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Abstract

Semiotics is the study of signs and sign-using behavior. Computational semiotics is an inter-
disciplinary field which proposes a new kind of approach to intelligent systems, where an explicit
account for the notion of sign is prominent. Our fundamental thesis is that information concentra-
tion processes appear in successive layers of deep learning models: each layer aggregates information
from the previous layer of the network. In computational semiotics, this information concentration
is known as superization, and it is accompanied by a decrease of entropy: signs are aggregated into
supersign. Our interdisciplinary approach enables us to depict superization processes within deep
learning models. This is a novel semantic interpretation of deep learning. We use concepts from
computational semiotics to explain decision processes in deep learning. Semiotic tools can be used
to optimize the architecture of deep neural networks. Interpretability/explainability and architec-
ture optimization of neural models are currently among the hottest topics in machine learning. We
illustrate our semiotic approach with several applications. Our contribution can be seen as the
initial move in establishing a cohesive semiotic framework for deep learning models.

Keywords: deep learning, computational semiotics, neural network explainability, neural ar-
chitecture optimization

1 Introduction
Semiotics1 is the study of signs and sign-using behavior. A sign is anything that communicates a

meaning, that is not the sign itself, to the interpreter of the sign. Semiotics as an interdisciplinary field
of study emerged in the late 19th and early 20th centuries with the independent work of Ferdinand

1Derived from the Greek word "semeiotikos" which means interpreter of signs.
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de Saussure and Charles Sanders Peirce2 (Fig. 1). More refined definitions of semiotics can be found
in [1, 2, 3]. Semiosis is any process that involves signs, including the production of meaning.

A fundamental assumption in semiotics is that signs do not convey a meaning that is inherent to
the object being represented. In Peirce’s theory of sign, we have an irreducible triadic relation (Fig.
2) between Sign-Object-Interpretant [4]:

"I define a sign as anything which is so determined by something else, called its Object,
and so determines an effect upon a person, which effect I call its interpretant, that the
later is thereby mediately determined by the former."

Figure 1: Charles Sanders Peirce (1839–1914)
by Unknown author - New York Public Li-
brary Figure 2: Peirce’s theory of signs [4]

Peirce developed several classifications of signs. According to Antony Jappy [5], perhaps the most
profound aspect of Peirce’s work in semiotics was that Peirce defined in 1903 the means of discovery
– inference – and the objects of the processes of discovery – signs – as elements of the same semiotic
system, and made them subject to the same constraints and definitions. This is similar to what John
von Neumann did for the computer when he suggested that both data and instruction be formulated
in the same code.

Peirce argued for semiosis or triadic mediation as the sole source and end of cognition. In contrast,
Charles W. Morris attempted to synthesize in semiotics pragmatism with logical positivism [6]. He
grouped semiotics into three branches [7]:

• Syntactics: relations among or between signs in formal structures without regard to meaning.

• Semantics: relation between signs and the things to which they refer; their signified denotata,
or meaning.

• Pragmatics: relations between the sign system and its human (or animal) user.

Semiotics had an early impact on computer science in the 1960s, with the introduction of the
syntactic, semantic, and pragmatic distinctions into programming language theory [8]. Subsequent
developments in this intersection are explored in more recent findings presented in [9].

Max Bense tried to apply Peircean semiotics to aesthetics [10]. According to Bense, information
and sign processes go ahead of each communication process: information is important in the formation
of signs. Bense and Abraham Moles [11] applied Shannon’s information theory to aesthetics: From
unstructured material successive emergence of structures is achieved by stochastic selections and aes-
thetic information is transmitted as complex supersigns selected from repertoires of elementary signs.
This aesthetics was introduced in the 1960s, as an attempt to establish a mathematically rigorous
aesthetic theory without subjective elements. Some of its concepts turned out to be reductionist and
schematic, which led to their eventual disappearance [12].

2https://www.britannica.com/science/semiotics
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However, this theory was continued by others [13, 14]) and created the basis for Generative Aes-
thetics, in which art could be objective and not externally influenced. In current terms, we call this
Generative AI Art. A relatively recent review of informational aesthetics measures based on informa-
tion theory and Kolmogorov’s complexity can be found in [15].

In the context of computational sciences, computational semiotics was used as a mathematical
framework of concepts from semiotics. Gudwin and Domide [16] stated that semantic networks can
implement computational intelligence models (fuzzy systems, neural networks, and evolutionary com-
putation algorithms). Several computational models of Peirce’s triadic notion of meaning processes
were proposed [17, 18, 19]. Baxter et al. introduced a framework for the interpretation of medical
image segmentation as a sign exchange in which each sign acts as an interface metaphor [20]. In our
endeavors, we employ computational semiotics in the realm of artificial intelligence, emphasizing the
significance of the concept of signs.

As we know, there is a huge interest in the field of interpretability and explainability of deep learning
models. For many years, we used the black box paradigm interpretation of deep learning. Things have
partially changed, and presently we do have techniques to interpret these models [21, 22] or theoretical
insights [23, 24], even if we still miss a fundamental theory that can elucidate all underlying aspects.
Some of these methods are based on visualization, integrating the benefits of artificial intelligence,
machine learning, and visual analytics [25, 26].

Our thesis is that the concept of sign and semiotics offers a tempting fundamental conceptual
basis for building, training, and interpreting/explaining neural models. There are very few machine
learning models designed by rigorous semiotic principles. To the extent of our knowledge, the only
applications of computational semiotics in the analysis and interpretation of deep neural networks are
the ones reported by us [27, 28, 29, 30].

Our current contribution is a comprehensive analysis of the semiotic infrastructure used in deep
learning. The approach is interdisciplinary, at the intersection of Peirce’s theory and its information
theory interpretation by Max Bense [10] and Helmar Frank [13]. We also integrate visualization of
semiotic deep learning processes. The practical applications focus on the interpretation/explanation of
decision processes in Convolutional Neural Networks (CNNs), but also on the architecture optimization
of these models.

The paper proceeds as follows. Section 2 introduces the concept of superization, a semiotic ag-
gregation operation that serves as a central element in our framework. Section 3 focuses on the core
of our approach, defining superization in deep learning models. In Section 4 we demonstrate with
three applications involving CNN learning and architecture optimization, wherein we offer semiotic
interpretations of the underlying processes. Section 5 encompasses our concluding remarks.

2 Superization - A Semiotic Aggregation Process
This section introduces a semiotic aggregation procedure known as "superization", which is at the

foundation of our methodology.
In semiotics [10, 13, 27], the usual signs designate unconsciously perceived material entities, the

so-called first level signs. At the next hierarchical level, these signs may be agglomerated into second
level supersigns. Iterating the process, we obtain from k-th level supersigns (k +1)-th level supersigns.
The transition from k-th level to (k + 1)-th level supersigns in called superization [10, 13, 31, 32, 33].

Helmar Frank [13] considered the following two types of superization:

• Type I. By class formation: building equivalence classes and thus reducing the number of signs.
The characters within a text can be viewed as first level signs. The collective class encompassing
all variations of the letter "a" (handwritten, uppercase, etc.) constitutes a second level supersign.

• Type II. By compound formation: building compound supersigns from simpler component su-
persigns. Revisiting the earlier example, we can derive words from letters, sentences from words,
and progressively build more complex and abstract syntactic-semantic structures thereafter.

Let us consider the Shannon entropy computed at two successive layers: Hk and Hk+1. The
extracted information by the interpretant can be measured by the difference Hk − Hk+1. Helmar
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Frank proved that both types of superization tend to concentrate information by decreasing entropy
[13].

This is a particular case of a more general result: A measure-preserving function can map several
points to the same point, but not vice versa, so this change in entropy is always a decrease. Since we
do not introduce any additional randomness, the entropy can only decrease, and we can talk about
the ‘information loss’ associated with the function [34].

The fact that the entropy decreases is a simplified mathematical result. In a communication
model, from an informational psychology perspective, the entropy is not necessarily monotonically
decreasing, since an information adaptation process takes place. The entropy increases until it reaches
its peak value, a phase linked to the perceiver’s adaptation to the information [32, 33]. A subsequent
entropy decrease is related to the processing of structural information, and the decrease rate depends
on the amount of structural information. The entropy falls quickly when little structural information
is available, whereas when major structural information is present, the entropy will remain high over
most of its range [32, 33].

Superization is a semiotic aggregation process characterized at each perception level by a specific
repertory of supersigns. For example, we may consider a Gaussian or Laplacian image pyramid, a
multiresolution image representation obtained by succesive convolution and sampling on each resulting
image [35]. If we consider each pixel of an image as a sign at the given hierarchical level, we may find
a similarity between this hierarchical aggregative representation and superization. We can derive a
resolution-dependent Shannon entropy from the probability distribution of grey-level events observed
at that level [36]. Using the newspaper’s reading analogy, at the magnified level, where only white
and black patches are visible, the entropy H will be low. As the picture is brought to normal focusing
distance, a great variety of grey levels become apparent, and consequently, the entropy increases. As
the picture is moved further away from the eyes, the entropy decreases (see Fig. 3). Finally, it may
become nearly uniformly grey in appearance, with H ≈ 0.

Figure 3: At the magnified level, where only white and black patches are visible, the entropy is low.
It increases up to a maximum (the normal focusing distance and then decreases to 0 as we zoom out.

Superization is not a simple combinatorial process, but subtle syntactic-semantic perception frame
related to Peirce’s triadic model of semiosis. Moreover, in a semiotic communication process, from an
informational psychology view, there are further omitted details.

In the newspaper’s reading analogy, the entropy increases until it reaches its peak value. This
phase may be associated to the informational adaptation of the perceiver [32, 33]. The subsequent
entropy decrease is related to the processing of structural information [36]. The rate of decrease
depends upon the amount of structural information in the picture. The entropy falls quickly when
little structural information is available, whereas when major structural information is present, the
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entropy will remain high over most of its range. The variation of entropy can indicate the type and
quantity of structural information in the picture in terms of size and relationships to detailed features.
We may associate the peak value of the entropy to one of the most meaningful observations of the
picture. However, because of other factors, the maximum entropy is not always associated with the
"optimal" resolution [32, 33].

In the image pyramid representation, we omit an important fact pertaining to human vision that
reduces the significance of the overcompleteness [35]: The vast majority of the transform coefficients
represent information in the highest spatial frequency bands where people have poor visual resolution.
Therefore, we can quantize these elements very severely without much loss in image quality.

In the following, we will illustrate semiotic aggregation with an example from generative art [37].
Our goal is to produce geometric structures with aesthetic appeal, similar to the ones in Fig. 4.

Figure 4: Generated structures [37]

For the generation of geometrical structures, we choose as the basic element the triangle. It is
generated as a result of a point-line tension relationship (Fig. 5).

Figure 5: The basic element [37]

The equilateral triangle performs best as the transition from the static state of the square to the
dynamism of the circle, and it is the symbol of the active equilibrium, open to external tensions. The
five signs chosen as the first level signs, depicted in Fig. 6, results from dividing the triangular field
into four internal fields obtained by translation of each side up to the half of the two sides.

Figure 6: The first level signs [37]

An increase from white to black results on the basis of a measurable proportion scale, achieving
in this way the conversion of the passive from the white triangle into the active of black one. This
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graduation allows to obtain an exact quantitative control of the degrees of tonality between clear and
obscure (passive-negative). When comparing the outlines, surface tensions result. The signs have a
ternary symmetry and are disposed in a (first generation) grid structure. In the structure, the signs
interact locally.

The second level supersigns are obtained by type I superization (by class formation, see Fig. 7).
The signs are reduced from five to three according to the maximum fields domination principle (Fig.
8).

Figure 7: The second level signs [37]

Figure 8: Superization to second level signs [37]

The second generation structure is probabilistically generated by a 2D Markov chain describing
the local interactions between the second level signs. The transition matrices used to generate the
structure are determined by some specific artistic creative schemes(see [37].

The process continues, and we obtain level three supersigns by superization of level two supersigns,
reduced from three to two according to the transition in Fig. 9. This superization is justified by the
active tendency of the black field to increase its surface perceived when it lies on a light field. This
principle can be verified experimentally.

Figure 9: The third level signs [37]

The third generation structure is generated by a similar 2D Markov chain which models the
interactions between third level signs.

For each generated structure we can compute its entropy: Hk is the entropy of the generation k
structure, composed of k-th level supersigns. In our experiments, it can be observed that the entropy
decreased monotonically, according to our expectation.

This algorithm iterates several times, producing "super...supersigns", etc. A good question is when
to stop: When we are left with one supersign and the entropy reaches its minimum value (zero)?
From the informational psychology perspective, the process can end when the entropy reaches 160
bits, which is the capacity of the short-term memory of the viewer (the art consumer in this case) [13].

In this generative art application, our goal is to optimize the aesthetic pleasure of the viewer.
The subjective "aesthetic pleasure" characterizing the transition between level k and level k + 1 of
supersigns can be quantified by the following quantity [10, 13, 31]:
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Figure 10: Superization to third level signs [37]

order(redundancy)
complexity(entropy) =

Hk−Hi+1
Hk

Hk+1

The transition to a higher supersign level is a called a Birkhoff3 synthetic process. It is accompanied
by information reduction of the contemplated art object (from the viewer’s perspective). The synthetic
process is characterized by the superization phase. The synthetic process is followed by an analytical
process which takes us back to inferior order supersigns. The inverse transition is called a Moles4

analytical process.
When perceiving art, we iterate back and forth through several synthetic-analytical processes,

adapting the perceived information to our informational capability. The "aestetic pleasure" is a sub-
jective feeling of the viewer who "discovers order" (see the above formula). Details about this semiotic
application in generative art, along with similar applications can be found in our previous work
[31, 37, 38, 39].

The "aestetic pleasure" concept was a "heroic experiment" of the 1960s (to quote Frieder Nake
[12]), since it is too reductionist, and was later abandoned. However, what remained, also according
to Nake, was the semiotic approach to aesthetics, not the numeric. In our example, the semiotic
aggregation illustrates well the complex sequence of choices made to optimize a loss function (in this
case, the "aesthetic pleasure").

3 Superization in Deep Learning
In this section we define our core problem: How can we design or optimize a CNN, the most

common deep learning model, based on semiotic principles? The layers of a CNN can be interpreted
as multi-resolution representations of the input images [40, 41, 42]. We may consider the multi-
resolution image representation example in the context of a semiotic recognition process, where the
interpretant attempts to classify an input image. Can we interpret the neural layers as combinations
of supersigns obtained by superization from the previous layer?

In a CNN, complex objects are composed of simpler object parts as the receptive field of the
network grows and combines multiple neurons from previous layers [21]. By extension, it is interesting
to observe if any form of superization is present in the training process of a CNN.

In [27], we considered a CNN model in the context of a semiotic recognition process, where the
machine (the interpretant) attempts to classify an input pattern. We imagined multi-layered classi-
fication as a semiotic process where each layer performs a superization of the previous layer and the
superization information is made available to the interpretant. Upon the completion of a success-
ful recognition process, the entropy of the output layer reaches zero, indicating that no additional
information extraction is required.

In the following, we will describe the interpretation of superization in the learning phase of a CNN
with respect to the relationships between successive neural layers.

A type I superization appears when we reduce the spatial resolution of a layer k+1 by subsampling
layer k. This bears resemblance to class formation as it involves minimizing the variation of the input
values, by reducing the number of distinctive signs.

The pooling operator in a CNN partitions the input image into non-overlapping rectangles and
performs downsampling (max or average pooling). For instance, max pooling applied to a feature map
F at layer k and locations (i, j) with a kernel of 2 × 2 is computed as:

3George David Birkhoff.
4Abraham Moles.
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Oi,j(F ) = max(Fi,j , Fi+1,j , Fi,j+1, Fi+1,j+1) (1)

Pooling, however, involves more than just downsampling; it is a fusion of filtering and subsampling.
Filtering can be interpreted as type II superization. Hence, pooling represents a synthesis of the two
forms of superization.

A type II superization is produced when applying a convolutional operator to a neural layer k.
As a consequence, layer k + 1 will concentrate on discerning more intricate objects, formed by the
combination of objects already identified by layer k. For a 3 × 3 kernel W , the convolutional operator
for feature map F at layer k and pixel (i, j) is:

Oi,j(F ) =
2∑

x=0

2∑
y=0

F (i + x, i + y)W (x, y) (2)

The output O of the convolutional operator is a linear combination of the input features and the
learned kernel weights. Therefore, a neuron in the resulting layer can identify a combination of simpler
objects by composing the previously detected supersigns.

Our intuition is that using the semiotic superization analogy, there should be a tendency of entropy
decrease at successive pooling and convolutional CNN layers. Our experiments confirmed that, in
general, the entropy decreases when progressing through the depth of the network, but this is not
always happening [27, 28].

During training a CNN, both types of superizations are effective. For type I superization, the
pooling operation combines signs (scalar values) by criteria like average value or maximum value,
reducing their number and building equivalence classes.

For type II superization, it is known that CNNs compose whole objects starting from simple object
parts [21]. This precisely characterizes the second form of superization, as it constructs composite
supersigns by combining simpler component supersigns. The receptive fields are gradually enlarged
after each convolutional layer is applied. As the receptive field expands, a neuron within a hidden layer
can encompass a significantly broader area of interest of the input image, thereby becoming activated
for increasingly intricate objects.

The challenge arises from the simultaneous operation of both superizations in some layers, making
it difficult to disentangle their individual effects.

Our hypothesis is that to decrease the entropy noticeably, the first type of superization is more
effective, while the second type is more responsible with building supersigns with semantic roles.

In a simplified representation, a multi-layered classifier can be understood as a progression: from
syntactics to semantics and finally to pragmatics. The last layer is connected to the outer world of
classes and, at the end of a successful recognition process, the entropy of this layer becomes 0. This
could be regarded as the pragmatic level in Morris’ semiotic theory, as it elucidates the connection
between input signs and output objects, which in turn can be linked to decisions and actions.

4 Applications
This section summarizes our previous work on semiotic techniques for CNN training and ar-

chitecture optimization, which are based on the semiotic interpretation of aggregation in CNNs
[27, 28, 29, 30]. In addition, we provide an in-depth analysis of the semiotics aspects.

4.1 CNN Optimization by Layer Pruning

A significant trend in deep learning involves optimizing these networks to adhere to various hard-
ware limitations [43]. Pruning is the process of reducing the size of a neural network by removing
unimportant weights, neurons, or filters, without significant loss in accuracy [44]. The goal of pruning
is to achieve more efficient models with fewer parameters and faster inference time.

The practice of pruning has recently become more pertinent and in demand. This is due to the
tendency of modern network architectures to be overparametrized, providing more opportunities for
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optimization [45]. Recent advancements in pruning methods have notably progressed in the past
few years, demonstrating the capability to significantly reduce the computational workload of a deep
neural network multiple times over without compromising accuracy [46]. A large suite of methods for
pruning have been proposed in the last years. Comprehensive surveys on neural network pruning can
be found in [47, 48].

There are two main pruning methods: weight pruning and structural pruning. Weight pruning
involves setting small weights to zero, which can lead to sparse connectivity patterns [49]. Structural
pruning removes entire neurons or filters, which preserves the dense connectivity patterns but reduces
the model size [50]. Pruning individual parameters in an unstructured way is hard to deploy on existing
hardware. Pruning an entire filter is friendly to hardware implementation, and is the dominant filter
pruning method.

In our problem statement, the main objective is the reduction of the total number of floating point
operations per second (FLOPS) and parameters, by removing redundant weights from the network.
The ratio between the number of FLOPS after compression and the number of FLOPS before com-
pression measures the sparsity of a network. Typically, the initial network is large and accurate, and
the goal is to produce a smaller network with similar accuracy.

A typical approach [49] is to first train the network. Afterwards, each parameter or structural
element in the network is issued a score, and the network is pruned based on these scores. Pruning
reduces the accuracy of the network, so it is trained further (known as fine-tuning) to recover. The
process of iteratively pruning and fine-tuning is commonly repeated, progressively decreasing the size
of the network.

Pruning is a trade-off between model efficiency and quality, with pruning increasing the former
while (typically) decreasing the latter. It can improve the time or space vs. accuracy trade-off of a
given architecture, sometimes even increasing the accuracy [48].

4.1.1 Grad-CAM Saliency Map

In visual recognition, a saliency map (e.g., shown in Fig. 11) functions to highlight the crucial or
standout features (pixels) within an input image that drive a specific decision. In the context of a
CNN classifier, this decision correlates with identifying the class that achieves the highest likelihood
score. As depicted in Fig. 11, the saliency map takes the form of a heatmap, visually conveying the
significance of individual features through varying intensity levels.

Figure 11: A saliency map generated [27] using the Grad-CAM method. It highlights the most
important pixels that contribute to the prediction of the class "boxer" (dog). Red denotes important
regions.

The concept of a saliency map is not new and predates the rise of CNNs [51]. Within the realm
of CNNs, Simonyan et al. [52] were among the pioneers investigating saliency maps. They employed
backpropagated gradients concerning the input image as a signal, where higher gradient tensor mag-
nitudes indicated greater importance of corresponding pixels. However, in deep CNNs, the gradient
signal related to specific classes diminishes as it moves backward through the network. Consequently,
in [51], saliency maps for numerous images tended to be noisy and challenging to interpret. The same
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study introduced a technique for generating class-specific images: employing gradient descent on a
randomly initialized noise image until it converges, aiming to maximize the likelihood of a particular
class. The resultant images successfully captured certain semantic elements characteristic of images
belonging to that class.

Grad-CAM, a widely adopted and modern technique for visualizing saliency maps [22], leverages
gradient information derived from backpropagating the error signal through the loss function con-
cerning a specific feature map A(l) ∈ Rw×h×c at any given layer l of the network. Here, w, h, and
c denote the width, height, and number of channels of that particular feature map. The gradient
signal is averaged across the spatial dimensions w × h to generate a c-dimensional vector denoting the
importance weights αk. These weights are utilized to perform a weighted combination across channels
with the feature maps A

(l)
k and then passed through a ReLU activation function:

O
(l)
Grad−CAM = ReLU

( c∑
k=0

αkA
(l)
k

)
(3)

Grad-CAM can show what parts of different layers in a deep network are active. In [22], it was
only used for the last layer to understand its decisions. In our tests, we used Grad-CAM for all CNN
layers, to make maps that highlight important areas.

Having computed the saliency map for each layer using Grad-CAM, we need an efficient method
to compute the entropy of the structures for which spatial relationships are important.

4.1.2 Image Spatial Entropy

A saliency map aggregates information from the previous layer and this information is measured
by the spatial entropy of the map.

We summarize here the main formulas. Details can be found in [27]. The joint probability of pixels
at spatial locations (i, j) and (i + k, j + l) to take the value g, respectively g′ is:

pgg′(k, l) = P (Xi, j = g, Xi+k, j+l = g′) (4)

where g and g′ are pixel intensity values (0 − 255). If we assume that pgg′ is independent of (i, j) (the
homogeneity assumption [53]), we define for each pair (k, l) the entropy:

H(k, l) = −
∑

g

∑
g′

pgg′(k, l) log pgg′(k, l) (5)

where the summations are over the number of outcome values. A standardized relative measure of
bivariate entropy is [53]:

HR(k, l) = H(k, l) − H(0)
H(0) ∈ [0, 1] (6)

The maximum entropy HR(k, l) = 1 corresponds to the case of two independent variables. H(0)
is the univariate entropy, which assumes all pixels as being independent, and we have H(k, l) ≥ H(0).

The Aura Matrix Entropy (AME, see [54]) is:

HAME(X) ≈ 1
4

(
HR(−1, 0) + HR(0, −1) + HR(1, 0) + HR(0, 1)

)
(7)

Starting from a map obtained by the Grad-CAM method, we compute the probabilities pgg′ in
Equation 4, and finally the AME in Equation 7, which results in the spatial entropy quantity of a
saliency map.

The Mutual Information (MI) between two saliency maps M1 and M2 is:

I(M1, M2) = H(M1) + H(M2) − H(M1, M2) (8)
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where H(·) is the (spatial) entropy of a variable, and H(·, ·) is the joint (spatial) entropy between two
variables. We modify the simplified aura matrix entropy to be applicable for joint entropy calculation
by changing Equation 4 to:

pgg′g′′ g′′′ (k, l) = P (M1i, j = g, M1i+k, j+l = g′, M2i, j = g
′′
, M2i+k, j+l = g

′′′) (9)

where g, g′, g
′′ , g

′′′ are pixel intensity values. The upcoming equations from the spatial entropy
computation will use pgg′g′′ g′′′ instead of pgg′ . The final modification will be to Equation 7, where we
take into consideration four spatial positions instead of two, the first two from M1 and the last two
from M2:

HAME(X) ≈ 1
4

(
HR(−1, 0, −1, 0) + HR(0, −1, 0, −1) + HR(1, 0, 1, 0) + HR(0, 1, 0, 1)

)
(10)

We apply Equation 10 to compute the joint spatial entropy between two saliency maps and we can
use Equation 8 to compute the Mutual Entropy (MI).

4.1.3 Layer Pruning

In [27], we highlighted the statistical aspects related to how information concentrates in saliency
maps across consecutive CNN layers. We approached the analysis of these saliency maps through a
semiotic lens. Throughout the process of superization, we noticed a reduction of the spatial entropy,
signifying the aggregation of signs into supersigns. Each saliency map consolidated information from
the preceding network layer. Our investigation delved into the potential application of semiotic tools
to optimize deep learning neural network architectures by employing a semiotic greedy technique on
saliency maps. Therefore, we monitored the entropy dynamics of the saliency maps at each layer. We
then selectively removed layers where the reduction in entropy was not substantial compared to the
previous layer, disrupting the intended process of superization.

Fig, 12 illustrates how superization leads to a decline in spatial entropy across the layers of the
network due to repeated downsampling. Nevertheless, certain convolutional layers exhibit a consistent
maintenance of spatial entropy.

Figure 12: Entropy values for saliency maps for AlexNet at different levels in the network. Similar
results were obtained on VGG16 and ResNet50 [27].

Using the VGG16 architecture as a baseline, we iteratively applied the following greedy algorithm:
(i) train the network on CIFAR-10 using the SGD optimizer with a learning rate of 0.01; (ii) compute
the spatial entropy for each saliency map; (iii) remove a layer for which the entropy does not decrease;
and (iv) repeat steps (i)-(iii) until the performance does not degrade too much.
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Network Number of parameters Accuracy

VGG16 15.245.130 89.55%

VGG11 9.750.922 87.83%

VGG16
after 4 layers 9.345.354 89.57%

removed
VGG16

after 8 layers 2.118.346 89.49%
removed

Table 1: Comparisons on CIFAR-10 - top 1 accuracy between VGG16, VGG11 (the smallest configu-
ration from the VGG family), VGG16 after 4 layers removed (which has roughly the same number of
parameters as VGG11) and VGG16 after 8 layers removed (which is the smallest configuration which
maintains the accuracy within 1% difference) [27].

The tests showed that removing up to 8 layers from the network didn’t really change its performance
much, dropping by less than 1%. But when we removed the 9th layer, the accuracy went down a lot.
So, we stopped removing layers at that point.

An interesting discovery was that the sequence of layer removal significantly influenced the out-
come. Removing small layers with fewer parameters from the initial part of the network led to a 2%
decrease in accuracy after the third removal. However, when eliminating larger (over-parametrized)
layers starting from the mid-end section of the network, the accuracy remained stable. Particularly,
removing the second convolutional layer with 64 output channels resulted in a notably rapid decline
in accuracy.

Our interpretation was that the first two convolutional layers played a crucial role in the network’s
subsequent performance. This initial section of the network, termed the "stem" in the literature [55],
occurs before a subsampling operation. Some variations of ResNets implement this stem as three
3 × 3 convolutional layers or a single large 7 × 7 layer. These early layers are responsible for detecting
low-level features like edge patterns. Having just a single 3 × 3 convolutional layer, instead of two
or three, implies that the receptive field before the initial max-pooling operation is limited to 3 × 3,
potentially hindering the proper detection of basic strokes and edges.

The resulting network configuration was: 64, 64, M, 128, M, 256, M, 512, M, M, where "M" indicates
max-pooling, and the integers represent a convolutional layer with the corresponding number of output
channels, followed by a ReLU non-linearity. There were no alterations to the fully connected layers
from the original architecture. The outcomes are detailed in Table 1. It’s evident that even with
a reduction in network capacity by approximately 7.5× from the original network, the accuracy is
preserved, indicating the network’s excessive overparametrization for this task. Also, when comparing
the original VGG11 with a pruned version of VGG16 with the same number of parameters obtained
using our method, VGG16 outperformed VGG11.

To confirm if this configuration applies to other tasks, we trained the network on CIFAR-100 and
contrasted it with the performance of the full VGG16. The full VGG16 achieved an accuracy of
62.61%, whereas the optimized VGG architecture obtained 63.78%. Remarkably, the smaller network
slightly improved the performance compared to the full network, despite being significantly smaller.

We visualized this iterative layer pruning process in [27] by plotting the saliency maps at differ-
ent key layers, where the spatial entropy value dropped significantly between successive layers. In
compliance with the theory of semiotic superization, it became visible how supersigns were gradually
formed, layer by layer. Interesting, semiotic superization took place inside a CNN regardless of the
architecture of the network.
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4.2 Information Bottleneck in Deep Learning - A Semiotic Approach

In [28], we investigated semiotic superization in the context of the Information Bottleneck (IB)
principle. We studied the evolution of spatial entropy of CNN saliency maps to validate/invalidate
this principle and applied the results to pruning.

The IB concept was introduced in [56] as an information-theoretic approach designed to identify
the optimal balance between the predictive accuracy of a variable Y and the compression of the input
random variable X within the code T . This objective is achieved through the minimization of the
following Lagrangian [56]:

min
PT |X

I(X; T ) − βI(Y ; T ) (11)

where I(·, ·) is the MI of two random variables and β is a trade-off parameter. In a CNN architecture,
MI computation can suffer from high computational cost and sensitivity to noise. Therefore, it is
critical use an efficient MI estimation method.

Recently, the IB principle was applied to deep learning by Tishby and Zaslavsky [23], offering
a theoretical framework to elucidate the fundamental mechanisms governing modern deep learning
architectures. Extending this concept, Shwartz-Ziv and Tishby [24] conceptualized the layers within
a deep neural network as a sequential Markov chain representing internal representations of the input
X. Each latent representation T is characterized through an encoder P (T |X) and a decoder P (Ŷ |T ),
where Ŷ signifies the neural prediction. They defined the Information Plane (IP) as the coordinate
plane displaying the mutual information quantities IX = I(X; T ) and IY = I(T ; Y ) across multiple
training epochs. In the context of a multi-layer perceptron tackling a synthetic data problem, they
observed two critical phases during training: a fitting phase characterized by simultaneous increases in
I(X; T ) and I(T ; Y ), and a compression phase where I(X; T ) starts declining while I(T ; Y ) remains
relatively constant. They linked the reduction in I(X; T ) to the compression of input X into the
latent space T , preventing overfitting and thereby elucidating the effective generalization achieved by
overparameterized CNNs.

Based on the IB theory, the two distinct phases (fitting and compression), characterize the MI of:
a) the input X and the internal representation T ; and b) the internal representation T and the output
Y . According to this principle, a good internal representation produced by a neural model should
maximally compress the input data, while preserving sufficient information about the output. This is
similar to what happens in visual information adaptation.

Figure 13: The 2-stages process of information adaptation [57]: It starts with a bottom-up process
of information inflation and continues with a top-down process of information deflation until the
appropriate quantity of information is adapted to the required task.

Information adaptation can be interpreted as a process characterized at least in its later stage by a
gradual reduction of the number of alternatives from which the answer is to be selected to respond to
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a given question, until eventually one of the alternatives is established as the unique answer. In some
cases, the process is characterised by a shift from a pre-established unique alternative to another new
alternative. In such a case, we have an unlearning stage, followed by a pure learning stage [58, 59].
Therefore, we can regard the CNN layers as learning layers characterised by the evolution of their
information content with (see Fig. 13).

We explored within the CNN model this semiotic aspect of information adaptation. Our experi-
ments revealed that throughout the training process, the entropy of each neural layer steadily increases
until it reaches its peak value. This phase appears to correspond to the information adaptation of
the model. The subsequent decline in entropy is linked to the processing of structural information.
The rate of this decline significantly hinges on the quantity of structural information present in the
input layer. In scenarios with minimal structural information, entropy diminishes rapidly, whereas in
cases with substantial structural elements, the neural layers maintain consistently high entropy across
a significant range. The fluctuation in entropy reflects the nature of the information encoded within
the input layer [32, 33]. We believe that this phenomenon of information adaptation aligns with the
two distinct phases outlined in the IB principle—fitting and compression.

Next, we studied variation of the spatial entropy of saliency maps through the whole training
process in conjunction with its layer-wise behaviour. Our investigation [28] focused on two aspects:

• The progression of MI between input and intermediate saliency maps, as well as between inter-
mediate and output saliency maps, throughout the training process.

• The changes in spatial entropy within saliency maps over the course of training.

The IB plane analysis, as described in [24], tracked the two MI quantities I(X; T ) and I(Y ; T )
and noticed the fitting and compression patterns emerging. As such, we analyzed the information
planes between I(X; T ) and I(Y ; T ) by computing the MI from Equation 8 between the first and
an intermediate saliency map, and between the last and the same intermediate saliency map. The
proposed experiment was meant to uncover any resemblance to the original results from [24], but
applied to a different concept like saliency maps.

We tested if there is a possible link between the IB fitting and compression patterns and the
variation of the spatial entropy in saliency maps. Different than in [27], where the spatial entropy was
studied at a single point in time (after training), going along the depth of the network, we captured
this time the dynamics of the entropy during the whole training to see if it is governed by the same
patterns.

Using the CIFAR-10 dataset, we trained a standard VGG16 architecture and applied the Grad-
CAM method to generate saliency maps at each layer. Analyzing the behavior of MI derived from
these maps after each epoch, we enhanced estimation accuracy by averaging MI values across 50
randomly chosen samples from the training set. Similar to observations in [24], we noted an increase
in I(X; T ) and I(Y ; T ) during the initial epochs. However, subsequent epochs showed no discernible
pattern indicative of compression, leading us to empirically conclude the absence of the IB concept in
the mutual information of these saliency maps.

When we derived a bit from the study of MI and analyzed the evolution of spatial entropy for
saliency maps over time for the same VGG16 architecture, we noticed a pattern. The spatial entropy
increased during the initial phase of the training and at some point plateaued. We observed the same
patterns on other well-known network architectures: ResNet [60], DenseNet [61], and GoogleNet [62].
However, we encountered some exceptions to the patterns, which were present only for a few layers.

We observed that early layers experienced a more sudden increase in entropy values during the
initial few epochs. This phenomenon could be explained by the fact that the initial layers of a CNN
specialize in recognizing simpler concepts like edges. Consequently, the network learned these tasks
more swiftly compared to later layers, which handle more intricate concepts such as complete object
parts [21].

We hypothesized a correlation between the variation of spatial entropy and the evolution of the
training process. To test this hypothesis, we trained the VGG16 model on the CIFAR-10 dataset. We
then froze the layers where the average spatial entropy of the saliency map, calculated over the last
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five epochs, entered a phase of compression with minimal variance and fell below a threshold value,
which we will denote as ϵ. Subsequently, we observed if the model achieved comparable accuracy to
a fully trained network within the same or fewer number of epochs.

For a large ϵ, the layers were frozen early in the training, prohibiting learning. On the opposite
side, with a small ϵ, layers were generally left unfrozen, allowing the network to undergo regular
training. In our practical experiments, we found that an ϵ value of 5e − 05 yielded the best results.
Our empirical results compared a fully trained VGG16 network with another VGG16 network where
certain layers were frozen during training. Remarkably, even when trained with certain layers frozen,
the network preserved the same or even achieved superior performance compared to its counterpart,
which had all layers continuously trained. This training approach can be viewed as a form of early
stopping applied at the layer level, a technique commonly used to prevent network overfitting. Thus,
we establish a connection between the observed patterns in the spatial entropy of saliency maps and
the training dynamics of a CNN.

We observed an intriguing property of spatial entropy in saliency maps within a neural network.
Following the superization process, where entropy drops, we found that the magnitude after compres-
sion closely resembles the initial magnitude before superization. This pattern of continuation across
layers suggests a connection between entropy evolution and the superization process, hinting at an
inherent property in a CNN’s training dynamics: the necessity to elevate spatial entropy to an upper
bound set by previous layers through superization.

Driven by these observations, we identified a link between IB theory and superization. Our research
in [27] indicates that superization within a CNN reduces spatial entropy, requiring subsequent layers
to increase entropy to reach the initial levels from previous layers. This increase follows a trend similar
to the fitting-compression phases observed in IB theory. The empirical evidence suggests a mutual
dependency between IB theory and superization, providing insights into the information-theoretical
aspects governing modern CNNs’ training dynamics.

Although cases exist where superization does not cause a spatial entropy decrease, we noted the
presence of fitting and compression phases. Most modern CNNs involve some form of subsampling,
indicating the existence of the superization process during training, even though its manifestation may
differ.

The semiotic superization process mirrors the IB theory’s fitting (entropy increase) followed by
compression (entropy decrease). In our model, spatial entropy measured the neural layers’ information
content. However, in our visual experiments, the entropy increase and decrease occur distinctly.
While spatial entropy increased during the fitting phase, we observed entropy decrease only after the
superization process, particularly in subsequent layers employing subsampling.

4.3 Pruning Convolutional Filters via Reinforcement Learning and Entropy Min-
imization

AutoML, a powerful technique for various tasks such as neural architecture search (NAS), hyper-
parameter search, data preparation, and feature engineering [63, 64], aims to automate these processes
to find optimal solutions more quickly than manual methods allow. Recent advancements in AutoML
involve using it for network compression via pruning [65]. This approach employs a reinforcement
learning (RL) agent [66] to determine sparsity per layer and implements a magnitude-based pruning
heuristic that removes filters with the smallest magnitude.

The focus has expanded beyond using accuracy alone as the reward criterion for AutoML network
compression. A significant contribution involves introducing an information-theoretical reward func-
tion, specifically entropy minimization, diverging from the accuracy-centric approach [66]. In neural
networks, while cross-entropy measures error, exploring the entropy of hidden layers is less common.
This observation led to investigating the impact of layer entropies on network pruning, hypothesizing
that minimizing entropy preserves crucial information and reduces uncertainty.

The study’s novelty lies in establishing a connection between entropy minimization and structural
pruning, similar to the concept of structural entropy in previous research [67]. Utilizing an AutoML
framework [65], the proposed optimization approach involves minimizing spatial entropy at each con-
volutional layer. Empirical findings suggest that this minimization indirectly maintains accuracy,
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highlighting a more principled approach to network pruning beyond solely optimizing the accuracy in
the reward function.

The AMC framework operates as an AutoML tool dedicated to pruning neural networks by se-
lecting sparsity percentages for each layer individually. This process involves an algorithm utilizing
L2 magnitude to identify and remove filters with the lowest magnitude, guided by a non-differentiable
accuracy function. A DDPG agent [66] is employed, trained through actor-critic methods [68]. The
agent’s task is to optimize this accuracy criterion, treated as a reward function, using metrics com-
puted from a distinct dataset, either from a split within the training or validation set. By promoting
actions that yield higher rewards and discouraging those with poor outcomes, the DDPG agent drives
the selection of pruning percentages.

In contrast to the original AMC approach, our modification incorporates a reward function aimed
at minimizing the average spatial entropies of convolutional activations alongside accuracy. This
addition seeks to explore whether entropy minimization could substitute direct accuracy computation,
potentially linking neural pruning with information theory. Thus, the agent’s optimization problem
shifts towards determining layer-specific sparsity levels to minimize spatial entropy. To compute
the mean spatial entropy per layer, we utilized convolutional outputs from a subset of 100 samples,
representing an estimation of the entire dataset, due to computational constraints.

Our hypothesis revolved around the possibility that minimizing spatial entropy might yield compa-
rable or superior outcomes compared to maximizing accuracy. If validated, this empirical link between
pruning and information theory would suggest that eliminating redundant information from a model
can achieve comparable accuracy to direct accuracy maximization strategies.

We started by training a standard VGG16 on the CIFAR10 dataset. For that, we trained for
200 epochs using the SGD optimizer with a learning rate of 0.01 and cosine annealing scheduler [69].
Pruning was applied afterwards on the pretrained network after which the new network configuration
is fine-tuned, as is standard in pruning literature.

In order to establish a baseline to compare our method with, we used the original formulation of
the AMC framework and optimize first the network using the accuracy criterion. To achieve a certain
level of pruning, AMC pushes up the level of sparsity until only a predefined percentage of the total
FLOPS are maintained. The ratio between the number of FLOPS after compression and the number
of FLOPS before compression can measure indirectly the amount of sparsity in a network.

We noticed that with entropy minimization we achieved the same performance as when accuracy is
used as a reward. The solution found by this method has 10× less FLOPS and ≈ 38× less parameters
than the original VGG-16 network. For entropy maximization, the framework produced a solution
which has indeed fewer parameters, but used the same number of FLOPS as the method with entropy
minimization. We could see though that the resulting network architecture has a much poorer accuracy
performance.

In order to test the generality of our method for various other architectures, we repeated the same
experiments for other popular networks: MobileNetV2 [70] and ResNet50 [60]. Our method was on
par with the original AMC framework for various architectures and FLOPS preservation percentages.
The only noticeable drop in performance was for ResNet50, which was previously observed to contain
less redundancy [71] and was the most difficult to compress, even when using accuracy as a criterion.

Using an information-theoretical optimization criterion, which aims to minimize entropy, we achieved
the same performance as when we optimize directly the accuracy of the model. We were able to re-
duce the total number of FLOPS of a VGG-16 architecture by 10× and the number of parameters by
≈ 38×, while incurring minimal accuracy drop, with similar results for other popular architectures.

In this application, the semiotic interpretation of the pruning procedure is the following:

• We minimize the entropy of convolutional activations. In a semiotic interpretation, convolution
is similar to type II superization. This means that we attempt to minimize the entropy of the
subsequent level of supersigns.

• Pruning is achieved by removing (canceling) unimportant weights from the convolutional filters.
This means that type II superization compounds obtained after convolution are less structured.
Therefore, pruning accelerates the type II superization process, maximizing information reduc-
tion for the subsequent layer.
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5 Conclusions
Our fundamental thesis is that information concentration, expressed as semiotic superizations,

appear in successive layers of deep learning models: Each layer aggregates information from the
previous layer of the network. Our experiments generally confirm this statement. Our approach can
be extended to other neural networks, since semiotic superization appears to be present in many
architectures.

We can build and optimize neural models using this semiotic framework. We were able to sig-
nificantly simplify the architecture of CNNs, by pruning layers and filters. While this optimization
process can be slow, our work tries to use the notion of computational semiotics to prune existing
state of the art networks top-down, instead of constructing the network bottom-up, a standard neural
architecture search procedure.

We also can go from effect to cause, and interpret neural models as sequences of semiotic processes.
The obtained interpretation can be used to visualize and explain decision processes within CNN
models.

According to Mihai Nadin, in a relaxed interpretation, most inference engines utilized in contem-
porary machine learning incorporate semiotic elements [72, 73]. However, this is more like a general
principle than a practical tool. In the best case scenario, designers are guided more by semiotic in-
tuition than by a comprehensive understanding of semiotic principles and we are actually very far
from a complete computational model of Peirce’s semiosis. Our results may be the starting point of
a general unifying semiotic framework for the design, optimization, and interpretation/explanation of
deep neural models.
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