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Abstract

This paper presents a deep neural network incorporating visual and auditory data fusion to
enhance material recognition performance. Traditional recognition techniques relying on single data
modalities face accuracy and robustness limitations, especially in complex real-world environments.
To address these challenges, we develop a multimodal fusion-based model. The proposed approach
first extracts features from input images and sounds separately using CNNs and spectral analysis.
A concatenation layer then integrates the visual and auditory features. Extensive experiments
demonstrate superior material classification over uni-modal methods, with 100% test accuracy
across seven material types. The multi-modal fusion model also demonstrates stronger resilience to
noise and illumination variations. This research provides a valuable foundation for robust material
perception in intelligent systems.

Keywords: material recognition, deep neural network, visual information, auditory informa-
tion, feature fusion.
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1 Introduction

In recent years, the field of material recognition has made significant advances, yet the accuracy and ro-
bustness of unimodal recognition systems—relying solely on either visual or auditory data—remain limited,
particularly in complex and variable environments. This study aims to address these limitations by developing
a multimodal deep neural network framework that integrates both visual and auditory information, enhancing
both the precision and reliability of material recognition.

In real-world scenarios, objects are usually represented in multiple ways, with images and audio each having
the ability to independently characterize the information about the object, but at the same time having limita-
tions and shortcomings. Visual information is mainly formed by the reflection of light in different wavelengths,
which is then captured by the light-sensitive elements, thus presenting a visual representation of the object.
Visual representations are vivid and comprehensive, covering multiple information dimensions such as color,
brightness, and shape. The main reason why visual information has been used for material recognition for a
long time is that visual information often contains the intuitive characteristics of the target object, so it can
synthesize various types of features to describe and judge the target object as a whole [1] In practical applica-
tions, noise and light are the most important factors in material recognition. In practice, factors such as noise
and changes in illumination may interfere with the visual information, thus affecting the accurate recognition
of the material of the object [2]. In the process of image acquisition, the equipment may not be able to recog-
nize the material of the object. During the image acquisition process, noise may appear in the image due to
various reasons such as equipment performance and environmental conditions. These noises may be manifested
as random pixel point variations, color distortion, etc. in the image. For object material recognition, noise may
lead to greater interference in the spectrogram of the audio information related to the object. Changes in light
brightness may be caused by factors such as changes in the natural environment, differences in the performance
of lighting equipment, etc. When the light brightness changes, the reflective properties of the surface of the
object also change, thus affecting the image of the object [3, 4]. In contrast, audio information consists of sound
waves that convey specific properties of objects through acoustic signals. Audio information, corresponding
to acoustic waves, can enables detection of an object’s position and distance, and is insensitive to obstacles
and other disturbing factors, and can still effectively transmit information, which has an advantage over visual
images in this regard. When we touch an object, we not only perceive its texture by touch, but also perceive its
sound by hearing, which is often closely related to the material of the object. However, audio information is not
intuitive and requires the design of complex models to compute and simulate the perceptual properties of the
human ear, which can have a large impact on the task, especially in the presence of noise interference. Auditory
information is subject to a certain degree of interference in both its time and frequency domains with ambient
noise. White noise causes the original sound in the time domain to be "drowned out" at low signal-to-noise
ratios, whereas the original sound in the frequency domain, although preserved, is also affected. Traditional
material recognition methods have predominantly focused on unimodal approaches. Visual-based techniques,
while rich in detail, often falter under poor lighting conditions or when objects present visually similar textures.
Auditory methods, conversely, can offer additional context through sound analysis, such as tapping responses,
which are less susceptible to visual obstructions but can struggle with background noise interference. These
inherent limitations highlight a crucial gap in current recognition technologies’ ability to adapt to diverse and
real-world scenarios.

The integration of multimodal information presents a promising avenue to surmount these challenges. By
fusing visual and auditory data, the proposed neural network aims to leverage the strengths of both modalities,
thus significantly reducing the dependency on a single type of sensory input and increasing the system’s ro-
bustness against environmental variabilities. Previous studies have shown that multimodal systems can achieve
higher accuracy than their unimodal counterparts by providing a richer representation of objects under study.
In order to overcome the above limitations and improve the accuracy of material recognition, this study pro-
poses a deep neural network that fuses visual and auditory information. The network first preprocesses the
input image and audio signals, then extracts the image features and audio features respectively, and fuses
the extracted features to finally construct a deep neural network that fuses visual and auditory information
to recognize materials, as shown in Figure 1. Specifically, the network first preprocesses the input image to
extract features such as color, texture, and shape of the image. Then, the network preprocesses the input audio
signal to extract the spectral features or sound characteristics of the audio signal. Next, the network fuses the
extracted image features and audio features to generate a feature vector that incorporates visual and auditory
information. Finally, the network uses a deep neural network to classify and recognize the fused feature vector,
outputting the corresponding material labels. Thus, after a sufficient number of training sessions, the network
can gradually learn how to accurately map the input image and audio signals to the corresponding material
labels. By fusing visual and auditory information, this deep neural network can take full advantage of both
modal information to improve the accuracy of material recognition. At the same time, the network also has
good robustness and can effectively resist the influence of disturbing factors such as noise and illumination
changes. In addition, the network can be trained using a large amount of existing image and audio data to
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further improve the performance and generalization ability of the model. Our multimodal approach specifically
targets issues of accuracy in visually complex scenarios and robustness against auditory noise disturbances. For
instance, the ability to accurately recognize materials in a cluttered visual scene or in a noisy environment could
greatly benefit various applications, from industrial sorting to interactive educational technologies. The deep
learning framework developed in this study is designed to intelligently integrate and analyze the complementary
data from both visual and auditory sources, thereby addressing these critical challenges.
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Figure 1: Deep neural network for material recognition fusing visual and auditory information

2 Literature review

In the real world, the material of an object is one of its important properties. Therefore, the accurate iden-
tification of the material is crucial when constructing virtual models [5, 6] . Datasets and learning algorithms
are important tools to handle the material recognition task and provide strong support to researchers. Earlier
studies mainly utilized visual information for material recognition [7, 8, 9]. However, with the continuous devel-
opment of technology, data containing multi-modal information such as visual, auditory, and haptic information
have gradually emerged and have received much attention in the field [10, 11, 12, 13]. The data is also used
as the basis for the development of the visual, auditory and tactile information. Among the many types of
information, visual and auditory ones are crucial.

In the field of computer vision, researchers have developed numerous vision-based material recognition
algorithms. These algorithms commonly employ features such as color, texture, and shape of an image for
material recognition, and the material associated with a particular color can be identified by analyzing the color
histogram or color features of an image [14, 15]. By analyzing the texture features of an image, a material with
a specific texture can be identified [16, 17]. The material with a specific shape can be identified by analyzing the
shape features of the image [18]. The main reason why visual information has been used for material recognition
for a long time is that visual image information often contains the intuitive characteristics of the target object,
so it is possible to synthesize various types of features to describe and judge the target object as a whole [19].
The current application of auditory information in material recognition is mainly reflected in two aspects, one
is based on the method of sound signal analysis, and the other is based on the method of machine learning.
The former refers to the use of the characteristics of the sound signal to identify the material, specifically, it is
necessary to analyze the frequency, amplitude, phase and other parameters of the sound signal, from which to
extract the features that are closely related to the material of the object, so as to realize the material recognition
[20, 21]. The latter refers to the use of a large amount of sound data for model training, so that the model from
the sound data can automatically extract features related to material properties and their recognition [22].

Relying on information from one source alone has its shortcomings. At present, the fusion processing of
visual and auditory information, which are two different modalities, has not been fully investigated. However,
with the development of audio and image feature extraction techniques, audio-visual fusion techniques are
gradually being developed. Studies have been conducted to provide a comprehensive overview of the 2019
Audiovisual Speaker Recognition Evaluation (SRE19), detailing its tasks, performance metrics, data, evaluation
protocol, results, and system performance analysis. The evaluation consists of two main aspects: audio-only
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versus audiovisual, and an optional visual-only [23] . In light of the limitations of traditional approaches in
correlating audio signals with visual elements, especially in complex scenes with similar musical instruments,
the research introduced "musical gestures", a structured representation based on keypoints designed to explicitly
model the musician’s body and finger movements during a performance. Their approach integrates a network
of context-aware graphs for combining visual context with body dynamics, and then links these movements to
the corresponding audio signals through an audio-visual fusion model [24]. The researchers proposed a novel
approach of integrating attentional fusion blocks during the coding of audiovisual data, which bridges the gap
of existing studies between different modal switches by exploiting the correlation between the two modalities
to enrich the audiovisual representation [25]. In addition, a new method for detecting longitudinal tears in
conveyor belts, called audiovisual fusion (AVF), which goes beyond the limitations of purely visual detection and
provides higher accuracy and reliability in identifying conveyor belt damage [26]. The researchers proposed an
audio-visual fusion model that combines deep learning features with a mixed brain affective learning (MoBEL)
model inspired by the limbic system of the brain, aiming to simultaneously learn from the combined audio-
visual features to recognize the spatio-temporal correlations inherent in the video [27]. The audiovisual fusion
multi-stage cross-attention technique utilizes multimodal representations for weakly-supervised action or event
localization in unedited videos, which effectively improves the accuracy in video recognition [28]. The ability
of auditory and visual detection of sound sources has been exploited and a multi-source localization method
using neural networks with audio and visual signals has been proposed [29]. Dimensional emotion recognition
from video using fusion of facial and sound modalities has highlighted the shortcomings of existing fusion
techniques that rely heavily on recurrent networks or traditional attention mechanisms and fail to effectively
utilize the complementary nature of audiovisual modalities, and technological innovations based on this [30].
AV-SAM is an audiovisual localization and segmentation framework based on Segment Anything Model (SAM).
The framework aims to efficiently generate masks for sound objects and associate them with audio in various
tasks [31]. Based on the machine learning depth approach, four dynamic neural network architecture-based
methods for single-peak object recognition in colleges and universities are proposed in the study considering
performance issues and stability requirements, and the results of the study show that the top-1 error rate of
the single-frame tactile model is reduced by 78% and the average accuracy is improved by a factor of 2.19 by
augmenting the tactile-based visual information using different strategies [32]. Based on the existing multi-scale
and multi-directional architecture of the bionic model, the researchers constructed the Mel frequency cepstrum
coefficients on the basis of the audio code to realize the bimodal recognition with the fusion of visual and
auditory perceptions, which effectively improves the recognition efficiency of the model [33]. The abstract visual
representation of the amplitude envelope cues of the target sentence is beneficial to speech perception in complex
listening environments, providing a research reference for speech sensory recognition in noisy environments [34].
The speed of data information acquisition is improved by generating representative vectors through CNN-based
recursive modeling and fusion module, which leads to a substantial improvement of the overall performance in
audiovisual fusion [35].

Considering that existing studies still have great difficulties in object material recognition, this study pro-
poses a visual and auditory fusion method for object material recognition, and validates the effectiveness of the
visual and auditory fusion method under the multimodal fusion perspective and combined with self-constructed
library data.

3 Research methodology

3.1 Database of visual and auditory information features

In this study, aimed at advancing object material recognition, a high-resolution video camera (720px1280p,
30 frames/sec) was employed to capture high-quality images against specifically designed backdrops. To ensure
robust generalization of the carefully trained model for classifying materials, the video data spans a variety of
lighting conditions—including natural, green, red, and blue light—and accounts for differences in shooting angles
and object sizes and shapes. This approach enhances the model’s exposure to diverse scenarios, contributing to
a comprehensive training dataset. The experiment involved seven categories of materials: wood, plastic, steel,
profiles, cotton fabrics, ceramics, and glass. Each category was meticulously documented under varied lighting
and angular conditions to maintain data diversity and validity. Subsequently, a specialized image processing
tool was used to select and compile the desired images into a database, resulting in 10,870 training samples and
4,860 test samples.

During the sound data collection phase, we carefully selected and analyzed sounds produced by colliding
or knocking on seven commonly used materials in daily life, including plastic, ceramics, silk fabric, wood,
aluminum alloy profiles, metal, and glass. The acoustic characteristics of these materials can vary significantly
depending on their composition and shape, introducing variability into the recorded sound signals. To control
environmental noise, the recording sessions were conducted in a laboratory setting during early morning hours.
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A standard 2B pencil was chosen for its consistent hardness, which minimizes variability in the produced sound
when tapping different materials. This consistency is crucial for comparing the acoustic responses of diverse
materials under controlled experimental conditions. To further ensure the reliability and diversity of the sound
dataset, three distinct samples from each material category, varying in size and specification, were audibly
tested. This rigorous methodological framework supports the creation of a rich and representative dataset,
providing a solid foundation for subsequent analyses and model training.

3.2 Visual information feature extraction

Convolutional Neural Networks (CNNs) were selected for visual feature extraction due to their proven
effectiveness in handling spatial hierarchies in images, which is crucial for distinguishing material textures and
patterns.

The basic structure of a convolutional neural network (CNN) is shown in Figure 2. After the input data
is convolved in the first layer, shallow features are obtained and the feature map is output. Next, the desired
features are selected through the pooling layer to achieve compression and a new feature map is constructed.
Subsequent convolution and pooling operations similarly process the output of the first layer to gradually obtain
deep features. Finally, the fully connected layer accomplishes the corresponding tasks based on the acquired
deep features. If the fully connected layer is removed and multiple convolutional and sampling layers are
superimposed, a multilayer CNN model can be constructed for deep feature extraction.

o

Input Images

©000-000
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Layer

Convolutional Convolutional Ponding Convolutional Ponding
Layer Layer Layer Layer Layer

Figure 2: Basic structure of CNN model

Following the above strategy of CNN model for feature extraction, we can choose the pre-trained VGG19
model and remove the fully-connected layer at the end of it, and use it as a component for image information
feature extraction.The VGG19 model is essentially a multilayer CNN, which is a deep model based on CNNs
and contains 19 layers, including 16 convolutional layers and 3 fully-connected layers. Although the pre-trained
VGG19 model is effective for image feature extraction, there is a risk of overfitting to the ImageNet dataset rather
than to our specific materials dataset. To mitigate this risk, further fine-tuning on material-specific images was
conducted to ensure the model better generalizes to the characteristics of different materials. In practice, there
is no significant difference between VGG19 and VGG16. For VGG16, it achieves a certain size of sensory field
(the local information of the input picture that affects the picture output) by replacing the original large-size
convolutional kernels (11x11, 7x7, 5x5) with multiple 3x3 convolutional kernels. The advantage of this change
is that several small convolutional kernels outperform a single large convolutional kernel while keeping the size
of the receptive field unchanged, because in a multilayer network, multiple convolutional operations increase
the depth of the network, which in turn results in a more complex descriptive capability.

In addition, the advantage of small convolutional kernels in neural networks is that they have fewer pa-
rameters and lower computational cost compared to large convolutional kernels, and thus have an important
position in deep learning models. In the VGG model, we replace the large convolutional kernels with all 3x3
sized convolutional kernels, which improves the descriptive ability of the network while keeping the perceptual
field of the large convolutional kernels unchanged. This move not only reduces the computation of model param-
eters, but also improves the performance of the neural network.The structure of the VGG model also becomes
more concise, with the same size of convolutional kernels (3x3) as well as maximal pooling (2x2) uniformly
used throughout. With the same basic structure as a traditional convolutional neural network (CNN), the VGG
model acts as an image feature extractor after removing the last fully connected layer. That is, when the input is
a colorful square image with a side length of 224, the output is 7x7x512 image features. This structure largely
improves the model’s ability to extract image features and lays the foundation for subsequent classification
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and recognition tasks. By adopting a small convolutional kernel and maintaining a concise network structure,
the VGG model achieves a good balance between neural network performance and computational efficiency.
Meanwhile, when designing deep learning models, the effects of convolution kernel size and model structure
on performance should be fully considered to achieve higher computational efficiency and better generalization
ability.

3.3 Characterization of auditory information

As a kind of non-stationary signal, sound signal behaves as a function of sound pressure with time, and
has the characteristics of time-varying, non-stationary and large dispersion. At this stage, we mainly use time
domain, frequency domain and cepstrum analysis methods to explore the sound signal. In practice, time-domain
and frequency-domain analysis methods are widely used in the field of sound signal analysis. Especially, the
time-domain based analysis method is small in operation, easy to realize, and has a clear physical meaning. As
shown in Figure 3, the results of time-domain analysis of ceramic, metal, wood and plastic sound signals are
demonstrated. The short-time energy and short-time average over-zero rate of the sound signal can be calculated
by setting the frame length and frame shift reasonably during the partitioning process. However, the results
of a large number of studies show that the time-domain features, such as short-time energy and short-time
average zero crossing rate, obtained from the time-domain analysis of the sound signals emitted by objects of
different materials at the time of collision or percussion are less distinguishable. Therefore, in the classification
and recognition of material sound signals, it is difficult to achieve the expected results if only the time domain
features such as short-time energy and average zero crossing rate are selected as the characterization of sound
signals.

Time-domain analysis of ceramic sound signals Time-domain analysis of metallic sound signals
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Figure 3: Time-domain analysis of sound signals from different material objects

Spectral analysis has been hailed as the most widely used and effective means of analyzing sound signals
in existing research, due to the fact that the spectrum of a sound signal can reveal the characteristics of
the excitation spectrum and the frequency of the vocal tract. Currently, there are many methods for speech
feature extraction, and Mel Frequency Cepstrum Coefficient (MFCC), Linear Predictive Analysis (LPC), and
Short-Time Fourier Transform (STFT) are commonly used. Mel Frequency Cepstral Coefficients (MFCCs)
were used for auditory feature extraction because they closely mimic the human auditory system’s response
and are particularly effective in extracting relevant features from complex sound waves, making them ideal for
distinguishing materials based on their sound upon impact.

Aiming at the non-stationary and time-varying characteristics of sound signals, the short-time Fourier
transform is used for sound feature extraction. The basic concept of this transform is to process the signal
through a sliding time window and apply the Fourier transform to the signal within the window to obtain the
time-varying spectrum of the signal. The short-time Fourier transform becomes an effective analytical tool
when exploring the short-time spectrum of a sound signal over time. Speech spectrogram has a key position in
the field of speech signal analysis because it reveals the dynamic spectral properties of the speech signal. In the
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spectrogram representation of a sound signal, the vertical coordinates symbolize frequency and the horizontal
direction represents time. The signal strength can be described by the percentage of gray-scale information on
the speech spectrogram, and the gray-scale stripes express the short-time spectrum of speech at each moment.
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Figure 4: Results of signal spectrum analysis of different types of material objects

Figure 4 presents spectrograms of sound signals from different materials. Each spectrogram illustrates the
frequency (vertical axis) and time (horizontal axis) distribution of sound, highlighting how different materials
produce distinct sound signatures.

As can be observed in Figure 4, there is some similarity between the sound spectrograms produced by wood
and plastic when tapping. There are fewer darker colors, which is due to the relatively low frequency of sounds
produced by wood and plastic when struck. In contrast, metal produces the largest fluctuations in the graph
when tapped, which is because objects made of metal emit more sound energy than the other three types of
materials when bumped or tapped. In Figure 4, the order of sound energy from highest to lowest is metal,
ceramic, plastic and wood, respectively. It is worth noting that the metal and ceramic spectrograms in Fig. 4
show clear horizontal lines from left to right, which represent the resonance peaks characteristic of the sound
signal. Observed from the bottom to the top, the colors of the spectrograms change from dark to light, which
implies that the sounds emitted by different material objects contain rich harmonic information. It can be seen
that the sounds emitted by different material objects during tapping have large similarity in their frequency
distributions, although they have unique signals, which increases the difficulty of sound recognition. Therefore,
it is necessary to adopt deeper and more characterizing features for sound signal recognition.

In this study, Mel frequency cepstrum coefficient (MFCC) is used to extract sound signal features based
on the sound fluctuation characteristics of various types of materials. For auditory feature extraction, we
utilized Mel Frequency Cepstral Coefficients (MFCC) and spectral analysis. The parameters for MFCC were
carefully selected: a window size of 25ms and a hop size of 10ms were used to balance temporal resolution and
computational efficiency. These settings are crucial for capturing the nuanced acoustic properties of materials,
facilitating the robust discrimination of their types. The Mel frequency cepstrum coefficient (MFCC) has been
proven to be widely used in the field of speech recognition and plays a key role. Based on the concept of
homomorphic processing, the study calculates the MFCC and introduces the Mel filter with reference to the
characteristics of the human auditory system. The resonance peak is one of the key features of the sound signal,
and what connects the resonance peaks is the spectral envelope of the sound signal, i.e. a smooth curve. By
extracting the spectral envelope information, the researcher obtains the information that expresses the position
and change of the resonance peaks, and thus proposes the deconvolution technique. In homomorphic processing
calculations, the excitation source is separated from the impulse response of the sound channel and then analyzed
one by one, and this homomorphic processing calculation is called a method of "nonparametric deconvolution".

In the homomorphic processing, the input is the convolution result of the sound gate excitation signal x_ 1(n)
and the channel impulse response x_ 2(n) ; D[x(t)] is the first system whose role is to do additive operation on
the input signal; x(t) denotes the audio signal in the time domain. The final output signal is presented in the
complex cepstrum frequency domain. The convergence domains of the signals x(n) and Z(n) are in the unit
circle, and #(n) is the complex spectrum of x(n) , so the first D[x(t)] system can be expressed by Equation (1).
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The first system D[x(t)] operates the results of the input convolution run on the inverted spectral domain
Z(n) = &1(n) + &2(n) , therefore, the completion of the deconvolution operation brings significant advantages
for the analysis and recognition of sound signals.

Based on the auditory perception mechanism of the human ear, the researchers simulated the human
auditory system and designed the Mel filter. The function of this filter is to convert the conventional frequency
to Mel frequency, which is beneficial to sound recognition, improves recognition accuracy and performs better.
The conversion formula is as follows:

mel(f) = 2595 x log;,(1 + f/700) (2)

In Mel spectral envelope extraction, first of all, the preprocessing step is completed for the input speech
signal by fast Fourier transform. According to the study, the envelope of the sound signal belongs to the low-
frequency signal characteristics, so the low-pass filtering principle can be used to filter the envelope signal. When
sound signals are analyzed spectrally, the main operations include Fourier transform (FT) and Fourier inverse
transform (IFT). However, in cepstrum studies, the basic principle is to perform the Discrete Cosine Transform
(DCT) operation. The DCT operation removes the correlation between the sound signals and at the same time
realizes the dimensionality reduction of the signal. The DCT processed signal eliminates the correlation between
the dimensional signals, and the 2nd to 13th coefficients after DCT are selected for the final extraction of the
MFCC features.The content of the MFCC feature extraction is shown in Figure 5.

"Voice Signal" "Preprocessing” "FFT (Fast Fourier Transform)" "Low Pass Filter" "DCT (Discrete Cosine Transform)” "MFCC Extraction”

Input voice signal
_ >

Apply preprocessing

Perform FFT

Apply low pass filter

Perform DCT

Extract MFCC features (2nd to 13th coefficients)

"Voice Signal" "Preprocessing” "FFT (Fast Fourier Transform)" "Low Pass Filter" "DCT (Discrete Cosine Transform)” "MFCC Extraction”

Figure 5: MFCC extraction timing diagram

In the MFCC feature extraction process, a series of preprocessing operations, including frame-splitting,
windowing, and pre-emphasis, need to be performed on the input sound signal z;(n) . The principle of frame
splitting is to multiply the sound signal with a window function of finite length, which can be described by
equation (3). In the field of speech signal analysis, the most widely used window functions include: Hamming
window, Hanning window, and Blackman window, of which the expression of Hamming window is shown in
equation (4).

w(n) :{ 0.54 — 0.46 cos(2mn/(L—1)) 0<n<L—1 @

0 otherwise

x;(m) is the pre-processed signal and then the Fast Fourier Transform operation is performed on it, i.e.
X (i, k) = FFT [z;(m)] , after which the transformed signal is filtered in the frequency domain using a Mel
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filter to obtain the Mel spectrum. After obtaining the Mel spectrum the calculation of the spectral line en-
ergy E(i, k) = [X(i,k)Q] is done and finally the energy passing through the Mel filter S(i, m) is calculated.
Calculating the energy passing through the filter S(i, m) in the frequency domain is equivalent to multiplying
and adding the frequency domain responses of the Mel filter H_m(k) and E(i, k) , which can be expressed by
equation (5).

S(i,m) = z_: E(i, k) Hp(k),0 <m < M (5)
k=0

Calculating the DCT after de-logging S(i, m) gives the MFCC:

m fec(i,m) = \/E :iz::: log[S (i, m)] cos (W) (6)

In order to improve the classification and recognition effectiveness of the sound recognition system, we
can use the dynamic and static characteristics of sound to characterize the sound signal. The MFCC features
obtained from Equation (6) only reflect the static characteristics of the sound signal, while the dynamic char-
acteristics of the sound signal can be demonstrated by calculating the difference spectrum of the MFCC. As
shown in Equation (7), this formula expresses the first-order MFCC difference coefficients of the the speech
signal. Similarly, the calculation of the second-order difference coefficients of the MFCC can be accomplished
by substituting the result of Eq. (7) into the corresponding equation.

mfeceiy1 —mfec; t< K
Zkil k(mfccipr—mfeei k) .
di = K other 7
2) i B
mfeciy1 —mfee t>Q-K

3.4 Object Material Recognition Modeling

Feature splicing (Concat) and addition (Add) are two common methods in feature map information in-
tegration, which have wide applications in the fields of deep learning and computer vision.Concat refers to
splicing feature maps from different layers in a certain way to obtain richer feature information. This method
is usually used for multimodal data analysis and multitask learning. In image recognition, different features
may be extracted from different convolutional layers and the obtained different feature maps are spliced, which
can be utilized at the same time to improve the performance of the model. Add refers to weighted summation of
feature maps from different layers to obtain a new feature map. This method is usually used for feature fusion
and feature enhancement, commonly used in target detection and semantic segmentation and other tasks. Dif-
ferent convolutional layers can extract different features, and by adding the feature maps from different layers,
a new feature map can be obtained that can extract more precise information, which effectively improves the
performance of the model. The difference between the two consists in the different ways of integrating the
feature information; Concat is to stitch the feature maps of different layers to obtain richer feature information,
which is more commonly used in DenseNet network, and the operation diagram is shown in Figure X. Add is to
weight and sum the feature maps of different layers, which is more commonly used in ResNet, FPN and other
networks, and a new feature map can be obtained, and the operation schematic is shown in Figure 6.

Concat and Add have some similarities between them in terms of feature map information integration.
Both of them can be used to increase the dimension of feature maps, merge multiple feature maps into a higher
dimension feature map, so as to provide more information for the model. Of course, there are also differences
between the two, as can be seen from the above expressions, which have differences in the way they operate.
For the source data, the concat method will change the feature size and number of features, while the Add
method only adds the feature values of the data and does not change the number of dimensions of the features.
Add operation consists in adding the pixel values of the corresponding positions of the two feature maps, which
pays more attention to the relationship between the corresponding positions of the feature maps, and therefore
requires that the two feature maps input need to have the same dimensions and shapes. The Concat operation
is to join the two feature maps along a certain dimension, focusing more on the arrangement and combination
of the feature maps, and has no requirement on the input feature maps. In the convolutional neural network,
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Feature Map D \ Feature Map A \
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New Feature Map Rich Feature Information

Figure 6: Schematic diagram of the two fusion methods

the two input data processed by the Concat operation will undergo independent convolution operations on the
corresponding channels and form independent convolution kernels. In contrast, the two input data processed
by the Add operation will directly sum the input data values before starting the convolution operation, i.e., the
features at the corresponding positions go through the same convolution kernel. Therefore, the two features
need to have similar semantics to ensure that the new features processed by the add operation can adopt the
same convolution kernel. From the above comparison, it can be found that add belongs to a special Concat
processing mode to some extent, which forms a preset premise that can reduce the number of parameters and
computation to some extent.

For the output of each feature, the convolution kernels used are independent. Suppose that both input
features contain ¢ channels, X1, X2, ... ; Xcand Y1, Y2, ... , Yc, and the corresponding convolutional kernels
are K1 ; K2 , Kc ..., K2C . The output expressions can be represented by the Concat and Add operations,
respectively:

Zconcat = in * Kz + iY; * Ki+c (8)
=1 1=1
Zadd :i(X2+K)*K2:iXZ*Kz+iK*Kz (9)
=1 =1 =1

Of course, the Concat operation simply splices different features and does not perform deep fusion. There-
fore, after the Concat operation, it is usually necessary to perform other operations, such as a fully connected
layer or a convolutional layer, to rearrange and fuse the spliced features to obtain a more effective feature
representation. In view of this, this study proposes a material recognition method based on the fusion of visual
and auditory information, based on different methods of feature extraction of visual and auditory information,
and the use of Concat operation to realize the fusion of visual and auditory features, to construct a new fusion
feature space, and then test and train the constructed material recognition model through the classifiers, so as
to realize the goal of object material recognition. The material recognition model is then tested and trained by
a classifier to realize the goal of object material recognition.

Specifically, considering the advantages of information fusion, we adopted the method of concatenating the
features output from the last layer of convolutional neural networks with different structures, and successfully
constructed a new feature fusion space. This method can realize the fusion of visual and auditory signal fea-
tures, which significantly enriches the information of object material features, and thus significantly improves
the accuracy of object material classification and recognition. The scheme adopts different methods to extract
features from the datasets of sound signals and visual images, and the two extraction processes maintain a mu-
tually independent state without interfering with each other, and their training processes are in a synchronized
state, so that the deep-level feature expressions of different modal material data can be obtained. Specifically,
for any sample O.co , O is the material sample data space, O; and Oj can be used to represent data representing
different material properties, respectively, and the Concat operation is used to perform feature fusion, which
can obtain a new sample feature representation [O;, O] , and based on the new sample feature representation
for the learning of classifiers, and test the learned classifiers, and ultimately realize the recognition of object
materials.

To validate the accuracy of our model, we employed cross-validation techniques, splitting the data into
multiple train-test sets. This method helps in assessing the model’s performance more reliably across different
subsets of data, ensuring that the reported 100% accuracy is not a result of overfitting but rather indicative of
the model’s robustness.
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4 Results and discussion

4.1 Analysis of the results of the experiment

In this study, the extraction of visual and auditory features was carried out using different methods, after
which the information was fused by Concat, and the model training process is shown in Figure 7 and Figure
8, which shows the changes in accuracy, after the increase in the number of training epochs, and Fig. 8 shows
changes in the loss function.

= Training Accuracy
1.1t ——- Validation Accuracy

0 25 50 75 100
Epochs

Figure 7: Accuracy of concat model for accuracy during training

2500

Training Loss
=== Validation Loss

2000

1500

Loss

1000

0 25 50 75 100
Epochs

Figure 8: loss curve for the concat model during training

The loss function, shown in Figure 8, measures the discrepancy between the predicted material categories and
the actual categories. We use the categorical cross-entropy loss, which is suitable for multi-class classification
problems. The validation set achieves an accuracy of 100%. The data visualization is conducted using T-
SNE (t-Distributed Stochastic Neighbor Embedding), which is a technique for dimensionality reduction that
is particularly effective for visualizing high-dimensional datasets in a low-dimensional space. Figure 9 displays
the results, showing clear segmentation of the data into distinct regions. This effective distinction confirms the
high accuracy performance of the validation set.

Figure 9 illustrates the T-SNE visualization of our model’s feature vectors, showing three distinct clusters.
Each cluster corresponds to a group of materials with similar acoustic and visual properties, as recognized by
the network. This separation underscores the model’s ability to discriminate between different categories of
materials effectively. On the test set, the trained model was used for over-feature extraction and fusion, and the
classification test was performed on the test set to obtain the confusion matrix in Figure 10, and it was found
that the accuracy of the model still exceeded 90%, and that the fused new features can effectively improve the
immunity to noise compared to when a single type of information feature is used.

The same T-SNE was used for visualization, and the results of 2D and 3D visualizations are shown in Figure
11 and Figure 12, respectively.

As seen in the figure above the Concat fused data have increased intra-class distance and decreased inter-
class distance after being affected by noise. However, the Concat fused data still has good distinguishability
relative to the model performance on the validation set. Compared to using only a single piece of visual or
auditory information, the Concat-fused data were less affected by noise. In order to further verify the recognition
effectiveness of the actual item material, this study further explores online training and offline recognition, 7
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Figure 10: Confusion matrix for test set classification prediction

categories of items each category selected 20 items for offline recognition experiments, recognition results are
shown in Table 1.

As illustrated in Table 1, our recognition models consistently achieve 100% accuracy across seven types of
materials, demonstrating their effectiveness in material identification. Comparative analysis with other studies
indicates that our model’s 100% test accuracy surpasses typical benchmarks in material recognition, where
average accuracies often range from 80% to 95%. This significant improvement highlights the effectiveness of
our multimodal approach. The models operate at an average recognition speed of 52 frames per second (fps),
which confirms their capability to handle real-time processing demands efficiently.

4.2 Discussion

In our study, we propose a visual-auditory fusion recognition method, the model can accurately identify
different types of object materials, and in the application of the bimodal method, the visual graphic and audi-
tory data can improve the material recognition accuracy, which can be adapted to the specificity of the material
recognition under different environmental conditions. Compared with the traditional individual element recog-
nition method, the multimodal recognition method proposed in this study has better robustness and can collect
corresponding signal features according to different object materials, and with the increase of signal feature
data, the efficiency of the model for material recognition will continue to improve. In multimodal learning
recognition, the co-summing of visual-haptic and auditory modalities can greatly improve the recognition accu-
racy of surface materials with different attributes, and accurate recognition results can be obtained through the
limit learning active multimodal framework with multi-scale local sensations, which demonstrates the usability
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Figure 12: 3D visualization of the distribution results for the test set

of multimodality in the recognition of object materials [35].Eguiluz et al. (2018), in Object Recognition and
Material Recognition proposed a recursive tactile sensing multimodal recognition method, which demonstrated
that the multimodal recognition modeling approach can be effective for material material recognition by affirm-
ing the validity of multimodal recognition [36]. Tsuji et al. (2011) proposed a novel multimodal haptic sensor,
in which the sensor, through a pair of capacitive electrodes in a CdS cell, combines the permittivity and optical
reflectivity measurements, electrical measurements of object stiffness, and contact voltage measurements are
integrated into a single unit to obtain information on different material properties and determine the surface
material of the object [37]. The existing methods on multimodal material information recognition have affirmed
the effectiveness of different information features acquisition, but this paper has improved the effectiveness of
multimodal model recognition based on the traditional recognition methods, which improves the accuracy of
material recognition of multi-type objects. However, the research in this paper also has some limitations, the
model’s handling of environmental noise is not sufficiently precise, and the diversity of the dataset and the
generalization ability of the model need to be further improved. It will be essential to address these techni-
cal challenges in future research in order to better adapt to different application scenarios and environmental
conditions.

5 Conclusion

In conclusion, fusing visual and auditory data modalities for material recognition via deep neural networks
achieves significant performance gains over conventional uni-modal techniques. This multi-modal approach
allowing models to leverage complementary image and sound features results in more accurate and generalizable
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Table 1: Material offline identification results

Material Type | Number of items | Accurately identified | recognition accuracy
lumber 20 20 100%
plastics 20 20 100%
steels 20 20 100%
extruded profile | 20 20 100%
cotton fabric 20 20 100%
ceramics 20 20 100%
fiberglass 20 20 100%

material classification, while also enhancing robustness to real-world variations like noise. As the experimental
results validate, combining cross-domain data sources aligning with distinct human senses emulates innate
biological perception principles. Our investigation reveals the rich potential of multi-modal fusion, providing a
basis for next-generation intelligent recognition systems delivering reliable material identification under diverse
application conditions.

While the initial experimental results demonstrate high accuracy, concerns regarding overfitting due to the
small size of our simulated dataset have been noted. To address this, future experiments will include testing on
larger, real-world material recognition benchmarks to validate the model’s effectiveness more comprehensively.
This will help ensure that our findings are robust and scalable across diverse application scenarios.To solidify
the validity of our results, we plan to incorporate statistical significance testing in our subsequent studies.
This will include comparisons between our multimodal approach and unimodal (visual-only and auditory-only)
approaches. Such testing will provide a clearer analysis of quantitative gains and help in precisely evaluating the
contributions of each modality to the overall performance.In addition, with the continuous advancement of deep
learning and neural network technologies, future research could focus on developing more efficient and accurate
algorithms to cope with more complex and dynamic real-world environments. In addition, considering the need
for data security and privacy protection, future research also needs to focus on the security and adaptability of
models. In conclusion, this research area has a broad development prospect and important practical value.
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