2023). Data-driven approaches used to predict the deterioration of
equipment are classified, according to the specialized literature (Nunes, Santos and Rocha, 2023), in:
statistical methods and machine-learning methods (Bucur, 2019).

Data-driven approaches used to predict the equipment degradation have the following advantages:
do not require knowledge of analytical models of equipment degradation, can be quickly and easily
implemented, do not imply mathematical modelling of physical processes and establish relationships
that were not previously identified by the acquisition of a large volume of data (Guo, Li and Li,
2020; Soleimani, Campean and Neagu, 2021; Soualhi et al., 2022). However, the performance of these
approaches is dependent on the quality and quantity of data, making them inefficient in data-scarce
environments (Leohold, Engbers and Freitag, 2021). Additionally, the results can be counter-intuitive
when physical knowledge is not available (Soleimani, Campean and Neagu, 2021). Another weakness
of these methods is that they require significant computation resources for training data, which may
not be feasible in all operational settings (Soualhi et al., 2022).

3 Theoretical Framework
In the current landscape of technological advancement and intricate market dynamics, industrial

organizations face the imperative challenge of boosting operational efficiency while ensuring economic
sustainability. The exigency for economical asset utilization, process optimization, and operational
safety is more critical than ever. This study posits that the deployment of sophisticated data analytics
and machine learning paradigms can substantially enhance conventional maintenance and operational
strategies within the industry.

The objective is to design a versatile software framework that is applicable across a spectrum
of industrial contexts, from resource extraction in the oil and gas sectors to intricate manufacturing
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processes. This approach synergizes the strategic utilization of client data—both retrospective and
real-time—with the forefront of computational technologies to bolster decision-making efficacy and
operational productivity.

In the centre of our proposal is the conviction that data analytics, when leveraged to extract ac-
tionable insights, can significantly refine and advance industrial practices. The fundamental assertion
is that the fusion of artificial intelligence and machine learning into industrial operations can unlock
unprecedented strides in efficiency and dependability.

Figure 1: High-level Architecture of the Cloud-Enhanced Predictive Maintenance Solution.

Figure 1 illustrates the high-level architecture of our cloud-enabled solution, created to enable a
comprehensive data lifecycle and informed decision-making in industrial settings. The architecture is
segmented into three primary components: “Data Acquisition and Aggregation”, “Data Processing
and Analytics” and “Presentation and Action”.

“Data Acquisition and Aggregation” module is pivotal for amassing and unifying diverse data
streams. Historical data, indispensable for calibrating machine learning models and validating pro-
cesses, consists of archival records of operational performance. Real-time data, harnessed from client
devices like sensors, conveys the instantaneous operational state, enabling dynamic assessments and
adjustments.

“Data Processing and Analytics” module serves as the analytical core and is where data is trans-
formed into predictive insights:

• Real-Time Data Integration and Streaming: A cloud-based approach manages the ongoing surge
of real-time data, ensuring high availability and scalability;

• Analytical Exception Surveillance: Harnessing cloud computing’s processing power, this compo-
nent employs AI algorithms to identify and analyse anomalies and patterns that deviate from
normative baselines;

• Predictive Machine Learning: Using cloud services, machine learning models are deployed that
analyse historical and real-time data to predict trends and foresee potential operational inter-
ruptions;

• Operation Prescription: By leveraging the computational capabilities of the cloud, the system
generates informed directives for operational management based on the analytics conducted.

In the “Presentation and Action” module, the insights are either visualized, using cloud-integrated
dashboards like Power BI for decision-makers, or fed into automated systems that directly actuate
operational adjustments, facilitating real-time responsive measures.
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The overarching objective is to transition from reactive to proactive operational strategies in indus-
trial environments. The underlying idea is that a data-driven, AI-enhanced approach can substantially
reduce downtime, optimize resource utilization and lead to smarter, safer operational decisions.

This system is designed not just as a tool but also as a paradigm shift, encouraging a proactive,
predictive approach to industrial maintenance and operations.

This research underscores that successful predictive maintenance transcends mere data analytics
application. Essential is the integration of a platform that not only analyses but interprets data
through the lens of domain expertise.

To practically execute predictive maintenance, a symbiosis between the technical acumen of engi-
neers and a data analysis platform like the one presented in Figure 1 is needed. The domain expert or
“knowledge engineer” are not confined only to technical knowledge and they apply a deep understand-
ing of equipment operation to define optimized operational modes. In reality, equipment rarely runs
strictly according to technical specifications due to various reasons, such as material variances, wear
and tear, or dynamic operating conditions. Therefore, interpreting data through the lens of technical
experience is indispensable for the continuous adaptation and optimization of maintenance processes.

This approach, enriched by the crucial contribution of domain expertise, forms the backbone of
the proposed architecture, laying the foundation for a proactive maintenance strategy in the industrial
environment. Thus, the described platform is not merely an analytical tool but an integrated ecosystem
combining historical and real-time data with machine learning and technical knowledge, all via cloud
infrastructure, to promote a new paradigm in industrial maintenance and equipment operation.

While the architecture follows a general framework for data acquisition, processing and visualiza-
tion common in (big) data analytics, the novel contribution of our work lies in the specific integration
of these stages and their application to industrial maintenance. Our system uniquely combines these
processes into an agile, adaptive framework that leverages machine learning models, tailor-made for
the context of industrial operations and maintenance, to foster a proactive rather than reactive strat-
egy. The originality in the context of the provided platform lies within its integrated approach to
predictive maintenance using real-time and historical data within a machine learning framework. The
distinctiveness of this architecture is characterized by its ability to synthesize data from varied sources,
apply advanced AI processing for anomaly detection, employ sophisticated predictive algorithms and
effectively present actionable insights, all within a cohesive system.

4 Research Methodology
Based on the theoretical framework previously presented a test case has been performed. The case

under scrutiny involves a Pump PM1A, component of an industrial complex unit. The pump serves
the critical function of controlling unit temperature through injecting liquid. A recurring problem
has been identified with respect to seal leakages, necessitating frequent and economically burdensome
maintenance interventions, thereby influencing the mean time between failures (MTBF).

4.1 Data presentation and preprocessing

In this study, our data corpus was sourced from an extensive sensor network within the industrial
unit, covering a period of four years. This network included approximately 30 sensors monitoring
circular flow mechanisms and additional 40 sensors directly associated with the pump apparatus.
The dataset with data collected at five-minute intervals provided a detailed temporal resolution that
was important for our in-depth analysis. Data were extracted from the industrial unit’s operational
database, a repository of both historical and real-time operational data. The database provided
comprehensive insight into the operational dynamics over an extended period.

The primary objective was to conduct a thorough examination of this high-dimensional dataset to
identify key features or patterns that could inform proactive maintenance strategies. This involved
detecting indicators of potential seal leakages and understanding the interdependencies within the
sensor network that might influence the pump’s operational health.

A critical aspect of our analysis focused on enhancing the Mean Time Between Failures (MTBF)
Key Performance Indicator (KPI). By improving MTBF, we aimed to extend the operational lifespan
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of the pump seals. Notably, enhancing the MTBF of one component can lead to reduced stress and
wear on other components, thereby enhancing the system’s overall efficiency and lifespan.

By preprocessing and analysing this data, our study not only addressed the immediate challenge
of pump seal failures, but also contributed to a broader understanding of system-wide operational
efficiency, emphasizing the interconnection of individual component health and overall system perfor-
mance.

In the process, data from multi-source heterogeneous environments is seamlessly integrated. The
challenge of dealing with this heterogeneity, which arises from different variable formats, scales and
temporal-spatial dimensions, is addressed through a meticulous preprocessing methodology. The initial
data is collected from real-time sensors and features are extracted from Enterprise Resource Planning
(ERP) systems. To ensure uniformity across the data, middleware solutions are employed to convert
incoming data into a standardised format. As part of feature engineering, the data undergoes nor-
malisation, logarithmic or exponential transformations and dimensionality reduction using Principal
Component Analysis (Jolliffe, 2002). Data cleaning involves managing missing values and outliers.
Resampling techniques are employed for time-series data to achieve uniform intervals, while data
partitioning ensures a balanced class representation in both training and testing datasets, achieved
through stratification.

4.2 Applied methodology

In order to achieve the proposed objectives, the first analytical phase involved a root cause analysis
(Barsalou, 2014; Okes, 2019) employing reverse data-driven methodologies. Various machine learning
models, reinforced with feature engineering techniques, were applied to determine the underlying
causes of the seal leakages. The causal inference derived from this analytical foray served as the
empirical basis for subsequent preventive measures.

The Reverse Data-Driven Root Cause Analysis model emphasised herein comprises a series of
analytical stages, targeted at mitigating seal failures in the PM1A pump. Reverse Data Driven Root
Cause Analysis (RCA) phases are:

• Identifying driving parameters through correlation analysis - analytical iteration (figure 2);

• Formulating root cause hypotheses by merging engineering knowledge with collected data;

• Adjusting failure model and closing the correlation gaps through RCA insights - analytical
iteration (figure 3);

• Finalising descriptive model for seal failure mode (figure 4).

Identifying driving parameters through correlation analysis (analytical iteration) employs correla-
tion analyses to isolate the critical operational parameters that have a direct or indirect relationship
with seal degradation. This phase incorporates statistical tests to assess the significance of each
identified parameter and may involve advanced multivariate analyses to elucidate potential interde-
pendencies.

Figure 2: Identifying driving parameters through correlation analysis.

Formulating root cause hypotheses by combining engineering knowledge with collected data consists
in merging the conventional engineering wisdom with the empirical findings from the data, thereby
generating a set of root cause hypotheses. These hypotheses serve to identify the underlying mecha-
nisms causing premature seal failures.
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Adjusting failure model and closing correlation gaps through RCA Insights (analytical Iteration)
uses the insights obtained from the root cause hypotheses to adjust and refine the seal life model.
Specifically, this iteration aims to close the “correlation gaps”, enabling a more accurate and nuanced
understanding of seal degradation mechanisms.

Figure 3: Adjusting failure model and closing the correlation gaps through RCA.

The terminal stage of RCA, finalising descriptive model for seal failure mode, elaborates the de-
scriptive model for understanding seal failure modes. This model should ideally encapsulate all the
salient driving parameters and their interrelationships into a coherent, predictive framework that
allows for proactive maintenance decisions.

Figure 4: Finalising descriptive model for seal failure mode.

This systematic approach aims not only at discerning the root causes behind seal failures but also
quantitative modelling of seal life.

The analysis proceeds with carrying out the first step of the RCA, when it is necessary to accomplish
the task of determining the modes of operation (figure 5).

This task is instrumental in constructing an efficacious model for seal life expectancy in PM1A
Pump. The methodology uses a fusion of empirical data and domain-specific knowledge, encompassing
the following tasks:

• Determining Seal Life Cycles and Seal Break Events: This component employs a multi-dimensional
analysis of historical data to delineate the life cycles of the pump seals. To achieve a robust
interpretation, ERP reports are merged with domain-specific engineering knowledge. This syn-
thesized dataset provides a nuanced picture of the temporal characteristics of seal degradation
and failure, thus laying the groundwork for a comprehensive model.

• Identifying Modes of Operation of Interest: Subsequently, the historical data is scrutinized to
classify various modes of pump operation. Specifically, the analysis distinguishes between effec-
tive operational states, stand-by states, as well as repair or maintenance phases. The identifica-
tion of these modes is vital, as each mode imposes distinct stresses on the pump seals, thereby
influencing their life expectancy.

In Figure 5, the pump operation modes are discerned through an examination of multi-dimensional
sensor data streams. This data-driven analysis incorporates variations in temperatures, flow rates,
speed and vibrations over time, all of which are critical indicators of the pump’s operational state.

1. Temperature Data Analysis (Temperatures on the pump):
Temperature sensors like TMP15PMA, TMP37PMA and TMP64PMA provide continuous read-
ings. An ’Optimal TMP’ threshold is established based on the pump’s technical specifications
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Figure 5: Determination of operation modes.

and historical performance data. Deviations from this optimal range can signify different oper-
ational states:

• Normal Operation: Temperatures consistently close to the ’Optimal TMP’;
• Stand-by or Idle: Lower than normal temperature readings, suggesting reduced or no op-

erational load;
• Maintenance or Repair: Significant temperature drops or unusual patterns may indicate

the pump is offline for maintenance.

2. Flow Rate Examination (Flow):
The flow sensor, FLO82PMA, informs on the volume of fluid passing through the pump. The
’Normal flow’ line represents a benchmark for typical operations.

• Full Operation: Readings that align with ’Normal flow’.
• Reduced or Modified Operation: Readings below the normal flow could indicate a reduced

demand or a pump operating in a non-standard mode, such as a low-efficiency state.

3. Speed Readings (Speed):
Speed sensor, SPD02PMA, tracks the rotational velocity of the pump. An ’Optimal speed’ line
indicates the manufacturer’s recommended operational speed.

• Optimal Performance: Speed hovers around the ’Optimal speed’.
• Reduced Speed Mode: Speed below the optimal can suggest energy-saving or limited oper-

ational mode.

4. Vibration Monitoring (Vibrations on the pump):
Vibration sensors, VBR37PMA through VBR71PMA, monitor the pump’s physical stability. A
’VBR ALARM’ threshold alerts to potential mechanical issues.

• Stable Operation: Vibration levels below the alarm threshold.
• Potential Fault State: Spikes that reach the ’VBR ALARM’ level may be symptomatic of

mechanical faults, often necessitating a shift to maintenance mode.
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Each of these data sets offers a composite view of the pump’s operational state at any given
moment. By establishing benchmarks and thresholds, the analytics system categorizes the operational
modes. The analysis employs a combination of real-time and historical data to pinpoint patterns
that correlate with specific operational states. By algorithmically clustering the data based on these
thresholds and patterns, the system effectively segregates the operational timeline into discrete modes,
such as ’Active Operation’, ’Stand-by’, ’Maintenance’ or ’Fault State’. This stratification is crucial
as it directly influences the predictive maintenance schedule and the life expectancy calculations for
pump seals, informing maintenance decisions and optimization of operations. Further, the objective
was to determine which upstream process parameters could act as precursors to anomalous behaviour
in the pump system. This is a non-trivial task, implying a multivariate analytical approach that takes
into consideration not only direct correlations but also time-lagged interactions and the weightage of
each variable. This is executed in the initial phase of the RCA, specifically within Step 1.

4.3 Correlation model

Correlation, as defined within the realm of statistics, assesses the degree to which two variables
fluctuate in tandem. Pearson’s correlation coefficient (Boslaugh, 2012; Bucur et al., 2021) evaluates
the strength and direction of the linear relationship between two quantitative variables. Pearson’s
correlation coefficient, symbolised as r, is calculated with the following equation:

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2 (1)

where:
x and y represent the paired data sets being compared;
x and y indicate their respective means.
The resultant coefficient r ranges between −1 and 1, with the extremities indicating perfect linear

relationships (negative or positive, respectively) and a value of 0 signifying no linear relationship.
For pump systems, understanding the Pearson correlation between variables (pump speed and

temperature) and seal life can provide insights into optimal operating conditions. A strong negative
or positive correlation might suggest that adjustments to these variables could prolong the seal life.

The analysis is based on an “all-with-all” correlation framework, examining pairwise correlations
amongst the entire set of sensor metrics and operational variables. Special attention is accorded to the
state when the pump exhibits what is termed “anomalous behaviour”, which is precisely the condition
wherein significant parameters deviate from their design-value ranges.

A detailed correlation analysis between vibration readings from the VBR70PMA sensor and den-
sitometer readings from the DST series sensors within component unit D13 has been performed.
This analysis was particularly insightful during instances of high vibrations, which were classified as
abnormal states. Our experimental results are presented in next section: results and discussion.

5 Results and discussion
The quintessential aspect of this analytical iteration is the correlation of the contributors to this

abnormal state, vis-à-vis upstream parameters that could act as potential early indicators or triggers.
These correlations are scrutinised to be notably strong during these periods, thereby considering them
as statistically significant.

For illustration, consider parameters related to pump vibrations and densitometer readings in
component unit D13. During periods of anomalous behaviour typified by high vibration, certain pa-
rameters exhibit strong positive or negative correlations that are conspicuously absent or substantially
weakened during periods of operational normality (figure 6).

For example, the VBR70PMA vibration sensor shows strong positive correlations with the other
component unit parameters DST01PMA, DST01PMB and DST00PMC, registering correlation coef-
ficients of 0.77, 0.91 and 0.93 respectively. This observation extends to other pairings as well, such as
VBR71PMA with DST01PMA, DST01PMB and DST00PMC, having correlation coefficients of 0.81,
0.94 and 0.96, respectively.



https://doi.org/10.15837/ijccc.2024.3.6499 11

Figure 6: Correlations in normal and abnormal operation states.

In contrast, some parameters manifest a strong negative correlation during anomalous states,
such as VBR70PMA and VBR71PMA with DST00PMB, registering coefficients of -0.78 and -0.80,
respectively.

VBR70PMA – DST01PMA (0.77)
VBR70PMA – DST01PMB (0.91)
VBR70PMA – DST00PMC (0.93)
VBR71PMA – DST01PMA (0.81)
VBR71PMA – DST01PMB (0.94)
VBR71PMA – DST00PMC (0.96)
VBR70PMA – DST00PMB (-0.78)
VBR71PMA – DST00PMB (-0.80)
These observed correlations, which align with the anomalies circled in Figure 6, serve as indicators

that may predict equipment malfunctions or imminent failures. By employing such a correlation
model in practice, we can identify critical sensor pairings that exhibit strong correlations and could
potentially serve as harbingers for predictive maintenance interventions.

In the context of this study, there are emphasized two critical sets of variables: (a) holistic con-
tributors and (b) driving parameters (figure 7).

On the one hand, the first set is represented by direct indicators of pump health and are closely
linked to the Seal Life modelling. The second, on the other hand, is represented by upstream factors
that, while not directly influencing the pump, have been identified through rigorous statistical analysis
to significantly affect the holistic contributors to the failure model.

This methodology was applied to a real data set comprised of sensor readings from an active
industrial pump system, captured and analysed over a significant period.

Holistic contributors, the first set of variables (figure 7a), include direct indicators such as vibra-
tion data from sensors VBR70PMA, VBR71PMA and VBR72PMA, and temperature readings from
sensor TMP38PMA. These variables were directly correlated with the Seal Life Model, thus serving
as immediate indicators for assessing pump health.

Driving parameters, the second set (figure 7b), encompass upstream factors, including density
readings from densitometers DST00PMA and DST00PMB in components D13 and D22. While these
do not directly impact pump performance, they were found, through meticulous statistical analysis,
to significantly influence the holistic contributors. These findings are visually represented in the
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(a) holistic contributors (b) driving parameters

Figure 7: Variables.

correlation matrix (figure 7a), which delineates the strength and direction of the relationships between
each pair of variables.

This dual classification serves a vital function: the holistic contributors offer immediate markers
for assessing pump states, while the upstream driving parameters act as precursors to changes in these
states. Therefore, this architecture offers a nuanced analytical framework for predictive maintenance,
determining an increase of MTBF and overall operational efficacy.

In situations characterised by emergent states, the analytical framework reveals intriguing patterns
of interaction between high-density fine particles in component D13 and component D22 in industrial
units (figure 8). Notably, during emergency states, the pump is relegated to stand-by status with
diminished rotational speed, rendering vibration-based metrics non-informative. However, the corre-
lation analysis between D13 and D22 densities, when cross-referenced with observations during regular
operational modes, suggests a potential carryover of fine particles to the pump.

Such observations align with the dual-variable classification strategy. While vibrations serve as
direct holistic contributors to the pump’s seal life model during regular operations, the presence
of high-density fine particles in D13 and D22 functions as a driving parameter that indirectly but
significantly influences pump conditions during emergency states.

The data shows a clear link between increased density at the top of unit D13, which signals
the presence of particles carry-over and increased vibrations and temperatures in unit D15 and the
pump (figure 9). This correlation supports the idea that particles’ carry-over could be affecting pump
performance. By understanding these connections, better predictive models for maintenance can be
achieved, improving both reliability and efficiency.

By corroborating these variables, it is obtained a multidimensional, high-resolution view into the
systemic factors influencing pump performance. The elevated density at D13’s apex serves as an
upstream driving parameter that exerts a cascading influence on down-stream holistic contributors like
vibrations and temperature metrics. It is noteworthy that the confluence of these variables, analysed
in tandem, enhances the predictive potency of the machine learning models used for anomaly detection
and predictive maintenance.

This demonstrates the utility of the cloud-based, data driven architecture in rendering actionable
insights. The architecture allows for the synthesis of these seemingly disparate data points into a
cohesive analytical model that accurately captures the complexities of the industrial system under
consideration.

The data reveals a cyclical increase in temperature at unit D14, indicative of fouling phenom-
ena. This temperature escalation is concomitant with elevated vibration and temperature metrics
at the pump. Additionally, an increase in pump speed is observed, which can be interpreted as an
operational manoeuvre to counterbalance the reduced cooling efficiency and deteriorating pump per-
formance over time. These interconnected variables substantiate the hypothesis that component unit
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Figure 8: High-density fine particles in D13 and D22.

Figure 9: The increase of density, correlating with vibrations and temperature.
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fouling adversely impacts pump operational integrity, thereby necessitating a more holistic approach
in predictive maintenance algorithms to enhance asset longevity and operational efficacy.

In Figures 8 and 9, the high-density fine particles recorded in components D13 and D22, along with
corresponding vibrations and temperature readings from the pump, serve as a case study highlighting
a real-world application of our data-driven approach. During emergent states, when pumps enter a
stand-by mode, we observe a reduction in vibration metrics, which typically signal operational issues.
However, this does not render the system’s data non-contributory. Instead, it directs our focus to
other indicators, such as the density measurements in components D13 and D22, which maintain their
diagnostic utility even when vibrational data becomes less informative.

The association between the heightened density of fine particles in these components and increased
vibrations and temperature in the pump system is more than coincidental. It reveals an underlying
mechanism affecting pump performance. The temporal patterns captured in the data reflect how
particulate carry-over coincides with pronounced fluctuations in pump behaviour. This linkage un-
derpins a predictive maintenance model that anticipates operational degradation, not solely based on
individual sensor readings but through the synthesis of multi-sensor data, revealing a narrative about
the pump system’s health.

For instance, the data manifests cyclical temperature increases at unit D14, which are aligned
with both increased vibrations at the pump and changes in operational speed. Such multi-variable
correlation does not merely suggest, but rather evidences, the impact of fouling on pump efficiency and
the reactive measures taken to mitigate this effect. This specific instance illustrates the application of
data analytics to identify and respond to operational challenges in real-time, which is at the heart of
our proposed solution.

By explaining these relationships and the analytical methods that uncover them, we provide a clear
demonstration of how data-driven analysis directly informs maintenance strategies. The cloud-based
architecture facilitates this by integrating, processing and analysing data from disparate sources to
deliver actionable insights. Our approach is not only a generic endorsement of data analytics but also
a practical deployment of these methods to address specific industrial challenges, which in this case,
are centred on pump maintenance.

6 Conclusion
The presented architecture transcends the conventional boundaries of reactive maintenance strate-

gies and embodies a comprehensive, cloud-based predictive maintenance framework tailored to the
multifaceted demands of a diverse array of industrial stakeholders—ranging from floor operators and
process engineers to reliability specialists and executive management. This novel approach harnesses
the power of data-driven analytics and integrates it with the operational fabric of industrial mainte-
nance.

What sets this architecture apart is its dynamic utilization of advanced machine learning algo-
rithms. These algorithms delve deep into the operational data, not merely to predict potential system
failures but to provide a granular understanding of asset health and process efficiency. This facilitates
a strategic review in maintenance planning that smartly aligns with operational efficiency and maxi-
mizes asset lifespan. Real-time risk analytics—a cornerstone of the proposed system—offer continuous,
across-the-board risk assessments, empowering stakeholders with the capability to dynamically prior-
itize risks and make informed decisions swiftly.

In terms of operational capabilities, the architecture presents multiple categories of benefits. Its
algorithmic framework facilitates early detection of bottlenecks and equipment vulnerabilities. Ad-
ditionally, one of its main advantages is the capacity to establish optimal operational limits under
diverse conditions, thereby introducing a layer of operational flexibility unattainable until now. It also
enables the predictive reshaping of maintenance schedules, a critical function for avoiding unsched-
uled downtimes. Furthermore, the architecture’s analytics facility accelerates the diagnosis of process
irregularities with unprecedented speed and accuracy. Finally, it incorporates a real-time criticality
assessment module that contributes significantly to both immediate and long-term decision-making.

Implementing the architecture brings a suite of advanced functionalities into play:
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• The ability to detect incipient issues and predict equipment vulnerabilities, leveraging machine
learning and statistical insights;

• The capacity to dynamically calibrate operational procedures to maintain optimum performance
under diverse conditions;

• The predictive scheduling of maintenance activities, minimizing the likelihood of unexpected
system halts;

• The quick, precise diagnosis of operational irregularities, supported by a comprehensive analyt-
ical platform;

• An ongoing evaluation and management of the criticalities associated with process and equipment
risks, reinforcing safety and operational guidelines.

The architecture heralds significant enhancements in several key areas:

• Enhanced operational efficacy through real-time monitoring and predictive analytics;

• Improved utilization of resources and assets, empowered by predictive insights;

• Elevated overall operational metrics, steered by data-driven decision-making processes;

• Strengthened safety measures and asset reliability, supported by immediate analytical feedback
and early warning systems.

By integrating these functionalities, the architecture enables organisations to not only prevent
and predict industrial process disruptions and facility outages, but also assess their criticality rela-
tive to achieving planned operational performance and risk mitigation. Furthermore, it establishes
optimal preventive and contingency measures, completing the standard procedural framework in full
compliance to existing regulatory norms. Therefore, it offers an integrated, data-driven paradigm for
increasing the efficiency of operations and enhancing the value of industrial assets.

As we draw conclusions, it is imperative to reiterate the practical base of our architecture, which
is validated using real operational data processed through a cloud-based solution. The architecture
proposed has been brought to life by implementing it in an actual industrial setting, where the cloud
infrastructure served as a backbone, supporting the intricate data workflows required for machine
learning and predictive analytics.

Our affirmations are not merely theoretical postulations, but they are substantiated by empirical
evidence derived from the deployment of our cloud-based framework. By capitalizing on the elasticity
and scalability of cloud computing, we were able to manage large datasets, applying AI and machine
learning algorithms to reveal patterns, trends and anomalies that form the core of our predictive
maintenance strategy.

The results, illustrated through detailed visualizations, emphasize the efficacy of our approach.
The real-world data, when fed through our cloud-implemented architecture, resulted in actionable
insights that demonstrate the proactive capabilities of our system. These results reinforce our claims,
underscoring the transformative potential of integrating advanced data analytics into industrial main-
tenance regimes. Through this fusion of cloud technology and data-driven methodologies, we have
provided a solid foundation for our assertions, contributing a significant advancement in the field of
industrial predictive maintenance.
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