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Abstract

Traffic flow prediction is one of the critical measures to alleviate traffic congestion. Currently,
traffic flow prediction research has made some achievements, but there are still some deficiencies.
In order to solve the problems of low prediction accuracy, poor real-time performance, and high
data dimensions. This paper proposes a new traffic flow prediction method that employs Grey
Relation Analysis (GRA) to detect the correlation between detection points, remove insignificant
or uncorrelated traffic flow data points, and hence reduce the data dimensionality of the prediction
model. Multiple Long Short-Term Memory (LSTM) models are then stacked to establish the traffic
flow prediction model, considering that traffic flow is affected by multi-dimensional spatiotemporal
factors, incorporating vehicle speed, occupancy, and traffic volume as inputs. We conducted exper-
iments on real datasets, and the results showed that our GRA-SLSTM model improved prediction
accuracy by 3.6% compared to other models, while reducing model prediction time by 27.33%. The
proposed model’s generalization ability is validated by predicting other detection points, which
provides significant references for traffic flow prediction research and practical applications.

Keywords: Traffic flow prediction, GRA-SLSTM, Grey Relation Analysis, Long Short-Term
Memory Network, Deep Learning.

1 Introduction
With the increasing number of vehicles each year, the limited road resources cannot meet the

growing demand for transportation [1]. This leads to traffic congestion, which not only affects people’s
travel efficiency but also increases the risk of traffic accidents [2]. Real-time traffic flow prediction
based on the analysis of traffic big data helps traffic management authorities grasp accurate road
conditions and changing trends, enabling effective traffic guidance and control. Therefore, accurate
Short-Term traffic flow prediction plays a crucial role in alleviating traffic congestion and reducing
traffic accidents.
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Nowadays, the methods for traffic prediction mainly include statistical-based methods, machine
learning methods, and deep learning methods. The statistical-based methods utilize historical data to
predict future traffic data. These historical data can include traffic volume, speed, congestion status,
traffic accidents, etc. Time series modeling is applied to these data, and statistical methods are
used to predict future values. Popular statistical theory prediction methods include Autoregressive
Integrated Moving Average (ARIMA) models and their variants [1, 4], Kalman filtering algorithm
[5, 6], etc. With the development of related theories, people have started to consider using machine
learning algorithms to model and predict traffic data [7]. These algorithms mainly include K-Nearest
Neighbor (KNN) algorithm [8, 9], Support Vector Machine (SVM) [10, 11, 12], etc. Deep learning, as
a variant of machine learning methods, can explore the spatio-temporal information of traffic flow in-
depth [13, 14, 15]. When deep learning emerged in the field of transportation, many scholars utilized
convolutional neural networks to extract spatial features between traffic data [16, 17, 18]. Since
convolutional neural networks can only perform convolution operations on Euclidean structures to
extract features, researchers divided the road network topology into grids for subsequent processing.
However, real-life traffic structures often exhibit non-Euclidean structures. Therefore, dividing the
road network topology into grid forms may to some extent undermine the road network structure
and affect the extraction of complex features and it is also the limitations of current state-of-the-art
approaches. At this point, graph neural networks [19] emerged. Subsequently, more and more research
has been conducted using graph neural networks to solve traffic flow prediction problems. Combined
models that simultaneously extract spatio-temporal features have also achieved remarkable results in
the field of traffic data [20, 21, 22].

In summary, current research in the field of traffic flow prediction mainly focuses on modeling
complex spatio-temporal correlations to improve prediction accuracy. However, as the complexity of
models increases, the computational time cost also increases multiple times, which is not suitable for
the practical application of short-term traffic flow prediction. Therefore, taking into account both pre-
diction accuracy and computational time cost, we propose a short-term traffic flow prediction method
called Grey Relation Analysis with Long Short-Term Memory Network (GRA-SLSTM). Specifically,
we use GRA to analyse the correlation between the traffic volume at the target detection point and the
traffic volume at surrounding detection points. We select the detection points with higher correlation
ranks to achieve data compression. Then, considering the correlation among traffic flow parameters,
we construct a dataset using the traffic volume, vehicle speed, and occupancy rate data at the tar-
get detection point. We input this dataset into a stacked LSTM model to predict the future traffic
volume at the target detection point. By comparing with existing baseline models, we have demon-
strated that our proposed method not only achieves good prediction performance but also reduces the
computational time cost of the model, making it more practical and applicable.

2 Methodology

2.1 Grey relation analysis

Grey Relational Analysis (GRA) is a method used to study the correlation and influence factors
between variables. The improved GRA model and grey correlation degree are used to calculate the
indicators in China, and suggestions are put forward based on the public data and traffic status of
Hebei provincial transportation department. It determines the contribution of these factors to the
system by comparing their degree of correlation. In the same sample data column, if two factors
have similar trends in terms of direction, magnitude, speed, etc., their correlation degree is high. The
specific steps are as Figure 1:

We utilize GRA to analyse the correlation between various detection points. We select the flow
monitoring values of the detection points to construct the reference sequence X0 and the compared
sequence Xn, specifically as shown in Equation 1 and Equation 2.

X0 = (x0(1), x0(2), . . . , x0(m)) (1)
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Figure 1: Specific Steps of Grey Relation Analysis Method

(X1, X2 · · · , Xn) =


x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)

...
... . . . ...

x1(m) x2(m) . . . xn(m)

 (2)

In the equation, m represents the number of indicators and n represents the number of compared
sequences.

After constructing the required sequences, calculate the correlation coefficient according to Equa-
tion 3.

☼i(k) =
min

i
|x0(k) − xi(k)| + ρ · max

i
|x0(k) − xi(k)|

|x0(k) − xi(k)| + ρ · max
i

|x0(k) − xi(k)| (3)

In the equation, k = 1, 2, . . . , m; i = 0, 1, 2, . . . , n; ρ represents the resolution coefficient, with a
value range of 0 < ρ < 1. Generally, a value of 0.5 is commonly used.

Calculate the average correlation coefficient between the remaining indicators of each compared
sequence and the corresponding elements of the reference sequence. The calculation method is shown
in Equation 4.

r0i = 1
m

m∑
k=1

☼i(k) (4)

2.2 Long Short-Term Memory

Long Short-Term Memory is designed to solve the problem of long sequence memory and gradient
disappearance or explosion in traditional recurrent neural networks. It is a special type of recurrent
neural network (RNN) . LSTM can effectively process long sequence data because it controls the
information flow through gate mechanisms, allowing the network to preserve or discard information.
The structure of an LSTM includes an input layer, a forget layer, an output layer, and a memory layer.
The input layer receives external inputs, the forget layer controls whether or not the information in
the memory cell is retained, the output layer generates the network’s output, and the memory layer
stores the current state information. LSTM is typically trained using backpropagation, with the goal
of minimizing the error between the predicted result and the actual result. The LSTM structure
unfolded over time is shown in Figure 2, and the structure of the hidden layer units is shown in Figure
3.
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Assuming the number of hidden units is h, and given a mini-batch input xt ∈ Rn×d (with n
samples and n inputs) at time step t, along with the previous time step’s hidden state ht−1 ∈ Rn×h,
the formulas for the forget gate Ft ∈ Rn×h, input gate It ∈ Rn×h, and output gate Ot ∈ Rn×h are
calculated as shown in Equations 5, 6 and 7, respectively.

Figure 2: LSTM Unfolding over Time Line Figure 3: Cell Structure of LSTM

Ft = σ
(
xtWxf

+ ht−1Whf
+ bf

)
(5)

It = σ (xtWxi + ht−1Whi
+ bi) (6)

Ot = σ (xtWxo + ht−1Who + bo) (7)

In the equation, Wxf
, Wxi , Wxo ∈ Rd×h and Whf

, Whi
, Who ∈ Rh×h are weight parameters, and

bf , bi, bo ∈ Rl×h is a bias parameter.
In addition, the candidate value for cell update Ct is determined by the tanh function, and the

calculations for Ct and Ct are as shown in Equations 8 and 9, respectively.

Ct = tanh (xtWxc + ht−1Whc + bc) (8)

Ct = ItCt + FtCt−1 (9)

The calculation of the input ht for the fully connected layer is shown in Equation 10.

ht = Ot tanh (Ct) (10)

The above formulas describe the basic operations of a single LSTM unit. Multiple LSTM units can
be stacked together to form an LSTM network, which can be used for tasks like traffic flow prediction
by learning to model the temporal dynamics of the data.

2.3 Stacked LSTM

Based on this, this study stacks multiple LSTM layers to form a Stacked LSTM for traffic flow
prediction. By stacking multiple LSTM layers, the model’s expressive power can be further enhanced,
thereby improving its predictive performance in time series data and reducing the risk of overfitting
to some extent. The Stacked LSTM model is suitable for accurately predicting traffic flows on both
weekdays and non-working days. The stacked LSTM model in this study is illustrated in Figure 4,
where the hidden state from the previous layer is used as input for the next layer. The weight and
bias parameters are the same for each layer of LSTM.

The output h
(n)
T of the model’s output layer is also the input of the fully connected layer. W and

b represent the weight matrix and bias term between the fully connected layer and the output layer
of LSTM, respectively. The calculation method for the predicted traffic flow value ĥT is shown in
Equation 11.

ĥT = Wh
(n)
T + b (11)
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Figure 4: Stacked LSTM

3 Data processing
After fully considering factors such as the source, accuracy, and completeness of the data, we

ultimately selected the traffic volume, speed, and occupancy data recorded by the detector numbered
“VDS 1209076” and its surrounding 18 detectors in the PeMS dataset from March to April 2022 as
the initial sample. These detectors upload data every 5 minutes, resulting in a total of 288 data points
per day. From March to April, a total of 316,224 data points were generated. We used the GRA to
analyse the spatial correlation of the detectors.

To avoid the influence of different ρ values on the correlation, we next compared and analysed the
correlations between each detector and the target detector under different ρ values. The correlation
results are shown in Figure 5. In order to compare the variations in correlation among the detectors,
the ranking of the correlation for each detector under different ρ values is given in Table 1.

Table 1: Ranking table of correlation degree of each detection
Detector ID ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

VDS1203124 12 12 12 12 11 11 11 10 12
VDS1209092 9 9 9 9 9 9 9 9 9
VDS1220773 7 7 7 7 7 7 7 7 7
VDS1220790 3 3 3 3 3 3 3 3 3
VDS1205088 1 1 1 1 1 1 1 1 1
VDS1204694 12 12 12 12 11 11 11 10 12
VDS1210173 17 17 17 17 17 17 16 16 16
VDS1210661 16 16 16 16 16 16 16 16 16
VDS1212333 1 1 1 1 1 1 1 1 1
VDS1204716 4 4 4 4 4 4 4 4 4
VDS1211309 9 9 9 9 9 9 9 10 9
VDS1204442 18 18 18 18 18 18 18 18 18
VDS1202337 12 12 12 12 11 14 11 10 12
VDS1221399 11 11 11 9 11 11 11 10 9
VDS1202889 8 8 7 7 7 8 8 7 7
VDS1205368 15 15 15 15 15 15 15 15 15
VDS1202942 6 5 5 5 5 5 5 5 5
VDS1208898 5 5 5 5 5 5 5 5 5

From Table 1 and Figure 5 , it can be observed that within the normal range of ρ(0 < ρ < 1), the
correlation between each detector and the target detector increases with an increase in ρ. However, in
overall terms, the ranking of correlation for each detector remains almost unchanged. Among them,
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Figure 5: Correlation Between Each Detector and Target Detection Point When ρ Is Different

five detectors with the IDs VDS1220790, VDS1205088, VDS1212333, VDS1204716, and VDS1208898
consistently rank among the top 5 in terms of correlation with the target detector. Therefore, in this
study, we preliminarily select the data from these five detectors for a total of 61 days from March 1,
2022, to April 30, 2022, as the input for the subsequent model.

4 Comparative experiments and analysis of results

4.1 Experiment setup

All experiments were conducted on an NVIDIA GeForce RTX 2060S GPU and an Intel i7 12700
CPU. The LSTM hidden layer was set to 32 with 128 neurons in the hidden layer. The batch size
was set to 64, the number of epochs was set to 100, and the learning rate was set to 0.01. Dropout
was employed to optimize the model training process, and Mean Squared Error (MSE) was chosen
as the loss function. Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE) were selected as the final evaluation metrics, calculated according
to Formulas 12, 13, and 14, respectively.

MAE = 1
N

N∑
i=1

|fi − yi| (12)

MAPE =
n∑

i=1

∣∣∣∣fi − yi

yi

∣∣∣∣ × 100
n

(13)

RMSE =

√√√√ 1
m

m∑
i=1

(h (xi) − yi)2 (14)

In the formulas, yi represents the true value, and fi represents the predicted value corresponding
to the true value.

4.2 Experiment results

The comparison between the predicted values and the true values for April 29 and April 30, 2022
obtained from the model is shown in Figure 6.

GRA-SLSTM was compared with the following models: ARIMA, GRU, LSTM, and SLSTM. The
specific evaluation metrics and comparison results are shown in Table 2.

According to Table 2, GRA-SLSTM demonstrates better performance compared to traditional
forecasting models. Compared to the standalone SLSTM model, GRA achieves data compression and
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Figure 6: Predicted and Real Data

Table 2: Comparison of prediction results of different models
Model MAE RMSE MAPE Running time(s)

ARIMA 27.95 38.75 15.23 1.54
GRU 25.23 35.22 10.77 2.01

LSTM 24.57 32.31 9.76 2.83
SLSTM 23.75 29.86 9.35 3.22

GRA-SLSTM 23.41 30.13 9.01 2.34

dimensionality reduction in the initial stage, reducing the prediction time by 27.33%. Additionally,
due to the consideration of spatial correlation in GRA, the prediction accuracy is improved by 3.6%.
In order to validate the generalization ability of the proposed model, target detectors were randomly
selected from District 11, District 7, and District 4, and GRA-SLSTM was used to predict their traffic
flow. The results are shown in Table 3, which indicates that the GRA-SLSTM model exhibits stable
performance and possesses strong generalization ability across different road segments.

Table 3: Prediction effect of GRA-SLSTM
Detector ID MAE RMSE MAPE

VDS 1111542 22.56 30.05 9.33
VDS 718421 23.39 31.02 10.01
VDS 400438 22.92 30.54 9.78

5 Conclusion
This paper focuses on optimizing the runtime of traffic flow prediction models by considering data

scaling-down and dimensionality reduction operations on the initial data, while preserving the spatial
features of the data. The aim is to reduce the time required by the model while maintaining prediction
accuracy. Based on these considerations, the following conclusions were drawn:

(1) A new traffic flow prediction model, called GRA-SLSTM, which combines grey relational
analysis (GRA) and LSTM, is proposed in this paper. Experimental results demonstrate that the
proposed model outperforms the selected baseline models in terms of prediction accuracy. Specifically,
the maximum reduction in Mean Absolute Percentage Error (MAPE) is 16.24%, the maximum decrease
in Root Mean Square Error (RMSE) is 22.24%, and the maximum improvement in prediction accuracy
reaches 21.86%.

(2) After the data is filtered through GRA, it retains spatial correlation to the maximum extent
while compressing the data dimensions, reducing the time required by the model during actual predic-
tion. Therefore, compared to other models with similar prediction accuracy, the GRA-SLSTM model
reduces the prediction time cost by 27.33%.
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(3) Many prediction models suffer from the problem of poor performance on other datasets. To
validate the performance of the proposed GRA-SLSTM model, data from other regions were randomly
selected to construct a dataset for testing. The results show that the GRA-SLSTM model exhibits
stable performance and strong generalization ability.
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