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Abstract

This study delves into the realm of urban rail transit systems, leveraging unsupervised learn-
ing techniques to analyze passenger flow characteristics and unearth travel patterns. Focused on
the dynamic and complex nature of urban rail networks, the research utilizes extensive datasets,
primarily derived from Automated Fare Collection (AFC) systems, to provide a comprehensive
analysis of passenger behaviors and movement trends. Employing advanced algorithms like DB-
SCAN, the study categorizes passengers into distinct groups, including tourists, shoppers, thieves,
commuters, and station staff. These classifications reveal intricate patterns in travel behaviors,
significantly contributing to a deeper understanding of urban transit dynamics. The findings offer
valuable insights into peak travel times, popular routes, and station congestion, highlighting poten-
tial areas for operational improvements and infrastructure development. The study’s application of
unsupervised learning in analyzing vast, unstructured data sets a precedent in urban transportation
research, showcasing the potential of artificial intelligence in enhancing the efficiency and sustain-
ability of urban transit systems. The insights garnered are pivotal not only for optimizing current
operations but also for shaping future expansion and adaptation strategies, ensuring urban rail
systems continue to meet the evolving needs of growing urban populations.

Keywords: Urban Rail Transit, Unsupervised Learning, Travel Pattern Mining, DBSCAN.
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1 Introduction
Urban rail transit, as the lifeline of modern urban life, plays a crucial role in supporting city

development and facilitating daily commutes. With the rapid growth of the global economy and
accelerated urbanization, urban rail transit worldwide has encountered unprecedented opportunities
and challenges [1, 2, 3]. Particularly in China, the swift expansion of urban rail networks is a globally
recognized phenomenon. As of the end of 2020, mainland China boasted 44 cities operating 233 urban
rail transit lines, covering a total of 7545.5 kilometers, encompassing 4660 stations, and serving an
astonishing annual passenger volume of 17.59 billion [3]. Behind these staggering figures lies not only
the central role of urban rail transit in urban transportation systems but also numerous challenges
and issues such as carriage overcrowding, insufficient transport capacity, and long waiting times for
passengers [4, 5].

The emergence of these issues puts significant pressure and challenges on the operation and plan-
ning departments of urban rail transit systems. There is an urgent need for effective planning and
management to enhance operational efficiency and improve passengers’ commuting experience. In this
context, the analysis of passenger flow characteristics becomes particularly critical. By conducting
in-depth analysis of passengers’ travel habits, commute durations, and other behavioral data, opera-
tors can better manage peak-time passenger flows, alleviate carriage congestion, and more rationally
allocate resources during regular operations, thereby enhancing operational efficiency. Additionally,
this analysis provides essential data support for the planning of new routes [3, 4, 5, 6].

On the technological front, the development of big data and artificial intelligence has made the
analysis of urban rail transit passenger flows more feasible and efficient [7, 8, 9]. The data sources are
extensive, including usage data from smart transit cards and video surveillance data from stations, all
of which form the basis for analysis. By employing advanced data mining technologies and algorithms
such as K-Means++, DBSCAN, etc., these massive datasets can be effectively processed to extract
passengers’ travel characteristics, thereby offering more precise operational decision-making support
[9, 10, 11, 12].

Furthermore, the study of individual passenger flow characteristics is not only beneficial for the
optimization of existing networks but also provides crucial insights for the planning and design of
new routes. By analyzing the travel patterns of current passengers, planning departments can make
more scientifically informed decisions about the direction of new lines, station layouts, and train
compositions, thereby preventing potential future issues such as traffic congestion and inadequate
station design.

Therefore, this study aims to conduct an in-depth analysis of passenger flow data from the Beijing
subway system to categorize individual passenger flow characteristics, including both regular and
irregular passengers. Through the analysis and visualization of this data, we aspire to aid operators in
better understanding their passengers and in providing superior services. Simultaneously, this study
will offer crucial data support for the future planning and optimization of urban rail transit systems.
The integration of advanced technologies such as artificial intelligence in this research will contribute
significantly to enhancing the operational efficiency and service levels of urban rail systems. It will
provide robust support in addressing issues like carriage congestion and inadequate transport capacity,
thereby elevating the commuting experience for citizens and promoting the sustainable development
of urban rail transit systems.

In conclusion, urban rail transit systems are more than just transportation networks; they are
integral to the sustainable growth of cities and the well-being of their inhabitants. The insights gained
from this study will not only optimize current operations but also shape future developments, ensuring
that urban rail transit remains a cornerstone of urban infrastructure, supporting the dynamic life of
modern cities and the ever-evolving needs of their residents. The application of cutting-edge data
analysis in understanding and improving urban rail systems marks a significant step towards smarter,
more responsive urban environments, where technology and human-centered design converge to create
seamless, efficient, and enjoyable transit experiences.
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2 Related works

2.1 Passenger Travel Pattern Mining

Urban rail transit systems, as vital arteries of modern urban life, carry the immense daily travel
demand of cities. Recent studies underscore the importance of leveraging advanced data mining tech-
niques to understand and optimize the passenger flow characteristics in these complex systems. In this
regard, the study by Jiang et al. [3] unveils periodic frequent travel patterns of metro passengers by
considering different time granularities and station attributes, offering an in-depth understanding of
passenger behavior. Similarly, Daneshvar et al. [4] analyze the behavioral patterns of bus passengers
using data mining methods, providing valuable perspectives on passenger behaviors in different transit
systems. Furthermore, Li et al. [5] engage in individualized passenger travel pattern multi-clustering
based on graph regularized tensor latent Dirichlet allocation, demonstrating how to extract useful
insights from big data to predict passenger behavior. Ye and Ma [6] focus on using transit smart card
data for clustering-based travel pattern prediction of frequent passengers, a critical approach to under-
standing regular commuter flows. In the realm of real-time big data processing, Shi et al. [7] illustrate
how to adaptively detect anomalous paths in floating vehicle trajectories, crucial for understanding
and managing urban traffic flows. Finally, Kong et al. [8] explore human mobility for multi-pattern
passenger prediction using a graph learning framework, again emphasizing the application of advanced
analytical techniques in traffic system management.

Collectively, these studies reveal the complexity and diversity of passenger flows in urban rail
transit systems. By analyzing extensive datasets, these works not only enhance our understanding
of passenger behavior patterns but also provide valuable insights for the planning and operation of
rail transit systems. These insights are particularly significant for managing peak times and crowded
routes, planning new lines, and handling emergency situations. In summary, these studies showcase
the potential of big data and machine learning techniques in the management of modern urban transit,
pointing the way for future research and practice. This body of work underscores a paradigm shift
in urban transit analysis: from traditional methods reliant on manual surveys and limited data, to
dynamic, AI-driven approaches that harness the power of large-scale, diverse datasets. This transition
is critical not only for optimizing current operations but also for shaping future transit infrastructure,
ensuring it meets the evolving demands of urban populations. The integration of AI and data science
in urban transit represents a significant leap towards smarter, more efficient urban mobility solutions.

2.2 Unsupervised Learning Based Pattern Mining

Unsupervised learning, a subset of machine learning techniques that operates without labeled out-
comes, is increasingly applied across various domains to extract meaningful patterns from data [9, 10].
This section synthesizes insights from recent studies [11, 12, 13, 14, 15] to demonstrate the versa-
tility and impact of unsupervised learning methodologies. Li et al. [11] delve into maritime traffic
pattern extraction using an unsupervised hierarchical methodology. This approach in maritime logis-
tics underscores the potential of unsupervised learning in enhancing the understanding of complex,
large-scale traffic movements, pivotal for optimizing maritime operations and safety. Lefoane et al.
[12] explore unsupervised learning for feature selection in botnet detection within 5G networks. Their
work illustrates the crucial role of unsupervised learning in cybersecurity, particularly in the context
of emerging 5G technology, where traditional security measures may fall short against sophisticated
cyber threats. In the field of computer vision, Zhang et al. [13] present a novel approach to unsu-
pervised 3D action representation learning through contrastive positive mining. This study highlights
the adaptability of unsupervised learning in extracting rich, nuanced features from complex visual
data, essential for advancing automated recognition systems. Jindal & Singh [14] focus on detecting
malicious transactions in databases using a hybrid metaheuristic clustering and frequent sequential
pattern mining approach. This research showcases the application of unsupervised learning in database
security, emphasizing its effectiveness in identifying subtle, anomalous patterns that may indicate se-
curity breaches. Lastly, Vignesh et al. [15] propose a framework for analyzing crime datasets using
an unsupervised optimized K-means clustering technique. Their study demonstrates the application
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of unsupervised learning in social science, specifically in criminology, to decipher patterns and trends
that can inform law enforcement strategies.

Collectively, these studies reveal the expansive utility of unsupervised learning across diverse fields.
Whether it’s enhancing maritime traffic safety, bolstering cybersecurity in next-generation networks,
advancing visual recognition systems, securing databases, or aiding crime analysis, unsupervised learn-
ing proves to be a powerful tool [16, 17, 18]. This versatility not only paves the way for innovative
applications but also poses significant implications for future technological advancements. By enabling
the extraction of deep insights from vast, unstructured datasets, unsupervised learning methodologies
are reshaping the way we analyze data and solve complex problems in various domains [19, 20, 21].

3 Data
This article focuses on the Beijing Subway as its research subject. Beijing is the first city in China

to develop urban rail transit, with its first line operational since 1971. As of March 2022, the Beijing
Subway has 27 lines, covering a total of 783 kilometers with 459 stations, including 72 transfer stations.
It is the second-largest urban rail transit system in the world, second only to Shanghai. Despite its vast
size, the Beijing Subway continues to expand. Currently, there are 11 subway lines under construction,
totaling 235.6 kilometers. By 2025, the Beijing Subway is expected to form a network of 30 operating
lines, spanning a total length of 1177 kilometers. Figure 3-1 shows the changes in passenger traffic
and operational mileage of the Beijing Subway from 2000 to 2019. It is evident that in the past nearly
20 years, the annual total passenger traffic of the Beijing Subway has increased nearly sevenfold, and
the operational mileage has increased nearly sixfold. Simultaneously, with the rapid expansion of the
network, the management challenges it brings are also immense, which is rare for cities around the
world.

Figure 1: Changes in passenger flow and operating mileage of Beijing subway over the years (2000-
2019)

In preparation for the experimental part of this study, it is necessary to preprocess various types of
data involved to meet the requirements of the experiments. This chapter will discuss the data involved
in this experiment and how to process and merge them to reach a state ready for experimentation. This
study involves multiple types of data, including: Beijing Subway AFC (Automated Fare Collection)
system data, geographic coordinates of Beijing subway stations, and information on Beijing subway
ticket types. The AFC system, an integral part of urban subway systems, is encountered by passengers
as the ticket gates that process payments upon entry and exit. This system records crucial information
such as the time and specific stations of passenger entry and exit, the type of ticket used, and the
amount spent. Therefore, for the purpose of this study, Beijing Subway’s AFC data is used as the
primary research object.
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Table 1: Forms of collated data and their corresponding relevance
Exit Time Arrival Station

Code
Card Number Origin Station

Code
Entry Time Card Type Card Subtype

TXN_DATE
_TIME

DEVICE_
LOCATION

CARD_SERIAL TRIP_ORIGIN
_ LOCATION

ENTRY_TIME CARD_ISSUER
_ID

PRODUCT_
TYPE

In May 2006, the Beijing Transportation Company began issuing smart cards compatible with
both the Beijing bus and subway systems. There are two types of fare systems in the Beijing AFC: a
flat fare and a distance-based fare. However, due to design flaws in the smart card scanning system,
the AFC system on buses with a flat fare does not save any boarding location information. Although
it stores the boarding and alighting locations for distance-based fare buses, it does not record the
times. This presents additional challenges in data processing.

As shown in Figure 2, the data style used in this research project is sampled from the OD (Origin-
Destination) data in the Beijing Subway AFC system from October 27th to October 31st, 2017. "O"
stands for Origin, the starting point, and "D" for Destination, the end point, thus OD data refers
to records of passenger entry and exit at stations. The study focuses on analyzing characteristics of
passenger riding habits, using entry and exit times for temporal feature clustering analysis, station
codes for spatial feature analysis, and a combination of both for comprehensive analysis of individual
passenger flow characteristics and anomaly detection. For example, the same station code for entry
and exit indicates a same-station entry and exit event. Since this study does not involve data on
card balances, gate equipment, or subway operators, unnecessary data will be deleted using Python,
retaining only the first nine columns, and the data will be organized as shown in Table 1 for research
purposes.

Figure 2: Data Sample

4 Method

4.1 DBSCAN

DBSCAN, short for Density-Based Spatial Clustering of Applications with Noise, is a data clus-
tering algorithm that is considered to be one of the most significant advancements in the field of
data mining. Proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu in 1996,
it represents a paradigm shift from traditional centroid-based clustering algorithms such as k-means.
The distinctive feature of DBSCAN is its capacity to identify clusters of arbitrary shape and size in a
data set, which is particularly effective in the presence of noise and outliers.

The algorithm operates on two main parameters: epsilon (eps) and minimum points (minPts).
Epsilon is a spatial distance parameter that determines the neighborhood radius around each data
point, while minPts specifies the minimum number of points required to form a dense region. The
classification of points into core, border, and noise points is pivotal to the clustering process. A
core point is one that has at least minPts within its epsilon neighborhood. A border point is in the
neighborhood of a core point but has fewer than minPts within its epsilon range. Noise points are
those that are neither core nor border points.

The core of the DBSCAN algorithm is the concept of density reachability and density connectivity.
A point A is density reachable from point B if there is a chain of points P1, P2, ..., Pn where each Pi
is within epsilon distance from Pi+1 and there are at least minPts within the epsilon neighborhood
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of each Pi. Density connectedness extends this concept by linking points that are density reachable
from a common core point.

DBSCAN begins with an unvisited point and determines if it is a core point. If it is, the algorithm
proceeds to recursively find all points density-reachable from this point, which forms a cluster. This
process continues until all points are either assigned to a cluster or marked as noise. The ability
to incrementally build up clusters gives DBSCAN its robustness against noise and its capability to
discover clusters of complex shapes. Mathematically, the DBSCAN algorithm can be described using
a set of points in a metric space and a density estimation technique. The algorithm iterates through
the dataset, computing the epsilon neighborhood of every point and counting the number of points
within this neighborhood. If the count exceeds minPts, a new cluster is initiated. Otherwise, the point
is labeled as noise, although it may later be found to be part of a cluster as the algorithm processes
other points.

From an implementation perspective, DBSCAN can be efficiently realized using data structures
such as R-trees or k-d trees that support efficient range querying, which is necessary to find the
neighbors of a point within the epsilon radius. The general steps involve marking all points as unvisited,
randomly selecting points to grow the clusters by adding all density-reachable points to the cluster,
and iterating until all points have been processed.

In terms of computational complexity, the algorithm is generally O(n*log(n)) when a spatial index
is used, which is particularly efficient for large datasets. However, the performance and the outcome
of the clustering process are highly sensitive to the settings of eps and minPts. This sensitivity neces-
sitates a careful selection of parameters, which may require domain knowledge or adaptive methods.

In practical terms, DBSCAN has been applied across various disciplines and industries, from
geospatial analysis to market segmentation. Its ability to handle outliers and identify clusters of
varying densities and shapes without the need for specifying the number of clusters makes it a ver-
satile tool in the arsenal of data analysts. Despite its age, DBSCAN remains a highly relevant and
widely employed clustering algorithm, owing to its simplicity, efficacy, and the intuition it offers in
understanding the underlying structure of complex datasets.

4.2 Key mathematical concepts and formulas involved

Epsilon Neighborhood: For any point p in the dataset D, the epsilon neighborhood is defined
as the set of points within a distance ϵ from p:

Nϵ(p) = {q ∈ D | dist(p, q) ≤ ϵ} ................(1)

where dist(p, q) is a distance measure (such as the Euclidean distance) between points p and q.
Core Point: A point p is a core point if its epsilon neighborhood contains at least a minimum

number of points minPts:

| Nϵ(p) |≥ min Pts................(2)

Directly Density-Reachable: A point p is directly density-reachable from point q if p is within
the epsilon neighborhood of q and q is a core point:

p ∈ Nϵ(q)∧ | Nϵ(q) |≥ min Pts................(3)

Density-Reachable: A point p is density-reachable from point q if there is a chain of points p1
,p2 ,...,pn such that p1 = q, pn = p, and pi + 1 is directly density-reachable from pi .

Density-Connected: A point p is density-connected to point q if there exists a point o such that
both p and q are density-reachable from o.

These definitions set the stage for the clustering process, which is essentially the application of these
concepts to the dataset to discover clusters. The mathematical aspects of DBSCAN are embedded
in its core operations, which identify points satisfying these conditions and group them into clusters
accordingly.

The algorithm can be summarized by the following pseudo-mathematical process:
Initialize all points as unclassified.
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Table 2: Silhouette Coefficient Results for Different Eps and MinPts Values
MinPts Eps =2 Eps =3 Eps =4 Eps =5
5 0.039 0.068 0.611 0.863
6 0.062 0.067 0.607 0.895
7 0.062 0.069 0.605 0.9
8 0.067 0.067 0.605 0.9
9 0.047 0.068 0.605 0.931
10 0.046 0.068 0.605 0.91

For each unclassified point p:
If | Nϵ(p) |≥ min Pts, classify p as a core point and start a new cluster C.
Expand C by recursively adding all points that are density-reachable from p to C.
Points not belonging to any cluster are classified as noise.
The algorithm’s effectiveness depends on the distance function used, which in the standard imple-

mentation is the Euclidean distance for numerical data:

dist(p, q) =
√

(∑n
i pi − q2

i ................(4)

where pi and qi are the i − th coordinates of points p and q, respectively.
DBSCAN’s implementation usually involves data structures that can efficiently support the neigh-

borhood queries, like k-d trees for low-dimensional data or metric trees for high-dimensional data.
This efficiency is critical for maintaining the algorithm’s computational complexity at O(n log n).

We employed the silhouette coefficient as a measure to determine the effectiveness of clustering at
various Eps and MinPts values. This coefficient helps in assessing how close each point in one cluster
is to points in the neighboring clusters, thus providing a clear indication of the clustering performance.

Parameter Selection: Based on our tests, we found that an Eps of 5 and MinPts of 9 yielded the
highest silhouette coefficient of 0.931, suggesting highly effective clustering. This combination was
hence selected for the main clustering experiment.

Balancing Noise Points: While adjusting these parameters, we also considered the impact on noise
points. A higher Eps generally reduced the number of noise points, but a trade-off had to be made to
ensure accurate clustering and not merely minimizing noise.

We acknowledge that setting hyperparameters can be challenging due to their sensitivity and the
variability of datasets. Our approach was therefore iterative, testing various combinations to find the
most effective settings for our specific dataset.

5 Experimental results

5.1 Determining the parameters Eps and MinPts

To determine the optimal values for the Eps radius and MinPts within the range of 5 to 10, this
experiment utilized the DBSCAN function and the Silhouette_score function from the "sklearn.cluster"
module in Python to calculate silhouette coefficients. The specific experimental data is displayed in
the following table:

It is evident that when Eps is set to 5 and MinPts to 9, the silhouette coefficient reaches 0.931,
which is remarkably close to 1 and the highest among all the data in the experiment. Therefore,
this parameter will be used for the clustering experiment conducted from October 27 to October 31.
The table also reveals that with a fixed MinPts value, a larger Eps radius results in better clustering
outcomes; and as Eps increases, changing MinPts does not significantly impact the effectiveness of
clustering.

Another factor considered in this experiment is the number of noise points under different parame-
ters, where noise points are those not assigned to any cluster. More noise points within the clustering
results suggest poorer performance, indicating a larger number of data points not categorized. In ur-
ban rail transit data, there are instances where passengers with atypical yet non-anomalous commuting
patterns are categorized as noise points. To minimize this error, clustering parameters resulting in
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fewer noise points are naturally preferred. Tables 3 through 8 showcase the variations in the number
of noise points caused by different Eps values for the same MinPts value.

Table 3: Number of Noise Points for Different Eps Values (MinPts=5)
Eps(MinPts=5) 2 3 4 5
Noise 327 226 163 124

Table 4: Number of Noise Points for Different Eps Values (MinPts=6)
Eps(MinPts=6) 2 3 4 5
Noise 404 247 196 146

Table 5: Number of Noise Points for Different Eps Values (MinPts=7)
Eps(MinPts=7) 2 3 4 5
Noise 448 289 207 172

Table 6: Number of Noise Points for Different Eps Values (MinPts=8)
Eps(MinPts=8) 2 3 4 5
Noise 494 318 243 200

Table 7: Number of Noise Points for Different Eps Values (MinPts=9)
Eps(MinPts=9) 2 3 4 5
Noise 533 358 273 223

Table 8: Number of Noise Points for Different Eps Values (MinPts=10)
Eps(MinPts=10) 2 3 4 5
Noise 580 391 298 229

From the above tables, it can be observed that a larger Eps gradually reduces the number of
noise points, and for the same Eps radius, a larger MinPts results in more noise points. By this
reasoning, one might consider adopting the parameters Eps=5 and MinPts=5. However, given that
the silhouette coefficient more accurately reflects the quality of clustering results, and considering that
the few hundred noise points are negligible compared to the tens of millions of data points in urban
rail transit data, this study will continue to use the parameters Eps=5 and MinPts=9 for further
analysis.

5.2 Clustering results

Using the parameters of Eps=5 and MinPts=9, as identified in the previous section, the DBSCAN
algorithm was applied to cluster analysis on the Beijing Subway AFC data from October 27 to October
31, 2017. The clustering analysis was based on travel time and the straight-line distance between origin
and destination stations. In addition to calculating the silhouette coefficient, the number of clusters
and noise points were also determined.

As shown in figure 3, apart from October 30, where the silhouette coefficient was relatively low at
0.637, the silhouette coefficients for the other four days exceeded 0.9, approaching the ideal value of 1,
indicating highly effective clustering results. The average silhouette coefficient over the five days was
0.865, suggesting the clustering was particularly robust. Furthermore, the distribution of noise points
during the five-day experiment ranged from 210 to 260, with an average of 238.6, indicating a stable
occurrence of noise points relative to the millions of passenger flow data points.

Most passengers were grouped into a single cluster, displaying a clear upward-right trend. This
pattern indicates that the time and space characteristics of these passengers are directly proportional,
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that is, the longer the travel distance, the longer the travel time, which is consistent with typical
commuting patterns. Hence, these passengers can be classified as exhibiting no anomalous behavior.

However, a subset of passengers exhibited travel times ranging from 250 to 600 minutes with travel
distances close to zero, suggesting potential anomalies. Two plausible explanations were considered:
firstly, subway company employees might need to spend extended periods within the fare area for
work purposes; secondly, there might be passengers exhibiting abnormal behavior, such as loitering
for extended periods, which could be indicative of theft, begging, or other activities. The noise
points, not classified within the normal range of passenger flow, could also represent anomalies. These
seemingly anomalous data points will be further investigated in the subsequent chapter on user profile
construction

Figure 3: DBSCAN results
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5.3 Individual User Profiles

The concept of user profiling was first introduced by Alan Cooper. Current research on user profiles
primarily follows three directions:

User Attributes: The main goal here is to understand users by collecting characteristic informa-
tion through a Social Annotation System. The core task of user profiling is data labeling, involving
cleaning and organizing various raw data, refining user attributes, and eventually extracting user tags
from these attributes.

User Preferences: Aimed at enhancing the quality of personalized recommendations by mea-
suring users’ interest levels.

User Behavior: Focused on predicting user behavior trends to prevent customer loss and design
appropriate measures. User attributes can be categorized into three types: basic attributes, domain
attributes, and specific attributes. Basic attributes are natural attributes of users, such as age, gender,
and other demographic properties. Domain attributes apply knowledge from a specific professional
field to analyze theoretical aspects of the researched problem, deriving user attributes needed for the
study, including behavioral attributes and interest attributes. Specific attributes are identified based
on specific research needs, often representing the innovative aspects of various studies.

This paper first needs to complete the collection of user data. Next, mining and filtering of user
data take place, which was also implemented in the data processing stage of Chapter 2. The final
step involves the extraction and recombination of user profile tags. User profiling reflects the data of
each real individual in the virtual world. For a massive dataset like urban rail transit passenger flow
data, it’s obviously not feasible to study and create user profiles for every individual passenger flow.
Passenger flow can be divided into three types: visitors, shoppers, and thieves. Visitors and thieves
exhibit similar behaviors in data, as they both visit many different places without a clear pattern.
However, visitors generally head to tourist attractions or commercially prosperous areas with longer
intervals between destinations. In contrast, thieves tend to wander randomly, frequently disembarking
and with unclear destinations. They are prone to visiting multiple tourist or commercial areas in a
short period, unlike most regular passengers who only visit one area in a short time.

Based on these classification criteria, three types of passengers can be identified. Additionally, this
study will incorporate two more categories: commuters and station staff. The classification criteria
for commuters are relatively straightforward: typically, they have commuting records during morning
and evening peak hours on workdays, traveling between two fixed points, often represented on the
map as two points and a line, the "two points, one line" phenomenon. Station staff, classified by
their card number and entry-exit times mostly in the early morning non-operational hours, can be
further divided into station service personnel and technical maintenance personnel. The difference
lies in that service personnel only enter and exit at the same station (represented on the map as one
point), whereas maintenance personnel’s records appear at multiple stations, all during pre-operation
hours in the early morning. To summarize, this study will select six types of passengers for profiling:
visitors, shoppers, thieves, commuters, station service personnel, and technical maintenance personnel,
building their user profiles using data and OD (origin-destination) record connection maps. Based on
the six passenger types mentioned above, data representing each type will be filtered, and OD record
connection maps will be drawn using algorithms. Additionally, due to the potentially pejorative nature
of some categorizations, it is declared that the results are speculative, and the following qualitative
results will be described using the term "suspected."

User Profile - Tourist Type
Case Study 1: Suspected tourist-type passenger. Characterized by long intervals between exiting

and entering the metro, indicating infrequent use, in line with the pattern of tourists visiting attrac-
tions. Destination analysis based on latitude and longitude coordinates of their origin stations reveals
visits to tourist attractions. The OD data connection map shows faint lines, suggesting rare travel
along each path, aligning with the typical one-time visit pattern of tourists. Hence, the user of this
card number is suspected to be a tourist-type passenger.

Case Study 2: Another suspected tourist-type passenger. The time intervals between station
entries and exits are typically one to two hours, aligning with the typical tourist behavior of staying at
attractions. Destination analysis indicates visits to tourist sites, and the OD data connection map’s
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mostly pale, gray lines suggest non-repetitive travel routes, supporting the tourist visitation pattern.
Therefore, this card number is also suspected to belong to a tourist-type passenger.

Case Study 3: Similar to the previous cases, this passenger exhibits characteristics of long intervals
between station use, visits to tourist sites without repetition, and an OD data connection map showing
travel from one point to various areas, with non-repetitive, faint path colors. Thus, this user is also
suspected to be a tourist-type passenger.

Shopper Type
Suspected shopper-type passenger. This user’s activities on Friday and weekends (October 27

was a Friday, 28th and 29th were Saturday and Sunday) are primarily around major shopping areas
in Beijing. The passenger might have visited shopping centers like Huamao Skp near Dawanglu
Station, Sanlitun Taikooli near Tuanjiehu, and the bustling Guomao CBD. The long intervals between
station entries and exits suggest the purposeful visitation of these areas. The activities are relatively
concentrated, with clear destinations, mostly radiating from a fixed point (presumed residence) to
specific locations.

User Profile - Thief Type
Case Study 1: Suspected thief-type passenger. Characterized by multiple metro rides over five

days without clear destinations, frequent station entries and exits, mostly at crowded tourist spots
and transport hubs. The aimless wandering, frequent disembarkation, and unclear destinations align
with thief behavior. The connection map indicates multiple travels along certain paths, with some
white sections suggesting frequent use of these routes during the five days. The focus on tourist spots
increases the likelihood of a thief identity. Therefore, this user is marked as a ”suspected thief.”

Case Study 2: Another suspected thief-type passenger. This user frequently used the metro
network, totaling 28 entries and exits in five days. The chaotic travel pattern in the OD data connection
map, lacking specific destinations, aligns with thief characteristics of random wandering and unclear
objectives.

User Profile - Commuter Type
Case Study 1: Suspected commuter-type passenger. Typically travels during peak commuting

hours on weekdays, with fixed destination patterns evident in the data. Therefore, it is likely that
this user is a regular commuter.

Case Study 2: Card number “15979436” is suspected to be a commuter-type passenger. The data
and map show “two points, one line” style travel on October 27, 30, and 31, commuting between two
coordinates during peak hours, and a visit to a commercial area station on October 28. Thus, this
user is also suspected to be a commuter-type passenger.

User Profile - Station Service Personnel
Case Study 1: Suspected station service personnel. Characterized by multiple entries and exits at

the same station within a day, mostly in the early morning just before metro operation starts. Travel
times are either exceptionally long or immediate exits. Given the card type is “1-2” employee card,
the user is likely a station service staff member. The OD data connection map for station service
shows only one point, offering little additional insight, so only data is presented.

User Profile - Technical Maintenance Personnel
Case Study 1: Suspected technical maintenance personnel. Entries and exits mostly occur between

5 and 7 AM, before metro operations begin, with a “99-7” employee card type. The OD data connection
map shows chaotic destinations with faint colors for paths taken during this short period, suggesting
likely maintenance work to ensure safe metro operations before the start of the day.

The above user profiles are developed for six passenger types: tourists, shoppers, thieves, com-
muters, station service personnel, and technical maintenance personnel, constructed using data and
OD record connection maps. The qualitative nature of these profiles is speculative, using the term
"suspected" for identification.
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6 Discussion

6.1 Theoretical Implications

The comprehensive analysis of individual passenger flow characteristics in urban rail transit sys-
tems, particularly in the context of big data, offers several theoretical implications. First, this study
underscores the significance of integrating big data analytics into public transportation research. The
use of advanced data mining techniques, such as DBSCAN, in analyzing complex and large-scale
datasets, demonstrates the potential of big data in uncovering hidden patterns and trends in pas-
senger behavior. This approach challenges traditional methods that often rely on manual surveys or
limited sample sizes, offering a more nuanced and detailed understanding of passenger flows.

Secondly, the study contributes to the field of transportation planning and management by provid-
ing a framework for categorizing passengers into distinct profiles based on their travel patterns. This
classification not only enriches the existing literature on passenger behavior analysis but also intro-
duces a novel perspective in understanding the dynamics of urban rail transit systems. By identifying
specific groups such as tourists, shoppers, and commuters, the study offers a more granular view of
passenger needs and preferences, which is critical for effective transit planning.

Additionally, the research highlights the importance of context in data analysis. The differentiation
between various passenger types, such as distinguishing between tourists and thieves who exhibit simi-
lar travel patterns, emphasizes the need for contextual understanding in interpreting data. This insight
is valuable for developing more sophisticated models and algorithms that can accurately interpret and
predict passenger behavior in different scenarios.

Lastly, this study contributes to the broader discourse on the role of technology in urban devel-
opment. By demonstrating how big data can be harnessed to enhance the efficiency and effectiveness
of urban rail transit systems, the research aligns with the growing emphasis on smart city initiatives.
It underscores the potential of technology in fostering sustainable urban growth and improving the
quality of urban life.

6.2 Practical Implications

From a practical standpoint, this study offers several key takeaways for urban rail transit oper-
ators and city planners. Firstly, the detailed analysis of passenger flow characteristics can inform
more effective management strategies. For instance, identifying peak travel times and high-demand
routes enables operators to optimize train schedules and frequency, reducing wait times and alleviating
carriage overcrowding. This approach not only enhances passenger satisfaction but also improves the
overall efficiency of the transit system.

Moreover, the categorization of passengers into distinct profiles provides valuable insights for tar-
geted service improvements. Understanding the specific needs and preferences of different groups,
such as tourists versus commuters, allows for the customization of services. For example, tourist-
heavy routes could benefit from enhanced navigation aids and information services, while commuter
routes might prioritize speed and frequency.

The study also has implications for future transit network planning. The analysis of passenger
flow patterns can guide the development of new lines and stations, ensuring that they effectively
meet the needs of the city’s population. Data-driven insights can help predict future demand, prevent
overcapacity issues, and ensure that new infrastructure investments are both efficient and cost-effective.

Additionally, the findings of this study can be instrumental in crisis management and emergency
planning. Understanding passenger flow dynamics is crucial in scenarios such as evacuations, service
disruptions, or implementing health and safety measures, as seen during the COVID-19 pandemic.

In conclusion, the application of big data analytics in analyzing urban rail transit passenger flows
offers both theoretical and practical benefits. It not only advances academic understanding in the field
of urban transportation but also provides actionable insights for improving transit services, planning
future developments, and ensuring the sustainable growth of urban rail systems.
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7 Conclusions
This study, centered on the analysis of individual passenger flow characteristics in urban rail transit

using big data, marks a significant stride in understanding and optimizing urban transportation sys-
tems. By leveraging advanced data analytics, particularly the DBSCAN algorithm, the research suc-
cessfully categorized passengers into distinct profiles: tourists, shoppers, thieves, commuters, station
service personnel, and technical maintenance personnel. This categorization illuminated the diverse
needs and behaviors within the urban rail network, providing a nuanced understanding of passenger dy-
namics. The findings revealed key patterns in travel behaviors, such as the unique movement patterns
of tourists compared to regular commuters or the distinctive travel signatures of potential thieves. This
deeper insight into passenger behavior is instrumental for enhancing operational efficiency, improving
passenger experience, and guiding the strategic planning of urban rail transit systems. The use of big
data analytics in this context demonstrates its value in extracting meaningful insights from large and
complex datasets, proving essential for contemporary urban transit management and planning.

However, the study is not without its limitations. One of the primary constraints lies in the re-
liance on historical data, which may not fully capture the rapidly changing dynamics of urban rail
transit systems, especially in the face of emerging challenges like pandemics or significant urban devel-
opments. Additionally, the methodological approach, while robust, might oversimplify the complexity
of human behavior by categorizing passengers into distinct groups, potentially overlooking the fluid-
ity and intersectionality of passenger characteristics and travel purposes. Another limitation is the
geographic focus on the Beijing subway system, which may limit the generalizability of the findings
to other urban contexts with different cultural, economic, and infrastructural backgrounds.

Looking ahead, future research should aim to address these limitations by incorporating real-time
data analysis to capture the evolving nature of urban rail systems. Expanding the study to include di-
verse urban contexts and transit systems globally could enhance the generalizability and applicability
of the findings. Moreover, integrating more sophisticated machine learning and artificial intelligence
techniques could provide a more dynamic and nuanced understanding of passenger behavior, accom-
modating its inherent complexity and variability. Future studies could also explore the integration of
predictive analytics to not only analyze but also forecast passenger flow trends, thereby proactively
informing operational and strategic decisions. Ultimately, the goal should be to continue harnessing
the power of big data and advanced analytics to drive the evolution of urban rail transit systems,
making them more efficient, responsive, and attuned to the needs of their diverse user base.
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