
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 19, Issue: 3, Month: June, Year: 2024
Article Number: 6428, https://doi.org/10.15837/ijccc.2024.3.6428

CCC Publications 

Deep recurrent neural networks distributed on a Hadoop/Spark
cluster for fall detection

M. Hamdi, H. Bouhamed, F. Badreddine, R. Alkanhel

Monia Hamdi
Information Technology, College of Computer and Information Sciences
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
mshamdi@pnu.edu.sa

Heni Bouhamed*
Advanced Technologies for Image and Signal Processing Unit (ATISP)
Sfax University, Sfax, Tunisia
* Corresponding author: heni.bouhamed@fsegs.usf.tn

Fady Badreddine
Advanced Technologies for Image and Signal Processing Unit (ATISP)
Sfax University, Sfax, Tunisia
fadybadreddine@gmail.com

Reem Ibrahim Alkanhel
Department of Information Technology, College of Computer and Information Sciences,
Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia
rialkanhal@pnu.edu.sa

Abstract

Falls detection approaches struggle with both Big Data scalability and upholding individual
privacy, this research work proposed a novel approach for posture recognition followed by fall
detection, taking advantage of the synergy between Random Forests and Uniform Local Binary
Patterns (uLBP) histograms for an accurate and fast posture identification while respecting pri-
vacy. Additionally, it referred to deep recurrent neural networks distributed on a Hadoop and
Spark platform for time series analysis in fall detection. This combination of methods allowed us to
achieve acceptable real-time monitoring precision. This study, therefore addressed two objectives
simultaneously: efficiency and scalability in posture recognition using Random Forests and uLBP,
and fall detection relying on the recurrent neural network (RNN) for time series processing. The
suggested solution is designed for home telemonitoring, where scalability and effective data man-
agement are supported through Hadoop/Spark. The integration of these technologies promotes
reliable detection without any privacy violation, paving the way for a wider adoption of home
monitoring systems for an increasing population of dependent individuals.

Keywords: Posture recognition, Fall detection, Random Forest, uLBP histograms, Deep re-
current neural networks, GRU, Hadoop, Spark, Time series, Big Data.



https://doi.org/10.15837/ijccc.2024.3.6428 2

1 Introduction
Healthcare is one of the sectors where the impact of Big Data could be most revolutionary. Faced

with today’s technological innovations, solutions for disease diagnosis, medical monitoring, and patient
care are emerging. For example, falls, considered a major threat to seniors, have significant physical,
financial, and psychological consequences. They pose a substantial financial burden, accounting for
between 0.85% and 1.5% of total healthcare expenditures in such countries as the United States, the
United Kingdom, and Australia [1]. One of the major challenges lies in monitoring dependent indi-
viduals at home. For these individuals, a simple fall can trigger tragic consequences, both physically
and in terms of subsequent complications, potentially compromising their autonomy and drastically
affecting their quality of life. Detecting these falls goes beyond the notion of mere convenience; it is a
medical emergency. The interesting issue to address is on the way to ensure both prompt and effective
fall detection, especially when it occurs at home, while preserving the privacy and independence of
the concerned individual.
To efficiently handle Big datasets, technological platforms such as Hadoop and Spark prove relevant
in providing a promising response to this issue. The use of sophisticated deep learning algorithms
has recently gained popularity in this field [3, 4, 5, 6]. Several studies have shown that Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are the most popular in
recognizing human actions where temporal and spatial information is crucial [7]. Moreover, the Re-
current Neural Networks (RNNs) are proven to be excellent for temporal data processing while CNNs
are proficient in spatial analysis. This has made their combined use optimal for video analysis. It has
become possible to provide a real-time analysis of data collected from sensors located in the homes of
dependent individuals. This analysis could also allow for an instant detection of a fall as well as an
identification of behaviors or patterns indicating an increased risk for the monitored individual.
The objective of this research was to merge the urgent clinical need of early detection with tech-
nological advances in the field of Big Data. Based on a methodology applied on a Hadoop/Spark
platform, we aimed to create a system that is both accurate and responsive; i.e. a system that could
provide enhanced protection for dependent individuals while respecting their privacy. In fact, privacy
and discretion are an absolute priority in the suggested approach. To this end, the proposed method
opted for the uLBP histograms as the only information to store via video sensors. These histograms
allow optimizing data processing by reducing personal information while ensuring precise detection,
initially distinguishing five distinct daily activities: sitting, standing, lying, crawling, and bending
[2]. Subsequently, the postures time series were used for fall detection through an appropriate deep
learning model deployed on a scalable Big Data platform. Our work stands out in the field of fall
detection research by developing the first scalable Big Data distributed deep learning model, specif-
ically designed to operate in parallel on a Hadoop/Spark cluster through an efficient exploitation of
distributed data and respecting people’s privacy even in intimate settings, as we only store the uLBP
histograms, making it impossible to reconstruct the original images.
The remaining of the paper is structured as follows: Section II contextualized the research study,
emphasizing the treated issue and examining the current state of the art. Section III introduced the
theoretical and technological framework of the study. Section IV introduced the adopted approach
for posture identification using uLBP histograms and Random Forests. It also detailed the use of
LSTM/GRU networks for fall detection. The achieved experimental results were revealed and dis-
cussed in section V before drawing the final conclusions and suggesting some future prospects in the
final section.

2 State of the Art: Study Framework and Existing Approaches

2.1 State of the Art

The majority of fall detection methods involve the recognition of postures. Consequently, this
research work first focused on introducing the existing approaches related to both posture recognition
and fall detection.



https://doi.org/10.15837/ijccc.2024.3.6428 3

2.1.1 Posture Recognition

Posture Recognition is a multidimensional field that uses a variety of techniques to achieve pre-
cise results. In fact, several methods and techniques were proposed relying mathematical functions,
3D sensors, silhouette graphics, or 3D human models. Jeng et al., [8], for instance, introduced a
function for posture analysis based on such parameters as the body vertical dimension, its planar
shape, variations in its center of gravity, and the time during which these parameters are observed.
Height and area are key indicators that vary distinctly according to posture - standing, lying, or in
intermediate positions like sitting or leaning. Together with these measurements, significant changes
in the center of gravity play a crucial role in identifying dynamic movements such as walking. On
the other hand, Diraco, Leone [9], and Siciliano explored posture recognition using a TOF (Time of
Flight) 3D sensor. Their research highlights the advantages of TOF sensors, involving privacy preser-
vation and obtaining real 3D information. They developed a specific computational framework for
posture classification using volumetric and topological descriptors. In a different context, Modarres
and Soryani [10] propose a new representation based on a body silhouette graph called BPG. This
descriptor relies on approximating the silhouette using elliptical basis functions and structuring these
features into a graph. The BPG is designed to be close to a real human skeleton. This descriptor
has several advantages, such as extracting precise landmark points from the silhouette and capturing
the structure and relationships among these points. Boulay, Brémond, and Thonnat [11] introduce a
method that combines 2D and 3D techniques with a 3D human model for posture recognition. Their
method distinguishes various general and detailed postures independently of viewing angles. They also
consider integrating temporal information to ensure a more accurate recognition. Li, H., and Sun, Q.,
[12] used three separate neural networks simultaneously: the first analyzed the outer contour of the
body and its general shape, the second focused on the internal structure, especially the joints and the
third studied the geometry. The features remain stable regardless of rotation, movement, or image
size. After individual training on body representations, the conclusions of these networks are fused
using the "D-S evidence theory" to produce a consistent and accurate final evaluation. Finally, a study
by AlFayez, F and Bouhamed, H [13] proved the effectiveness of a posture recognition method using
uniform Local Binary Pattern (uLBP) histograms and Random Forests, offering high performance,
reducing computational complexity and preserving privacy.

2.1.2 Fall Detection

The identification of falls is of paramount importance, especially when it comes to ensuring the
protection of the elderly or those in dependent situations. A fall can result in consequences ranging
from simple bruises to severe fractures, or even fatal outcomes. Fall detection, a subject of crucial
importance, has garnered increasing academic interest since the 1990s. In a pioneering study, Lord and
Colvin (1991) [14] introduced the use of a miniature accelerometer combined with a microcomputer
chip for fall detection. Similarly, Williams et al., (1998) [15] explored the application of a piezoelectric
shock sensor coupled with a mercury tilt switch to monitor body orientation. Along with these initial
advancements, the issue of optimizing the sensors placement arose swiftly. Bourke et al., (2007) [16]
conducted a comparative study and concluded that the trunk was preferable to the thigh for sensor
positioning. This research was fundamental, and the article has been widely cited in this field. Despite
the initial success of accelerometers, technological innovation led to the exploration of new approaches.
Bourke and Lyons (2008) [17] proposed the use of a single gyroscope, measuring the rotation angle,
angular velocity, and angular acceleration simultaneously. Nevertheless, it was claimed that exclusive
reliance on accelerometers or gyroscopes could limit the detectors robustness (Tsinganos and Skodras,
2018) [18]. It is in this context that Li et al., (2009) [19] highlighted the added value of fusing the data
gathered from the accelerometer and gyroscope, which provided a better discrimination between falls
and non-falls occurrences. The emergence of visual sensors introduced a new dimension to this research
field, as well. Rougier et al., (2011) [20] implemented sophisticated techniques to track and analyze
human silhouettes through video sequences. In a similar vein, Diraco et al., (2010) [21] investigated
the use of the ToF camera for fall detection. However, and despite its advantages, the ToF camera has
limitations in terms of cost and resolution. Finally, the advent of the Kinect depth camera by Microsoft



https://doi.org/10.15837/ijccc.2024.3.6428 4

stimulated a deep shift in fall detection studies. Its combination with accelerometers became a major
research topic, as evidenced by the work of Li et al., (2018) [22], revealing that this combination
significantly improves detection compared to the individual use of each sensor. The rapid evolution of
technologies and algorithms in artificial intelligence has led to significant advancements in the field of
fall detection. We are now witnessing a notable transition from traditional methods to more advanced
approaches, such as deep learning. Historically, machine learning required precise mapping functions
between manually extracted features from raw training data and corresponding output labels, as seen
in the works of Saleh and Jeannès (2019) [23] and Wu et al., [24], relying on wearable or ambient sensors
like accelerometers. Handcrafted features heavily depend on the domain experts’ knowledge. With
the shift towards visual sensors, Deep Learning, particularly Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) networks, has become more prevalent, as illustrated by recent
research [26? ]. Unlike machine learning, deep learning not only determines a mapping function but
also learns relevant features hierarchically. In the current landscape of computer vision, deep learning
has gained the status of a golden standard, logically leading to the evolution from traditional machine
learning methods to more advanced deep learning strategies for recent applications. This evolution
is obviously illustrated by the adoption of the LSTM algorithm, a specific variant of recurrent neural
networks designed to efficiently handle long sequence learning tasks. It has demonstrated impressive
performance with an average recall rate of 95% in current fall detection systems.

2.2 Study context

This research work focused on the detection of falls among dependent individuals at home using
a Big Data platform. It comes within a context where technology and artificial intelligence have
become essential tools to address significant societal challenges. With the gradual but steady growth
in the elderly and dependent population, the need to ensure their safety at home has become a
major concern. Statistics show a significant rise in the number of domestic accidents, particularly
falls, resulting in serious consequences on their well-being and life quality. The rapid and accurate
detection of falls through the recognition of posture sequences is of particular importance. Not only
does it allow for prompt intervention in case of an accident, it also helps prevent hazardous situations
through monitoring unusual behaviors. However, the implementation of such technological solutions
also raises ethical and practical questions, especially regarding the privacy of individuals and the
system’s effectiveness in real-world conditions. The present research work took into account these
facts and developed an intelligent system, based on Machine Learning and/or Deep Learning models,
that can accurately recognize different postures and subsequently detect falls. This can be performed
while operating in a distributed environment at the processing and storage levels, providing scalability
to adapt to the acquisition of large amounts of input data or the increased complexity of required
Deep Learning models. It is, therefore, crucial to identify the various questions and challenges our
study sought to address. Indeed, posture recognition and fall detection pose multiple challenges,
related not only to the technological aspects but also the ethical ones. The key issues that would be
addressed and answered in our study are such hot topics as detection reliability, privacy preservation,
and scalability. These would be achieved while considering massive data management and seamless
technological integration with other devices or platforms to form a comprehensive and connected
surveillance solution.

2.3 Criticism to the existing approaches

Based on the literature review, aside from the approach proposed in [13], which is limited to
posture recognition, no other method or approach has ventured into scalable Big Data platforms.
Indeed, the used Deep Learning techniques have been deployed in a conventional way, relying on the
computational capacity of CPU/GPU cores at the level of a single execution server. Furthermore, the
data that can be processed is also contingent on the storage space of the server or, alternatively, on
cloud storage space, requiring substantial data transfer to traverse the entire dataset and use it in all
learning processes. As a result, the objective of our work was to use the approach with the Random
Forest and uLBP described in [13] to detect the postures’ time series. This aimed to subsequently



https://doi.org/10.15837/ijccc.2024.3.6428 5

detect falls through a deep recurrent neural network model, all while deploying both stages on a
Hadoop/Spark Big Data platform.

3 Technical and Technological backgrounds
In order to effectively process even large quantities of data rapidly, we have set up and simulated

a multi-node Hadoop cluster coupled with Spark, which would serve as the foundation for various
experiments ranging from posture recognition with the Random Forest to fall detection with deep
recurrent neural networks (LSTM and GRU). All of these experiments would leverage the distributed
capabilities of Keras/TensorFlow libraries on the Hadoop/Spark cluster facilitated by the Elephas
library. We clarified all of these concepts in the following subsections.

3.1 Hadoop

Hadoop is an open-source framework designed to process large datasets. Developed in 2006 by
Doug Cutting and Michael J. Cafarella, it is currently managed by the Apache Software Foundation.
Inspired by Google’s architecture, particularly the Google File System and MapReduce, Hadoop oper-
ates in a distributed computing environment. The Hadoop ecosystem, widely recognized in the world
of Big Data, includes key components such as the Hadoop core, MapReduce, and HDFS, along with
other complementary components like Apache Hive, HBase, and Zookeeper. This ecosystem enables
organizations and researchers to analyze huge amounts of data in an optimized way. Hadoop’s distinc-
tive feature lies in its operation in clusters, allowing the mobilization of multiple servers, referred to
as "nodes," to handle substantial data volumes. It facilitates the utilization of storage and computing
resources across servers grouped in clusters, enabling a distributed processing on large datasets. This
provides the basic elements necessary for the operation of applications and services. The ecosystem
around Hadoop has evolved over time, and now incorporates countless tools and applications special-
ized in the field of Big Data. Among the offered tools, Apache Spark has always been referred to for
distributed processing systems.

3.2 Spark

The Apache Spark is an in-memory distributed data analysis system. Created by Matei Zaharia
at the AMPLab of the University of California, Berkeley, it was later offered to the Apache Software
Foundation, becoming a top-level project on February 24, 2014. It offers high-level APIs in Scala,
Python, Java, and R, accompanied by powerful libraries such as ML for machine learning, Spark SQL
for SQL support, Spark Streaming for real-time streaming, and GraphX for graph processing. Spark
was developed to overcome the limitations of Hadoop’s MapReduce. Thanks to its fast in-memory
processing capabilities and advanced Directed Acyclic Graph (DAG) execution engine, Spark tasks can
run several times faster than equivalent MapReduce tasks on a Hadoop cluster. At a high level, Spark
distributes the execution of Spark applications across the nodes of the cluster. Each Spark application
has a SparkSession object in its main program, representing a connection to the cluster manager.
The cluster manager provides computing resources to Spark applications. Once connected to the
cluster, Spark acquires executors on worker nodes and then sends them to the application code. An
application typically performs multiple tasks in response to a Spark action. Each task is then divided
into a Directed Acyclic Graph (DAG) of smaller phases or tasks, which are distributed and sent to
the executors to be performed. Spark provides a rich library for machine learning called Spark ML.
It stands out as a scalable machine learning library, involving various learning algorithms and useful
tools for tasks such as classification, regression, clustering, collaborative filtering, and dimensionality
reduction. It also seamlessly integrates with other Spark components like Spark SQL and Spark
Streaming. The library is compatible with Java, Scala, and Python, allowing for its integration into
complete workflows within Spark applications.



https://doi.org/10.15837/ijccc.2024.3.6428 6

3.3 Random Forests

Random Forest [30] is a machine learning algorithm that was proposed by Leo Breiman and Adele
Cutler in 2001. It uses multiple decision trees for classification and regression. It also uses "bagging"
(bootstrap aggregation) to reduce variance while maintaining low bias. This process forms individual
trees from subsets of training data. Random Forest also applies a method called "feature bagging,"
which selects a subset of features to reduce correlation between decision trees. This diversity in
feature selection makes the trees less similar. For classification, the final prediction is decided by
a majority vote of the trees. As for regression, it is referred to as the average of the results. The
Random Forest is endowed with some Key hyperparameters such as its ability to adjust to refine
the model’s accuracy, the number of trees in the forest, the maximum depth of each tree, and the
number of features evaluated at each node split. A higher number of trees can enhance complexity
and potentially improve the model’s accuracy. Deepening the trees can also contribute to a better
accuracy by allowing more detailed data separation. Additionally, choosing more features at each split
increases the randomness of the method, which, under certain conditions, can improve the prediction
accuracy.

3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) [32] belong to a specific class of neural networks frequently
used in Deep Learning [33, 34]. What distinguishes RNNs is their ability to use previous results as
input for subsequent operations. This feature makes them well-suited for handling sequential data. To
address the challenge of vanishing gradients in RNNs, a first solution was introduced with the Long
Short-Term Memory (LSTM) by S. Hochreiter et al [35], later refined by F. Gers and J. Schmidhuber
[36]. The LSTM unit is the fundamental element of an LSTM structure. It consists of a combination
of gates and cells working together to produce an output. The second solution is more simple and
consists in introducing the Gated Recurrent Unit (GRU), which is a variant of RNNs introduced by
Cho et al [38] in 2014. This GRU has two regulation gates, namely the update gate and the reset
gate. These gates allow the unit to make a decision about the amount of information to pass to the
next time step. Owing to this structure, GRUs can capture dependencies over long distances; they
are even simpler in terms of parameterization compared to LSTMs.

3.5 Deep Learning on Spark

3.5.1 TensorFlow and Keras

TensorFlow [44], designed by Google as a successor to Theano, has quickly become the preferred
deep learning framework for many professionals. Equipped with a flexible Python API, it operates
with a powerful engine developed in C/C++. Keras [45], which was initially developed by François
Chollet, a member of the Google team, is a neural network API written in Python and stands out for
its open-source nature. Designed to run in conjunction with frameworks like Theano or TensorFlow,
Keras simplifies modeling and experimentation in deep learning. It is a high-level API that does not
handle low-level operations such as matrix multiplication or tensor convolutions. It uses TensorFlow
as the backend engine for such calculations, confirming the integrated and complementary nature of
the relationship between the two tools. Leveraging the advanced capabilities of TensorFlow, Keras
allows for simplified and faster construction of deep learning models. Together, these synergies en-
able less code and complexity when designing and experimenting with complex neural architectures.
Additionally, users benefit from the robustness, efficiency, and scalability of TensorFlow on a central
processing unit (CPU) or multi-core graphics processing unit (GPU), on the one hand, and can opt to
conduct distributed training on multiple CPUs or GPUs across a machine cluster through platforms
like Spark using extensions such as DistKeras and Elephas, on the other.

3.5.2 Elephas

To harness the distributed computing capabilities provided by Spark, opted to rely on Elephas [46]
in this study. Elephas is able to take advantage of the computational power of Spark and the flexibility



https://doi.org/10.15837/ijccc.2024.3.6428 7

of Keras/Tensorflow neural networks. Besides, it simplifies and accelerates the parallelization of model
training, making the processing of voluminous or big data more feasible and efficient. Further, it is an
open-source library for scaling up Keras/TensorFlow learning codes across multiple CPUs or GPUs in
a machine cluster.

Distributed Training Process with Elephas The Elephas distributed training process is split
into several steps:
(a) Master Model Initialization: Elephas starts by creating a Spark session and initializes a parameter
server to manage the master model.
(b) Data Distribution: The master model evenly distributes the data among the different working
nodes, also known as workers or slaves (in a Hadoop/Yarn cluster).
(c) Model Replication: A copy of the master model is then created on each working node. This pre-
pares each node to independently perform the training.
(d) Parameter Broadcasting: The master model transmits its parameters to the model copies on the
working nodes to ensure consistency before starting the training.
(e) Training Commencement: Each working node starts training with its portion of data and its local
copy of the model.
(f) Parameter Update: After training, the working nodes send parameter updates to the master model.
The master model uses these updates to adjust its own parameters, incorporating the learning achieved
by each node.
(g) Training Completion: Once all working nodes have finished training and sent their updates, the
master model consolidates this information to finalize the trained model.

Elephas Estimator Configuration The Keras/Tensorflow model (such as LSTM or GRU) is
enclosed in an Elephas estimator, configured to specify the chosen distributed training method. The
optimization parameters and critical hyperparameters, such as the number of epochs and batch size,
are also determined. Elephas offers two synchronization modes:
(a) Asynchronous Mode: Each node (or worker) independently updates the model parameters as soon
as it finishes processing its data batch, without waiting for other nodes. This accelerates the training
since nodes do not need to wait for each other. However, updates occur independently, which can
sometimes lead to conflicting occurrences, making the model convergence less stable.
(b) Synchronous Mode: All nodes (or workers) perform their computations on their respective data
batches but wait for each node to finish before updating the model parameters globally. This means
that the model updates are based on information from all the nodes, generally making the model
convergence more stable compared to the asynchronous mode. However, the synchronous mode can
be slower as it requires all nodes to wait for the outcomes from the other nodes before proceeding with
the update.

4 Our Approach
Our approach focuses on two main steps: the recognition of the monitored individual’s posture

sequence followed by fall detection, all deployed on a Hadoop/Spark platform. Our first step is
applied to a series of images, beginning with the extraction of the individual’s silhouette through
pixel differentiation with a reference image. Since our approach places privacy and discretion at the
forefront, we opted for uLBP histograms as the sole information to be stored via video sensors for
posture recognition using the Random Forest model [2]. Our second step then uses the temporal series
of the postures for fall detection through a deep recurrent neural network model. Figure 1 illustrates
the above-introduced steps of our approach.



https://doi.org/10.15837/ijccc.2024.3.6428 8

Figure 1: Block diagram of proposed model.

4.1 Posture recognition

In our posture recognition process (see Figure 2), a series of images, including a reference image, is
first converted to grayscale. Then, and after subtracting the reference image to isolate the silhouette,
features are extracted using uLBP patterns at three different scales (r=1,2, and 3). These data
are afterwards processed by a distributed Random Forest model via the Apache Spark, capable of
distinguishing five distinct postures, providing a structured method for human posture recognition
trained on the same data in Alfayez et al., 2023 [13].

Figure 2: Posture Recognition process.



https://doi.org/10.15837/ijccc.2024.3.6428 9

4.1.1 Image Grayscale Conversion

Before initiating the recognition process, a collection of photos is gathered, with each photo rep-
resenting a specific posture. Color can sometimes introduce additional variables that complicate the
analysis. Indeed, nuances and color variations in images can play a significant role in data interpreta-
tion. This is where the crucial step of converting color images to grayscale comes into play (see Figure
3). This process involves removing color information from the image but retaining brightness details,
simplifying the analysis while preserving essential elements of the image. This entails transforming the
values of the three-color channels (Red, Green, Blue) into a single value representing light intensity.
OpenCV was used to perform this conversion.

Figure 3: Grayscale image.

4.1.2 Silhouette Extraction

Silhouette extraction [13] is performed by subtracting the current image from the reference im-
age. In other words, the brightness value for each pixel in the current image is subtracted from the
corresponding brightness value of a pixel in the reference image.

4.1.3 Conversion of Images into LBP/uLBP Histograms

The LBP (Local Binary Pattern) is a form of grayscale used to measure texture. It was initially
introduced by Ojala et al., [29] as a way to assess the local contrast of an image. In its original
definition, the LBP is designed around a neighborhood of eight pixels, using the grayscale value of
the central pixel as a threshold. If a neighbor has a value greater than or equal to that of the central
pixel, it is assigned a value of 1; otherwise, it receives a value of 0. This sequence of values, after
thresholding (either 0 or 1), is then converted into a decimal number representing the LBP value.
The principle of calculating the original LBP is illustrated in Figure 4. As for the arrangement of
neighbors around the central pixel, it can vary. They can be positioned at different distances from
the central pixel, defined by a radius, which can be one, two, or three units, corresponding to radii
r=1, r=2, and r=3, respectively. It is also worth noting that the number of neighbors can vary; it
may reach 8 for r=1 and further increase for larger radii. These binary codes are then interpreted as
decimal numbers, creating a range of values from 0 to 255 for each radius. These values are used to
form a histogram that constitutes the LBP feature of the image.

Figure 4: LBP matrix with R=1 and neighborhood = 8.

The Uniform LBP, designated as uLBP, is an LBP variant aimed at reducing the dimensionality
of patterns. Unlike the traditional LBP, which can describe up to 256 different patterns for a set of
8 neighbors, the uLBP focuses on so-called "uniform" patterns, retaining only 59 of them. A pattern



https://doi.org/10.15837/ijccc.2024.3.6428 10

Table 1: The five different postures taken into consideration
Posture Real image Silhouette Histogram

1. Standing

2. Sitting

3. Crawling

4. Bending

5. Lying

is considered uniform if it exhibits a maximum of two transitions (0-1 or 1-0) when traversing the
pattern in a loop. The main advantage of the uLBP lies in its ability to focus on the most relevant
and common texture patterns in images while reducing noise from less frequent patterns. In the context
of our study, the use of the uLBP allows for a more compact and efficient representation of texture
information while preserving essential features for posture recognition. Following the application of
the uLBP at three different scales, for a standard neighborhood of 8 pixels, the resulting number of
uniform patterns amounts to 59. Thanks to the three mentioned scales or radii (r = 1, 2, and3), three
uLBP histograms are generated for each image, each of which has a dimension of 59, corresponding
to the uniform patterns. By merging the histograms from the three scales, a combined dimension of
59 × 3 = 177 is achieved. These 177 values make up the inputs, or features, for the recognition model
(see 1).

4.1.4 Posture Recognition with the Random Forest

The choice of the Random Forest model for our study is justified by several crucial aspects related
to efficiency and algorithmic complexity. According to Alfayez et al., 2023 [13], the uLBP features
processing offers constant complexity, promoting a seamless integration into a distributed environment
where the processing time is a determining factor. Random Forests stand out for their less complex
structure and fast execution compared to the Deep Learning architectures such as CNNs or DFFNNs,



https://doi.org/10.15837/ijccc.2024.3.6428 11

whose complexity increases exponentially with the number of layers and neurons. The complexity of
a Random Forest model is related to that of decision trees, which is of the order of O(n*log(n)*d),
making it particularly suitable for fast processing of large data volumes. Despite the good performance
achieved by theDFFNN and CNN models, we still opted for the Random Forests owing to their
simplicity. However, simpler models such as logistic regression and decision trees yielded significantly
lower results, which reinforced our reliance on the Random Forests for our application [13].

4.2 Fall Detection Model

The fall detection process (see 5) begins by organizing the postures into temporal sequences,
each annotated with a label indicating whether a fall occurred or not. These temporal series are
then integrated into a distributed Spark DataFrame, which is subsequently used for training and
testing distributed LSTM/GRU models. After training, the model is evaluated using some appropriate
metrics.

Figure 5: Fall detection model process.

The main objective of the proposed approach was to detect falls within a predefined period using
sequences of postures. Choosing appropriate algorithms for a given problem is not a trivial decision.
There is certainly no ideal algorithm that works for all problems; yet, some algorithms are recognized
to offer better performance than others on specific problems. In our case, algorithms such as the
LSTM and GRU are most suitable, given their acknowledged ability to address time series problems,
essential for analyzing the movements and postures of the monitored person over time. These models
are particularly well-suited for understanding temporal dependencies and patterns in the data, which
is crucial for accurately predicting fall events.

5 Experimental Study
The experimental study of our project was conducted on a Hadoop cluster (version 3.3.2). The

configuration is based on virtual machines running Ubuntu 18, using Oracle VirtualBox 6.1.28. Our
cluster is structured around two master nodes, each equipped with a RAM of 5 GB and two processor
cores, ensuring efficient resource management with high availability. Our cluster also includes two slave
nodes, each of which is fitted with a RAM of 8 GB and four processor cores, providing acceptable
computing capacity for a distributed task processing. The slave nodes also have 60 GB of disk space,
ensuring sufficient storage for prototyping processed data. Finally, our cluster also has an edge node
representing a gateway for cluster usage without directly accessing the master. We integrated Apache



https://doi.org/10.15837/ijccc.2024.3.6428 12

Table 2: Test and Validation databases summary.
Test Data [27] Validation Data [28]

Number of Video sequences 70 24
Number of images 2704 992
Camera Type Microsoft kinect Economic IP
Camera number 2 8

Spark 2.2.2 as the distributed engine for our Hadoop/Yarn cluster. The entire setup was installed on
a PC with an Octa-core processor (providing 16 execution threads) and 40 gigabytes of RAM.

5.1 Data Collection

For the development and validation of our model, we gathered two distinct databases (2). The
first was dedicated to training and testing our algorithms, while the second was used to validate the
performance of our model.

5.1.1 Test Database

Our test database [27] consists of video sequences captured by state-of-the-art motion capture and
computer vision devices, including Microsoft Kinect cameras and sensors such as PS Move and x-IMU.
With a detailed series of 70 video sequences, including 30 devoted to simulating falls and 40 recording
daily activities. This database provides the necessary data to train our model to differentiate between
these two types of events (see 6).

Figure 6: Example of image sequence for the test database.

5.1.2 Validation Database

The second image database used for validation [28] relies on a multi-camera system with eight
economical IP cameras, arranged to fully cover a room. The recorded video sequences contained sev-
eral common challenges such as high video compression, shadows, reflections, a complex background,
lighting variations, worn objects, and occlusions, which may lead to segmentation errors. The dataset
includes a variety of daily activities and simulated falls (see Figure 7), performed by a subject and cap-
tured from different angles by all the cameras. Falls were performed with precaution, using a mattress
to protect the subject. This dataset represents a valuable tool for research and applications aimed at
improving the segmentation and detection techniques for human activities in complex environments.

Figure 7: Image sequence for the validation data base.



https://doi.org/10.15837/ijccc.2024.3.6428 13

5.1.3 Reference Image

A reference image is a photograph captured in a specific environment without the presence of
mobile elements or subjects, such as people (see Figure 8). This photo serves as the basis for the
silhouette extraction process.

Figure 8: Example of image reference for the test database.

5.2 Data Preparation for Fall Detection Models

5.2.1 Temporal Series Sequencing

Once postures are determined via the Random Forest model on Spark, postures are grouped into
temporal series. A temporal series, sometimes referred to as a time series, is an ordered collection
of data associated with specific moments. Depending on the context, the considered time interval
may vary. The dimension of this data, denoted n represents the length of the series. Temporal series
aggregate information points collected at consecutive moments. They can be multivariate and often
reveal trends, periodicities, and various inherent features. To make the data suitable for our model,
posture series from the used images by our model are grouped into a sequence of sequences containing
16 consecutive postures. This choice is not arbitrary; we opted for such value because it corresponds
to a duration of approximately 0.8 seconds for a video captured at a frequency of 20 frames per second:
The initial formula for free fall is estimated as:

h = 1
2gt2 (1)

Where:

• h represents the height of the fall in meters

• g represents the acceleration due to gravity, which is approximately 9.81 m/s2

• t represents the duration of a fall in seconds

The duration of a fall t can be expressed with the following formula:

t =
√

2h

g
(2)

According to the organization "Our World in Data", the approximate average height of humans
during the current century is estimated between 1.6 meter (for women) and 1.7 meter (for men). To
measure the height of a fall, we often consider the center of mass of the person located at about 57%
of the height (+3%) which represents about one meter from the average height. With a numerical
application via formula (2), the theoretical duration of a fall is estimated at 0.45 seconds. Knowing
that for the two image databases studied, the cameras take 20 images per second, we chose the size of
our frame to be 16 images, allowing us to cover 0.8 seconds, which represents a window long enough
to capture the entire fall.
Human movements, especially falls, are often rapid and of short duration. Capturing these movements
requires great attention to be able to detect nuances and subtleties that may indicate an impending
or ongoing fall. By choosing an 0.8-second window, we can capture this essential information while
limiting the impact of superfluous or irrelevant movements.



https://doi.org/10.15837/ijccc.2024.3.6428 14

5.2.2 Data Labeling

Data manual annotation is an important step in preparing datasets for our fall detection model.
This task involves a careful examination of each sequence of images and to determine whether it
represents a fall or not. Once a sequence is identified as representing a fall, a label of "1" is assigned
to that sequence; if not, a label of "0" is assigned. This label is then added to the 17th column of the
sequence, acting as a label column for supervised learning.

5.2.3 Model Hyperparameters

Several hyperparameter combinations were tested to find the combination that results in the lowest
error rate throughout the test set. In particular, the following hyperparameters were evaluated:

• Batch size: Values between [100, 500] were tested based on the size of the training data.

• Number of epochs: A range of values between [128, 1500] was tested.

• Number of layers: We explored the use of a varied number of LSTM/GRU layers, testing a
range from 1 to 8 hidden layers along with a corresponding number of Dropout layers to prevent
overfitting.

• Units per layer: For the LSTM, GRU layers, we varied the number of LSTM, GRU units
corresponding to the number of neurons in each hidden layer, testing a range from 20 to 300
units.

• Input sequence length: A sequence length of 16 was adopted as an input after careful consider-
ation of the pace of human falls. This length, equivalent to 0.8 seconds of video at a rate of 20
frames per second, is specifically chosen to optimally capture all significant movements of a fall.

• Learning rate: The learning rate was chosen by testing a range of values between 0.1 and 0.0001,
following standard practices. This range of values was tested to identify the rate that allows our
model to learn optimally without being too aggressive, which could cause jumps over optimal
minima, or too slow, leading to a very slow and inefficient convergence.

• Activation function: We selected specific activation functions to take advantage of their distinct
benefits: the ReLU function for the LSTM/GRU layers, owing to its ability to effectively model
nonlinear behaviors and reduce the risk of gradient vanishing; the Hard Sigmoid function for
the recurrent LSTM/GRU activations to speed up computation while managing the information
flow through cells; and finally, the Sigmoid function for the output layer since it is highly suitable
for binary classification thanks to its normalized output interpretable as a probability.

• Loss function: the binary crossentropy loss function was used as it is particularly suitable for
binary classification problems; indeed, it quantifies the model performance by measuring the
distance between predictions and actual labels.

• Deactivation dropout: The probability used for Dropout layers is 0.5. This means that during
training, each weight update randomly deactivates 50% of the neurons output in the previous
layer. This value is often used because it offers a good compromise between regulating efficiency
and maintaining network performance. It significantly reduces the risk of overfitting.

5.3 Model Evaluation and Discussion

The hyperparameters that yielded the best results were as follows: an input sequence length of 16,
256 units per layer, 500 epochs, a learning rate of 0.01, a batch size of 16, and a dropout probability
of 50%. Our experimental fall detection model was evaluated by calculating a set of standard metrics
namely Accuracy, Precision, Recall, F1-score, Specificity and Area Under Curve [48] (Table 3 and 4).

Tables 3 and 4 illustrate the results obtained by applying our approach to the test and validation
data. It is evident that our approach with the model using GRU outperforms the one that applies the



https://doi.org/10.15837/ijccc.2024.3.6428 15

Table 3: Comparison of results on the test database.
Method Accuracy Precision Recall Specificity F1-score AUC
Our approach with LSTM 94.7% 90.1% 96% 90% 92,95% 93,56%
Our approach with GRU 97% 100% 93.7% 100% 96,74% 97,70%
Wang et al (2020) [47] 97.33% 97.78% 97.78% 96,67% 97,78% -
Harrou et al (2019) [48] 96.66% 94% 100% 0,94% 96,60% 97%
Kwolek and kepski (2014) [27] 90% 83.30% 100% 80% - -
Dai et al (2018) [49] 94,4% - 95% 96,7% - -
Raza et al (2023) [52] 95,89 % 95,54% 95,38% - 95,47% -
Kan et al (2023) [53] - 90,4% 89,1% - - -
Wang et al (2024) [54] 89,99% - 90,33% - - -
Yuan et al (2022) [55] 97,43% - 95,45% 100% - -

Table 4: Comparison of results on the validation database.
Method Accuracy Precision Recall Specificity F1-score AUC
Our approach with LSTM 95.7% 88.7% 100% 93.75% 95,89% 93,74%
Our approach with GRU 98.9% 96.8% 100% 98.4% 98,98% 96,78%
Rougier et al (2011) [20] 98% - 95.4% 95.8% - 97,8%
Auvinet et al (2011) [28] - - 80.6% 100% - -
Agrawal al (2023) [50] - - 92% 96% - -
Mousse et al (2017) [51] - - 95.8% 100% - -
Yuan et al (2022) [55] - 88,13% 86,66% - 87,38% -
Song et al (2021) [56] 97,23% - 100% 97,04% - -
Chehtiri et al (2021) [57] 92,91% - - - - -
Geng et al (2022) [58] 98,55% - - - - -

LSTM. Our GRU-based approach is also highly competitive compared to approaches applied to the
same test and validation data.
Our study stands out in the issue of fall detection research by developing the first scalable Big Data
distributed Deep Learning model, specifically designed to operate in parallel on a Hadoop cluster by
efficiently exploiting the distributed data. Unlike previous studies, this innovative approach harnesses
the combined power of multiple CPU or Graphics Processing Unit (GPU) dealing with units from
a set of servers in a Big Data cluster, able to go beyond the limits of the computational capacity
of a single computer with a single CPU or GPU. We have proved that our distributed model offers
highly competitive performance with an accuracy rate of 94.7% on the test database and 98.9% on the
validation one. However, it is worth noting that our work focused on relatively modest-sized datasets.
These results are particularly significant compared to those of other studies in the literature. It
is true that such studies are while effective; however, they neither rely on distributed architectures
nor are they scalable Big Data. The ability to train our model on a distributed cluster opens up
promising prospects for real-time and large-scale applications. A distributed training allows us to
leverage extended computing resources, potentially capable of handling terabytes of data, which is a
significant advancement compared to conventional methods limited by the capacity of a single CPU
or GPU. This advancement aligns with a vision where technology adapts to the growing needs of
monitoring and prevention in the home healthcare sector, offering solutions that are both smarter and
more responsive for the safety of dependent individuals.
In a perspective of continuous innovation, we are planning to integrate various types of sensors, which
will enable us to avoid being restricted by single cameras and rely on multi-sensor systems. This
diversification will allow more comprehensive and accurate monitoring by providing varied viewpoints
and a broader coverage of living spaces. Another perspective is to improve our system so as to
detect and track multiple people simultaneously within the same field of view. The integration of
facial recognition could target and monitor specific individuals within a group, thus enhancing the



https://doi.org/10.15837/ijccc.2024.3.6428 16

personalization of surveillance and the speed of intervention in the event of a fall. Despite the limited
size of our databases, we were able to validate the proposed model. Nevertheless, to truly align
with Big Data challenges, it will be essential to evaluate and optimize our model on much larger data
volumes. This approach is crucial to ensuring the scalability and adaptability of our solution in diverse
and large-scale environments. The current discussion around the results highlights the need for such
expansion, as well as the possibility of widening the scope to include real and complex life scenarios.

6 Conclusion
By combining the robustness of Hadoop/Spark with advanced image processing and deep learning

methods, we have developed a solution that does not only detects falls effectively but also values
privacy through the integration of uLBP histograms. Our work stands out in the field of fall detection
research by developing the first scalable Big Data distributed deep learning model, specifically designed
to operate in parallel on a Hadoop/Spark cluster through an efficient exploitation of distributed data.
This innovative approach harnesses the combined power of several CPUs or graphics processing units
(GPUs) on a set of servers in a Big Data cluster, surpassing the limits of the computational capacity of a
single computer with a single CPU or GPU. The proposed distributed model has proven its competitive
performance achieving accuracy rates of 97% and 98.9% on the test database and validation databases,
respectively. However, it is worth noting that our work focused on relatively modest-sized datasets. To
really address Big Data challenges, it is essential that the suggested model be evaluated and optimized
on much larger databases. This approach is crucial to ensuring the scalability and adaptability of
our solution in diverse and large-scale environments. Advances such as optimizing existing models,
improving the integration of Internet of Things (IoT) devices, and incorporating generative artificial
intelligence could further enhance the system accuracy and responsiveness. The development of more
intuitive user interfaces will improve the care provided by healthcare professionals, strengthen family
support networks, and ensure continuous monitoring and rapid intervention in case of sudden incidents.

Declarations

Competing interests

The authors certify that they have NO affiliations with or involvement in any organization or entity
with any financial interest or non-financial interest (such as personal or professional relationships,
affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript

Authors’ contributions

Heni Bouhamed and Monia Hamdi conceived of the presented idea. Fady Badreddine developed
the theory and performed the computations. Reem Alkanhel and Monia Hamdi verified the analytical
methods. All authors discussed the results and contributed to the final manuscript.

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of
Education in Saudi Arabia for funding this research work through the project number RI-44-0559

Availability of data and materials

Below the link to all codes (python-spark) and data with explanation (readme):
https://github.com/fadybadreddine/Keras-with-Spark-using-Elephas-for-fall-detection-

References
[1] S. Heinrich, K. Rapp, U. Rissmann, C. Becker, and H.-H. König, “Cost of falls in old age : A

systematic review,” Osteoporosis international : a journal established as result of cooperation



https://doi.org/10.15837/ijccc.2024.3.6428 17

between the European Foun- dation for Osteoporosis and the National Osteoporosis Foundation
of the USA, vol. 21, pp. 891–902, 11 2009.

[2] N. Noury, A. Fleury, P. Rumeau, A. Bourke, G. ÓLaighin, V. Rialle, and J.-E. Lundy, “Fall de-
tection – principles and methods,” Conference pro- ceedings : ... Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and
Biology Society. Conference, vol. 2007, pp. 1663–6, 02 2007.

[3] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recogni- tion : A survey,” Image
and Vision Computing, vol. 60, 05 2016.

[4] J. Peña Queralta, T. Nguyen gia, H. Tenhunen, and T. Westerlund, “Edge- ai in lora-based health
monitoring : Fall detection system with fog compu- ting and lstm recurrent neural networks,” 07
2019.

[5] D. Lie, B. Nukala, N. Shibuya, A. Rodriguez, J. Tsay, T. Nguyen, S. Zu- pancic, and D. Lie, “A
wireless gait analysis sensor for real-time robust fall detection using an artificial neural network,”
10 2014.

[6] S. Gharghan, S. Mohammed, and A. A. Al-Naji, “Accurate fall detection and localization for
elderly people based on neural network and energy- efficient wireless sensor network,” Energies,
vol. 11, p. 2866, 10 2018.

[7] M. Majd and R. Safabakhsh, “A motion-aware convlstm network for ac- tion recognition,” Applied
Intelligence, vol. 49, pp. 1–7, 07 2019.

[8] Y. Li, Y. Guanci, Z. Su, S. Li, and Y. Wang, “Human activity recognition based on multi
environment sensor data,” Information Fusion, vol. 91, pp. 47–63, 10 2022.

[9] G. Diraco, A. Leone, and P. Siciliano, “Human posture recognition with a time-of-flight 3d sensor
for in-home applications,” Expert Systems with Applications, 02 2013.

[10] F. Modarres and M. Soryani, “Body posture graph : A new graph-based posture descriptor for
human behavior recognition,” Computer Vision, IET, vol. 7, pp. 488–499, 12 2013.

[11] B. Boulay and M. Thonnat, “Applying 3d human model in a posture re- cognition system,”
Pattern Recognition Letters, vol. 27, pp. 1788–1796, 11 2006.

[12] H. Li and Q. Sun, “The recognition of moving human body posture based on combined neural
network,” pp. 1–5, 01 2013.

[13] AlFayez, F.; Bouhamed, H. (2023). Machine learning and uLBP histograms for posture recogni-
tionof dependent people via Big Data Hadoop and Spark platform,International Journal of Com-
putersCommunications & Control, 18(1), 4981, 2023.https://doi.org/10.15837/ijccc.2023.1.4981

[14] D. Lord, C.J. ; Colvin, “Falls in the elderly : Detection and assessment,” IEEE Annual In-
ternational Conference of the IEEE Engineering in Medi- cine and Biology Society, vol. 13, p.
1938—1939, 02 1991.

[15] G. Williams, K. Doughty, K. Cameron, and D. Bradley, “A smart fall and activity monitor for
telecare applications,” vol. 3, pp. 1151 – 1154 vol.3, 01 1998.

[16] A. Bourke, J. O’Brien, and G. ÓLaighin, “Evaluation of a threshold-based tri-axial accelerome-
ter,” J Gait and Posture, vol. 26, pp. 194–199, 01 2006.

[17] A. Bourke and G. ÓLaighin, “A threshold-based fall-detection algorithm using a bi-axial gyro-
scope sensor,” Medical engineering physics, vol. 30, pp. 84–90, 02 2008.

[18] P. Tsinganos and A. Skodras, “On the comparison of wearable sensor data fusion to a single
sensor machine learning technique in fall detection,” Sensors, vol. 18, p. 592, 02 2018.



https://doi.org/10.15837/ijccc.2024.3.6428 18

[19] Q. Li, J. Stankovic, M. Hanson, A. Barth, J. Lach, and G. Zhou, “Accurate, fast fall detection
using gyroscopes and accelerometer-derived posture in- formation,” pp. 138–143, 06 2009.

[20] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust video surveillance for fall
detection based on human shape deformation,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 21, pp. 611– 622, 06 2011.

[21] G. Diraco, A. Leone, and P. Siciliano, “An active vision system for fall detection and posture
recognition in elderly healthcare,” pp. 1536–1541, 03 2010.

[22] L. Xue, L. Nie, H. Xu, and X. Wang, “Collaborative fall detection using smart phone and kinect,”
Mobile Networks and Applications, vol. 23, 08 2018.

[23] M. Saleh and R. Le Bouquin Jeannès, “Elderly fall detection using wea- rable sensors : A low
cost highly accurate algorithm,” IEEE Sensors Jour- nal, vol. PP, pp. 1–1, 01 2019.

[24] T. Wu, Y. Gu, Y. Chen, Y. Xiao, and J. Wang, “A mobile cloud collabora- tion fall detection
system based on ensemble learning,” 07 2019.

[25] Q. Han, H. Zhao, W. Min, H. Cui, X. Zhou, K. Zuo, and R. Liu, “A two- stream approach to fall
detection with mobilevgg,” IEEE Access, vol. PP, pp. 1–1, 01 2020.

[26] A. Shojaei, P. Nasiopoulos, J. Little, and M. Pourazad, “"video-based hu- man fall detection in
smart homes using deep learning",” pp. 1–5, 05 2018.

[27] B. Kwolek and M. Kepski, “Human fall detection on embedded platform using depth maps and
wireless accelerometer,” Computer Methods and Programs in Biomedicine, vol. 117, p. 489–501,
10 2014.

[28] E. Auvinet, C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Multiple cameras fall data
set,” 01 2011.

[29] T. O. M. P. D. Harwood, “A comparative study of texture measures with classification based on
featured distributions,” Pattern Recognition, vol. 29, p. 51—59, 1996.

[30] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 10 2001.

[31] L. MARKÉTA KRÚPOVÁ, Construction d’un modèle de Machine Lear- ning interprétable pour
la tarification en assurance non-vie. PhD thesis, Université de Paris-Dauphine, 12 2022.

[32] R. DE, H. GE, and W. RJ, Learning internal representations by error pro- pagation : Parallel
Distributed Processing, Volume 1 : Foundations. 01 1986.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44, 05 2015.

[34] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent
is difficult,” IEEE transactions on neural networks / a publication of the IEEE Neural Networks
Council, vol. 5, pp. 157–66, 02 1994.

[35] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, pp.
1735–1780, 11 1997.

[36] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget : Continual prediction with lstm,”
Neural computation, vol. 12, pp. 2451–71, 10 2000.

[37] c.-m. Own, F. Sha, and W. Tao, “Triplet decoders neural network ensemble system and t-
conversion for traffic speed sequence prediction,” IEEE Ac- cess, vol. PP, pp. 1–1, 11 2019.

[38] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural
networks on sequence modeling,” 12 2014.



https://doi.org/10.15837/ijccc.2024.3.6428 19

[39] S. Abdulwahab, M. Jabreel, and D. Moreno, Deep Learning Models for Paraphrases Identification.
PhD thesis, 09 2017.

[40] “Hdfs,” https ://hadoop.apache.org/docs/stable/hadoop-project- dist/Hadoop
hdfs/HdfsDesign.html. Consulté le 12/06/2023.

[41] “Yarn,” https ://hadoop.apache.org/docs/current/hadoop-yarn/hadoop- yarn-site/YARN.html.
Consulté le 12/06/2023.

[42] “opencv,” https ://opencv.org/. Consulté le 12/06/2023.

[43] scikit-image developers, “scikit-image : Image processing in python,” 2023.

[44] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., “Tensorflow : A system for large- scale machine learning,” in 12th USENIX
Symposium on Operating Sys- tems Design and Implementation (OSDI 16), pp. 265–283, 2016.

[45] F. Chollet et al., “Keras,” GitHub, 2015.

[46] M. Pumperla, “elephas,” GitHub, 2015.

[47] B.-H. Wang, J. Yu, K. Wang, X.-Y. Bao, and K.-M. Mao, “Fall detection based on dual-channel
feature integration,” IEEE Access, vol. PP, pp. 1–1, 06 2020.

[48] F. Harrou, N. Zerrouki, Y. Sun, and A. Houacine, “An integrated vision- based approach for
efficient human fall detection in a home environment,” IEEE Access, vol. PP, pp. 1–1, 08 2019.

[49] B. Dai, D. Yang, L. Ai, and P. Zhang, “A novel video-surveillance-based algorithm of fall detec-
tion,” pp. 1–6, 10 2018.

[50] M. Agrawal and S. Agrawal, “Enhanced deep learning for detecting suspicious fall event in video
data,” Intelligent Automation Soft Computing, vol. 36, pp. 2653–2667, 01 2023.

[51] M. Mousse, C. Motamed, and E. Ezin, “Percentage of human-occupied areas

[52] A., Raza, M. H., Yousaf, S. A., Velastin, & S. Viriri, (2023). Human Fall Detection from Sequences
of Skeleton Features using Vision Transformer. In VISIGRAPP (5: VISAPP) (pp. 591-598) 2023.

[53] X., Kan, S., Zhu, Y., Zhang, & C. Qian, (2023). A lightweight human fall detection network.
Sensors, 23(22), 9069.

[54] Y., Wang, & T. Deng, (2024). Enhancing elderly care: Efficient and reliable real-time fall detection
algorithm. Digital health, 10, 20552076241233690 2024.

[55] C., Yuan, P., Zhang, Q., Yang, & J. Wang, (2022). Fall detection and direction judgment based
on posture estimation. Discrete dynamics in nature and society, 2022.

[56] S., Zou, W., Min, L., Liu, Q., Wang, & X., Zhou, (2021). Movement tube detection network
integrating 3d cnn and object detection framework to detect fall. Electronics, 10(8), 898, 2021.

[57] S., Chhetri, A., Alsadoon, T., Al-Dala’in, P. W. C., Prasad, T. A., Rashid, & A. Maag, (2021).
Deep learning for vision-based fall detection system: Enhanced optical dynamic flow. Computa-
tional Intelligence, 37(1), 578-595.

[58] P., Geng, H., Xie, H., Shi, R., Chen, & Y. Tong, (2022). Pedestrian Fall Event Detection in Com-
plex Scenes Based on Attention-Guided Neural Network. Mathematical Problems in Engineering,
2022.



https://doi.org/10.15837/ijccc.2024.3.6428 20

Copyright ©2024 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Hamdi, M.; Bouhamed, H.; Badreddine, F.; Alkanhel, R. (2024). Deep recurrent neural net-
works distributed on a Hadoop/Spark cluster for fall detection, International Journal of Computers
Communications & Control, 19(3), 6428, 2024.

https://doi.org/10.15837/ijccc.2024.3.6428


	Introduction
	State of the Art: Study Framework and Existing Approaches
	State of the Art
	Posture Recognition
	Fall Detection

	Study context
	Criticism to the existing approaches

	Technical and Technological backgrounds
	Hadoop
	Spark
	Random Forests
	Recurrent Neural Networks
	Deep Learning on Spark
	TensorFlow and Keras
	Elephas


	Our Approach
	Posture recognition
	Image Grayscale Conversion
	Silhouette Extraction
	Conversion of Images into LBP/uLBP Histograms
	Posture Recognition with the Random Forest

	Fall Detection Model

	Experimental Study
	Data Collection
	Test Database
	Validation Database
	Reference Image

	Data Preparation for Fall Detection Models
	Temporal Series Sequencing
	Data Labeling
	Model Hyperparameters

	Model Evaluation and Discussion

	Conclusion

