INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 19, Issue: 1, Month: February, Year: 2024
Article Number: 6030, https://doi.org/10.15837/ijccc.2024.1.6030

communication

AR SR\
[rosaa]

cc PUincationS UNIVERSITY PRESS

computing

An Indoor Localization System for Automotive Driving Competitions

N. A. Kilyen, R. F. Lemnariu, I. Muntean, G. D. Mois

Nandor Alpar Kilyen

1. Bosch Engineering Center Cluj

No. 30-34 Constata Street

Cluj-Napoca 400158, Romania

2. Department of Automation

Faculty of Automation and Computer Science

Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Nandor.Kilyen2@Qro.bosch.com

Rares Florin Lemnariu

1. Bosch Engineering Center Cluj

No. 30-34 Constata Street

Cluj-Napoca 400158, Romania

2. Department of Mechatronics

Faculty of Automotive, Mechatronics and Mechanical Engineering
Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Rares.Lemnariu@ro.bosch.com

Ionut Muntean*

1. Bosch Engineering Center Cluj

No. 30-34 Constata Street

Cluj-Napoca 400158, Romania

2. Department of Automation

Faculty of Automation and Computer Science

Technical University of Cluj-Napoca, Cluj-Napoca, Romania
*Corresponding author: Ionut.Muntean@ro.bosch.com

George Dan Mois

Department of Automation

Faculty of Automation and Computer Science

Technical University of Cluj-Napoca, Cluj-Napoca, Romania
George.Mois@aut.utcluj.ro

Abstract

Localization, in both indoor and outdoor settings, represents a problem that has received in-
creased attention lately. This paper presents the development, testing, and validation of an indoor
localization system for 1/10 scale vehicles based on the Robot Operating System (ROS) and ArUco
marker detection. It has a distributed architecture, consisting of tens of Raspberry Pi (RPi) single-
board computers running ROS nodes and fitted with cameras, that monitor a certain area of the

https://doi.org/10.15837 /ijcce.2024.1.6030 2

14x14 m plane. The developed system has been successfully used in three editions of Bosch Fu-
ture Mobility Challenge, an international student competition, where the participants are required
to implement autonomous driving functionalities in an environment resembling a real-life city on
small-scale automated vehicles.

Keywords: embedded systems, image processing, localization, positioning system.

1 Introduction

The interest in localization of autonomous mobile systems is a highly active research topic that
has been facilitated by the developments in advanced mobile and communication technologies [12, 17].
Computing the position and the orientation of an object is a key technology that can bring us a
step closer to autonomous vehicles, enabling them to manage in an autonomous way traffic situations
and signifficantly reduce the number of accidents [7, 10]. Communication is also concerned with the
placement of the used equipment, the localization problem being a requirement also for wireless sensor
networks (WSNs) and vehicular ad hoc networks (VANETS), where position-based routing can improve
packet delivery ratios, or communication delays and overheads [13, 18]. The application domain of
such systems is even wider, being used in environmental monitoring applications, precision farming,
inventory management, road traffic monitoring, health monitoring, and others, besides navigation [8].

While the finding of the position of objects in open field is based on the well-established Global
navigation satellite systems (GNSS) tool, a wide range approaches were proposed for places where
satellite signals are blocked, such as indoor environments. Indoor Positioning Systems (IPS) deal with
locating moving devices indoors and are based on local infrastructure [2]. Some of the used approaches
are based on Wi-Fi [16] or Bluetooth [5] technologies, on the emerging Ultra WideBand technology
[1], on image processing [4], on the angle of arrival (AoA), on the time of arrival (ToA), or on the time
difference of arrival (TDoA) of signals [2], and many others. The increasing amount of smart devices,
belonging to the Internet of Things (IoT) vision, lead to techniques that make use of crowdsourced
data, that is obtained from many different entities and that is later fused [3]. The existence of such a
rich palette of systems for indoor positioning shows that there is no standard approach, each one of
the developed methods having its own strengths and drawbacks, that have to be analyzed in the case
of a particular application.

The main motivation for developing the localization system presented in this paper lies in the
requirements for Bosch Future Mobility Challenge (BFMC), an international autonomous driving and
connectivity competition on 1/10 scale vehicles, involving master and bachelor students [9]. The
challenge was created to provide participants with a platform for interacting with the autonomous
driving domain and to develop and test algorithms in an environment as close as possible to a real
one.

Global navigation satellite systems are a common tool used in current real-life mobility solutions
and a replica of such a system was also needed for BFMC. In this context, the purpose of the local-
ization system presented in this paper is the acquisition of the position and orientation of the cars on
the track, in a manner similar to the one provided by a real-life GNSS (Global Navigation Satellite
System). The area that has to be monitored, the track where the autonomous cars navigate, is placed
indoors and covers a square area with a side of 14 meters. The chosen solution is represented by
a system with a distributed architecture, consisting on tens of Raspberry Pi single-board computers
running ROS nodes and fitted with cameras, that continuously monitor the target area for detecting
the model cars and computing their position relative to one corner of the square, the origin.

The method is based on the processing of the images captured by the Raspberry Pi cameras and the
detecting of ArUco (minimal library for Augmented Reality applications) tags attached to the tracked
cars [15]. Determining the displacement of the tags mounted on the cars in correspondence to specific
markers placed at previously known locations (matrix points 1 meter apart) leads to the computation
of the actual position of the car on the monitored area. Fiducial markers offer the advantage of fast and
facile detection with the use of open source libraries, such as OpenCV (Open Source Computer Vision
Library) [20]. The system we developed makes use of the free ArUco minimal library for Augmented
Reality that is based exclusively on OpenCV [21]. An architecture and implementation that rely on
open source code and on image processing were chosen because a reliable and accurate system that

https://doi.org/10.15837 /ijcce.2024.1.6030 3

can also easily be exploited and replicated was desired. Solutions that are based on RSSI (Received
Signal Strength Indicator) or on signal arrival times require the use of more specialized hardware and
are prone to accuracy degradation due to radio frequency interference and NLOS (non-line-of-sight)
situations [14].

The Robot Operating System platform runs on all the RPi devices in the system, managing all the
actions performed by each one of them (image capture and image processing, calibration, car markers’
position calculation, and data communication) [6]. ROS is an open-source framework that supports
the rapid development of robot applications, providing services such as hardware abstraction, low-level
device control, and message transmission between processes using the publisher-subscriber model [11].
Besides the advantage of accelerating development, ROS was chosen due to the large community and
knowledge base. This allows both the organizers of the competition and the participants to develop
efficient modules that make use of the simulated-GPS system.

The main contributions of the paper are as follows:

e the development of a real-time localization system based on ArUco markers;

o extensive testing of the developed system during preparations for an autonomous driving com-
petition, BEFMC;

« validation of the operation of the proposed system during the BEMC autonomous driving com-
petition.

The rest of the paper is structured as follows. In Section II we present the overall architecture of
the implemented camera-based localization system, and detail the used hardware components and the
developed software modules. In the following section, we describe the testing and validation activities
performed and we provide an evaluation of the performance of the system. Here we highlight the
advantages and drawbacks of the developed IPS. Finally, we give concluding remarks in the the last
section of the paper.

2 Camera-Based Localization System

The localization system is based on an array of cameras, which are placed above the area of
interest, where the robots can move. The individual camera systems in its composition identify the
robots based on their attached markers and estimate their position and orientation in the working area
coordination frame. The estimated poses of the robots are collected by a main server for monitoring
and transmitting the information to other clients, such as the actual robots. Based on these data, the
robots can take action based on their position in the field.

2.1 Hardware Setup

FEach Raspberry camera was set at 3.3 m height from the ground, mounted on the elements on
the ceiling with the mechanism presented in Fig. 1. This is made up of a shaft, a flexible joint, and
3D printed components that hold the pieces of each individual system together (Raspberry Pi and
Raspberry Pi camera) and fix each one of the separate kits on the objects on the ceiling. All these are
connected to the mains through a 5 V power supply adapter.

The resolution of the camera was set from a SW (Software) point of view at 1640x1232 binned,
with a full FOV (Field Of View), more precisely 48.8 degrees Vertical and 62.2 degrees Horizontal.
The focal length of the camera is 3.04 millimeters. Lens distortion was tested and no major side-effect
was noticed from it. In conclusion, the decision of not considering the lens distortion matter was
taken. This leads to an area covered by each Raspberry Pi of 3.36x2.46 m (8.29 m?). The full area of
the track is 204.1 m?, so we installed 24 cameras. The part of the competition track covered by the
RPi cameras is presented in Fig. 2 (coloured in red).

The ArUco markers for the detection of the model cars are set at 4x4 bits with a total dimension
of 10x10 cm. The markers are placed on top of each car, so at a height of approximately 20 cm.
This being testified, each marker is the equivalent of 51.9x53.1 Px (Pixels), which gives a theoretical

https://doi.org/10.15837 /ijcce.2024.1.6030 4

Figure 1: Camera system mechanical design

maximum error of 1x1 Px, e.g.: 5.19x5.31 cm. The software running on each RPi contains the list of
car markers, and each time one of the cameras detects a known marker, it sends the corresponding
computed location and orientation to the server.

Figure 2: Camera system FOV

2.2 Software Modules

The system is composed of one server module and many camera modules, where the camera
modules can start and stop independently from the server. The camera module aims to identify the
vehicles by detecting the markers and transfers their poses on the track to the main server. The
camera module has two phases, which are the calibration and localisation processes, each of them
based on marker detection. The camera modules are ROS nodes realized with OpenCV with C+—+.
The main server deals with multiple tasks: it collects the robot’s poses from each camera module and
makes a list of all acquired poses of the robots present in the tracked area. The main server is a ROS
node implemented in Python. It also has some features for controlling and monitoring all the camera
modules on the local network and visualizes the detection on the track map. A diagram scheme can
be seen in Fig 3.

https://doi.org/10.15837 /ijcce.2024.1.6030 5

Camera Module ‘ N
1 Main server

Camera Module |

Camera Module sernver 11

image N resized image T Ny
node image_proc node image visualize

pose collector robot pose

robot pose

localisation node |
monitor Robaot Clients

Lamela [|

calibration saver static transformation
calibration node
[reamera posex| node g publisher

Figure 3: Software architecture

2.2.1 Marker Detection Process

There are two aspects identical for both the calibration and the localisation phase: the camera
handling and the marker detection.

For the camera handling we use the raspicam node, a predefined ROS package. It implements
the low level interaction with the raspberry camera and it publishes the images on a ROS topic. The
image_proc image processing package [23] was used for resizing the acquired images and publishing
them on a different image topic. This was performed for debugging purposes, allowing the visualization
of images on another device, with an improved frame rate. The image_ proc image processing package
also publishes and subscribes the camera parameters on a camera info topic, where these parameters
can be changed.

The detection process takes the following inputs: the dictionary of ArUco markers to look for, the
image topic, and some camera parameters. By using this data and the OpenCV library, more precisely
the detectMarkers function, we identify the detected markers and find their corner positions. These
are then used for computing the position and orientation of the markers in the camera frame.

Fig. 4 shows the image captured by a Raspberry Pi camera, where indicators are placed on the
detected markers.

Figure 4: Detected markers

https://doi.org/10.15837 /ijcce.2024.1.6030 6

2.2.2 Calibration process

In the calibration phase, the system focuses on determining the poses for each camera on the
track coordination system. For calibration purposes, ArUco markers are set at 5x5 bits with a total
dimension of 10x10 cm. Those are are placed on the flat surface with rotation 0, in a matrix where
they are set one meter apart from each other. In this way, a matrix like the one in Fig. 5 is constructed
on the track. This being testified, each marker is the equivalent of 48.7x49.9 Px, with a maximum
error of 1x1 Px, e.g.: 4.87x4.99 cm. [19].

Figure 5: Calibration setup

During the calibration process, each Raspberry Pi system runs a script capturing the static image
with the calibration markers placed on the ground. We are using the above mentioned set of markers,
whose position are predefined on the track and can be detected by all the camera modules. The
position and the size of the markers in the track coordination frame represent the inputs of the
system. Based on these inputs, the pose of each corner is calculated. For each marker detected by a
camera module, the software application creates one list with the position of the corners in the world
and one with the position of the corners on the frame. At this point we have a set of image points and
the correlated 3D points in the track coordination frame. Finally, based of the detected corners, we
estimate the camera rotation and translation within the track coordination frame and we minimize the
reprojection error from 3D points to 2D image points. We determine the transformation and rotation
vectors by using another function provided by OpenCV, SolvePnP. The vectors are obtained taking
into account the camera intrinsic parameters. These vectors transform a point expressed in the world
coordinate frame to the camera coordinate frame. By inverting the transformation matrix formed by
these vectors, we get the translation and rotation vectors, which transform a point from the camera
coordination frame to the world coordination frame. The resulted transformation is broadcasted using
the ROS tf package [24]. Another ROS node running on the calibration server collects the estimated
transformations for all the devices in the image frame. At the end of the calibration phase, the
calibration saver calculates a mean of the transformations for each camera and saves them in a ROS
launcher file for their application in the localization phase. After the calibration phase, the translation
and rotation vectors are memorized, the marker matrix is no longer necessary, and the markers are
removed from the track. An image of the calibration matrix for a test track, with markers positioned
so that they are on the same plane with the one mounted on a car, can be seen in Fig. 6. This setup
was used for testing the concept presented in this subsection.

https://doi.org/10.15837 /ijcce.2024.1.6030 7

Figure 6: Calibration setup for test track

2.2.3 Localisation process

In the localisation phase, the camera module aims to determine the car position and orientation
in the world coordination frame. The already saved transformations between the camera and track
coordination frames are repeatedly published in the ROS system. A different marker is placed on the
top of each car to identify the robot and also to detect it on the image frame. In the first step, the
camera system and detection system detect the marker corners in the image frame, which can belong
to a car or not, and filter the unidentified markers. The detector module uses the camera intrinsic
parameters and a marker size to estimate each car translation and rotation in the camera coordination
frame and it runs the estimatePoseSingleMarkers OpenCV function. Based on the size of the marker
the estimatePoseSingleMarkers function predicts the corners position around the marker center and
it solves the pose estimation problem by minimizing the reprojection error from 3D points to image
points. This action will result in the translation and rotation vectors of markers on the camera
coordinate frame. By applying the previously estimated transformation matrix from the camera
coordination frame to the world coordination frame, we will get the car’s position and orientation
in the world coordination frame. Each individual camera system repeats the process for each image
frame, where it can detect the markers with a known ID. The camera modules publishes the detected
cars’ position and orientation on different ROS topics, identified to the camera itself, to be read by
the main server.

2.2.4 Servering

The main server module aims to serve the robots with their estimated position and orientation
on the race track. It collects all the translations from the camera modules. The module discovers
automatically all the ROS topics that belong to a camera module and subscribes to them to get
the estimated poses on each camera frame. These poses are stored in a table based on the robot
identification number defined by the marker placed on them. The server module is designed to provide
the robot’s poses for clients without using a ROS subscriber. The server broadcasts periodically a
beacon through UDP (User Datagram Protocol), which contains the server’s port number. On this
port the server waits for connections from clients and creates a new thread for serving each of them.
The server implementation is based on ThreadingTCPServer from the SocketServer Python standard
library. For establishing a connection, a series of validations need to be done: the robots request to
connect to the servers port number by sending the ID they are interested in. The server then replies
with a custom message sent in plain text and the same one encrypted with a private RSA (Rivest-
Shamir-Adleman) key. The client then confirms the server identity by making a decryption of the

https://doi.org/10.15837 /ijcce.2024.1.6030 8

coded message with the public key of the key-pair, previously provided together with the API. If the
decrypted message is the same as the one in plain text, the server is validated and the connection is
finalised. After they establish the connection, the previously created thread periodically transfers to
the robot the coordinates (orientation and position) from the corresponding connection ID. The main
server module can register more than one client to the same identification number and in this way a
robot can obtain also the position of other robots.

2.2.5 Monitoring

Two separate modules have been developed for monitoring the entire localisation system, one
focused on the hardware functionality (ensuring that the processes are running on all the devices)
and one focused on the controlling and monitoring of the entire competition infrastructure. The first
module is monitoring the state of each Raspberry Pi single-board computer in the system. This
application runs on the server and periodically checks that the remote systems making up the GPS
are alive and the ArUco marker detection script runs on every one of them. The main loop starts a
thread for each Raspberry Pi in the system, using the paramiko package from Python3, opens up an
SSHv2 (Secure Shell 2.0 or SSH 2) connection, and launches a command that searches for the ID of
the process belonging to the detector script. It then checks the output of the remote system, and if
the command does not contain any lines, this means that detection is not turned on. This situation is
indicated on the screen of the server, so that action can be taken. This could mean starting the script
remotely, or restarting the Raspberry Pi manually, in case no SSHv2 connection can be established.
The Observer pattern is used for subscribing to the checking action performed for each Raspberry Pi
and for getting notifications about changes in their states. These notifications are used for updating
the interface with the user. The output of the monitoring script can be seen in Fig. 7.

RPi status (True - WORKING, False - NOT WORKING):
.168.1.50', True)
.168.1.51"', True)
.168.1.52"', True)
.168.1.53', True)
.168.1.54', False)

.168.
.168.
.168.
.168.
.168.

.56"', True)
.57', True)
.58', True)
.59', True)
.60', True)

1
al,
1
il
1
.168.1.55"', True)
1
il
1
al,
1

Figure 7: Monitoring system output

The second module is a GUI (Graphic User Interface) of the entire competition environment.
Visually, the user of the application can see the detected cars on the track, the data accuracy, delay
and potential problems. Additionally, the user can activate and monitor the states of all the active
elements on the track (semaphores, pedestrians, timers). The application is developed in ROS and it
has a node for each car ID, which can spawn on the map and it uses the API (Application Programming
Interface) that we share with the teams. The API is creating a thread that is connecting to the server
and gathering the acquired position and orientation pairs. If the connection doesn’t take place, then
we can identify the problem on the server. The node then publishes the raw given coordinates on a
topic where the GUI application is subscribed. The GUT has a frame rate of 10 fps (frames per second)
and a map of the competition as background. At each frame update it deletes the old positions of the
cars and updates it with the newly acquired ones. If no position is gathered in a certain area from a
single car, we can then check if the car marker is rightly set or, if no position is gathered at all, we
can take proper action on the system itself. The output of the GUI can be seen in Fig. 8.

https://doi.org/10.15837 /ijcce.2024.1.6030 9

Insert Pedestrian Speed Track View

Figure 8: GUI application (masteriX)

3 Performance Evaluation

In order to best evaluate the performance of the system, no uniform control of the lighting in the
environment was performed, since during the competition itself there is no possibility of creating even
and controlled lighting conditions. Four different aspects were analysed:

o Delay: The time passed between the captured frame (CF) from the camera until the served
position (SP) was read by the vehicle.

e Frequency of delivery: The frequency of the received messages by the vehicle. The theoretical
frequency of the captured frames by each device of the system, which is around 4 Hertz.

e« Ratio between the captured positions and lost positions: On average, how many lost
positions should be expected?

e Accuracy: The difference in position between the position of the car in the captured frame and
the actual position of the car in the frame.

The network of the competition has no internet access and a method of time synchronisation had
to be adopted. A custom Network Time Protocol (NTP) server was installed on the master computer
(the one that runs all the servers of the competition) and all the connected devices were configured
to look for time synchronisation not on specific Pool Zones, but on the custom server. An additional
UDP exception for communication with the server had to be implemented on the clients.

Ten randomly considered consecutive streamed positions were taken into account for the calculation
of the Delay (Table 1). It should also be noted that on the network there were no participant vehicles.
The presence of communicating vehicles in the setup would have most probably lowered the network
speed.

https://doi.org/10.15837 /ijcce.2024.1.6030 10
Served position time[s| | Captured frame time [s] | x [m] | y [m] | delay time [s]
1614869132.38 1614869131.97 0.79 | 14.76 0.41
1614869132.63 1614869132.17 0.81 | 14.67 0.46
1614869132.88 1614869132.37 0.80 | 14.59 0.51
1614869133.13 1614869132.77 0.83 | 14.40 0.36
1614869133.38 1614869132.97 0.87 | 14.30 0.41
1614869133.63 1614869133.17 0.91 | 14.21 0.46
1614869133.88 1614869133.57 1.02 | 14.05 0.31
1614869134.13 1614869133.77 1.11 | 13.96 0.36
1614869134.38 1614869133.98 1.17 | 13.89 0.40
1614869134.63 1614869134.38 1.26 | 13.81 0.25
Table 1: Run data sample
Average Delay:
S delay 3.9
10 10 0.39s (1)

The calculus in equation (1) shows that the delay is a problem to be considered. This delay is the
sum of all the periods of time required by calculations and data transmissions within the network.
The following delays have been identified:

e the time starting from the frame capture until the calculation of the marker pose
o time of data delivery from the device to the server,
« time of data delivery concerning the position from the server to the robot,

e time lost in the synchronisation of data read and write actions.

It is also worth mentioning that, in an empty environment on the same server computer, the
communication between two ROS nodes completes in around 0.15 seconds.

From this same table, we can also calculate the frequency of detection and of data delivery.
Frequency of delivery:

SPhaz — SPmi 1614869134.63 — 1614869132.38 2.3

U o R = o = 7o = 0-23T = 4.35H> (2)

The calculus in equation (2) indicates that without interference, the ArUco markers are detected
flawlessly and sent accordingly to the server clients.

In order to correctly evaluate the signal loss, a trajectory was highlighted on the ground at known
positions, starting from an area of the track with full natural light and reflective surface to an area
where indoor lighting was necessary, and where no reflective surface was encountered. The vehicle
was driven manually through this trajectory on three separate runs, at nearly 5 minutes difference
between them, and the middle one in performance will be considered onwards.

The chosen run took 76.6 seconds to be completed, which means that there should be 338.86
theoretically captured positions (TCP). On our data set instead, there was a number of 200 captured
positions(CP), meaning that we have a considerable amount of lost positions. Based on this, the ratio
of lost positions can be computed (equation (3)).

Ratio of lost positions:

CP B 200 _ 200
TCP —CP 333.86 —200 133.86

1.49 (3)

https://doi.org/10.15837 /ijcce.2024.1.6030 11

A visual representation of the run with the acquired positions can be seen in in Fig. 9.

Figure 9: Complete run output

A sum of factors have or can potentially influence this ratio, drastically and dynamically, all
touching in fact the camera parameters. The uneven lighting conditions on the track, sudden light
flashes (due to people walking) or the speed of the vehicles and its trembling (due to inappropriate
fixing of the car body or the ArUco marker).

Accuracy: 10 cm radius circle

For the last evaluated point, accuracy, a reverse calibration method was used: after running the
calibration process, we gave as an input the same calibration dictionary for the detection process,
saved the data of all the IDs on the map and then compared them to their initial positions, which
we already knew. The maximum error was observed, having a value of 10 cm. The accuracy of the
camera position in the world coordinates was not observed separately, as it would include not only
the measurement of position of the camera, but it’s rotation matrix as well.

There are two principal aspects that influence in big terms the accuracy:

o the distance between the markers and the camera — 3.2 meters;

e the fact that we have two accumulated errors, i.e., one from the calibration and the one from
the detection.

The accuracy was determined also empirically, by placing a vehicle on the track, and comparing
the positions given by our localisation system with physical measurements. This comparison was
performed in the parts of the track that provide the worst conditions for position calculation: area
covered by a minimum number of cameras, low level of natural light, and high amount of reflections.
These areas were selected for obtaining the accuracy in the most unfavourable cases.

Different aspects were raised during the development and during the competition, and they led us
to the following observations:

e Difficulty in setting up the system: There is no possibility of setting up a fixed matrix
of devices covering the entire competition area, due to the fact that the area was not designed
specifically for this purpose. As a conclusion some parts can be uncovered.

« Difficult calibration process: Setting up a floor matrix of approximately 200 ArUco markers
is quite repetitive and challenging.

e Problematic maintenance: If during the competition, a device malfunctioned, it was neces-
sary to re-calibrate that specific device, which would require some time.

https://doi.org/10.15837 /ijcce.2024.1.6030 12

e Best for controlled ambient: In our situation, many aspects can influence the specifications
of the system (car speed, car body mounting, light disturbance, people, network usage).

4 Conclusion

The work presented in this paper deals with the development of an indoor localization system
for use in the Bosch Future Mobility Challenge (BFMC) international autonomous driving and con-
nectivity competition on 1/10 scale vehicles. Our solution is a distributed system, which is based
on a network of Raspberry Pi single-board computers running ROS nodes, fitted with cameras, that
monitor a certain area of the 14x14 m plane. The camera-based systems monitor the area of interest
and detect and calculate the position of ArUco tags attached to the tracked robots. The system was
extensively tested and used in the actual competition, proving to be a robust and scalable solution.
The presented system can be easily adapted for different coverage areas with minimum effort. The
performance was similar between a system with 6 devices and one with 24 devices.

The initially planned target points of the developed system were met. The entire system performed
within acceptable parameters, representing a replica of real-life GPS. The system was successfully used
during the BFMC2021 qualifications and finals, where nine teams used it without major problems.
Some of them were able to create the map based on the data gathered from the server. In the future, we
propose to upgrade our system to ROS2 for reducing the appeared latency and we intend to compare
the performance of solution with a localization system based on Ultra WideBand (UWB).

Funding
This work was developed under IPCEI ME/CT EuroDrives.

Author contributions

The authors contributed equally to this work.

Conflict of interest

The authors declare no conflict of interest.

References

[1] Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A
Al-Khalifa, H. S. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent
Advances. Sensors, 16(5). https://doi.org/10.3390/s16050707

[2] Assayag, Y., Oliveira, H., Souto, E., Barreto, R., Pazzi, R. (2020). Indoor Positioning System
Using Dynamic Model Estimation. Sensors, 20(24). https://doi.org/10.3390/520247003

[3] Chang, Q., Li, Q., Shi, Z., Chen, W., Wang, W. (2016). Scalable Indoor Localization via Mobile
Crowdsourcing and Gaussian Process. Sensors, 16(3). https://doi.org/10.3390/s16030381

[4] Heya, T. A., Arefin, S. E., Chakrabarty, A., Alam, M. (2018). Image Process-
ing Based Indoor Localization System for Assisting Visually Impaired People. 2018
Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), 1-T.
https://doi.org/10.1109/UPINLBS.2018.8559936

[5] Hirota, T., Tanaka, S., Iwasaki, T., Hosaka, H., Sasaki, K., Enomoto, M., Ando, H. (2007).
DEVELOPMENT OF LOCAL POSITIONING SYSTEM USING BLUETOOTH. In E. Arai &
T. Arai (Eds.), Mechatronics for Safety, Security and Dependability in a New Era (pp. 309-312).
Elsevier. https://doi.org/https://doi.org/10.1016/B978-008044963-0/50063-1

https://doi.org/10.15837 /ijcce.2024.1.6030 13

[6]

[10]

[11]

[12]

[13]

[19]

[20]
[21]

Hua, J., He, L., Kang, Z., Yan, K. (2019). A force/position hybrid controller for rehabilita-
tion robot [Article]. International Journal of Computers, Communications and Control, 14(5),
615-628.

Kala, R. (2016). 2 - Basics of Autonomous Vehicles. In R. Kala (Ed.), On-Road Intelligent Ve-
hicles (pp. 11-35). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-
803729-4.00002-7

Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., Atri, M. (2019). A Survey of Localiza-
tion Systems in Internet of Things. In Mobile Networks and Applications, 24(3), 761-785.
https://doi.org/10.1007/s11036-018-1090-3

Kilyen, N. A., Lemnariu, R. F., Mois, G. D., Chen, Y., Morris, B. T., Muntean, I. (2021).
The IEEE ITSS and Bosch Future Mobility Challenge: A Hands-on Start to Autonomous Driv-
ing [Technical Activities|. IEEE Intelligent Transportation Systems Magazine, 13(3), 276-282.
https://doi.org/10.1109/MITS.2021.3081939

Kushwaha, M.; Abirami, M.S. (2023). Intelligent Model for Avoiding Road Accidents Using Artifi-
cial NeuralNetwork, International Journal of Computers Communications& Control, 18(5), 5317,
2023.https://doi.org/10.15837 /ijccc.2023.5.5317

Lee, H., Yoon, J., Jang, M.-S., Park, K.-J. (2021). A Robot Operating System Framework for
Secure UAV Communications. Sensors, 21(4). https://doi.org/10.3390/s21041369

Mocanu, I., Scarlat, G., Rusu, L., Pandelica, I., Cramariuc, B. (2018). Indoor localisation through
probabilistic ontologies [Article]. International Journal of Computers, Communications and Con-
trol, 13(6), 988-1006. https://doi.org/10.15837 /ijccc.2018.6.3022

Nebbou, T., Lehsaini, M., Fouchal, H., Ayaida, M. (2019). An urban location service for ve-
hicular area networks. Concurrency and Computation: Practice and Experience, 31(24), e4693.
https://doi.org/https://doi.org/10.1002/cpe.4693

Obeidat, H., Shuaieb, W., Obeidat, O., Abd-Alhameed, R. (2021). A Review of Indoor Localiza-
tion Techniques and Wireless Technologies. Wireless Personal Communications, 119(1), 289-327.
https://doi.org/10.1007/s11277-021-08209-5

Oscadal, P., Heczko, D., Vysocky, A., Mlotek, J., Novak, P., Virgala, I., Sukop, M., Bobovsky, Z.
(2020). Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors,
20(17). https://doi.org/10.3390/s20174825

Schauer, L. (2019). 2 - Wi-Fi Tracking Threatens Users’ Privacy in Fingerprinting Techniques. In
J. Conesa, A. Pérez-Navarro, J. Torres-Sospedra, and R. Montoliv (Eds.), Geographical and Fin-
gerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation (pp.
21-43). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-813189-3.00002-2

Tomazic, S. (2021). Indoor Positioning and Navigation. Sensors, 21(14).
https://doi.org/10.3390/s21144793

Zhang, L., Cheng, Q., Wang, Y., Zeadally, S. (2008). A Novel Distributed Sensor Positioning
System Using the Dual of Target Tracking. IEEE Transactions on Computers, 57(2), 246-260.
https://doi.org/10.1109/TC.2007.70792

[Online|. Available: https://picamera.readthedocs.io/en/release-1.13/, Accesed on 14
March 2023.

[Online|. Available: https://opencv.org/#, Accesed on 1 September 2023.

[Online|. Available: https://sourceforge.net/projects/aruco/, Accesed on 10 August 2023.

https://picamera.readthedocs.io/en/release-1.13/
https://opencv.org/#
https://sourceforge.net/projects/aruco/

https://doi.org/10.15837 /ijcce.2024.1.6030 14

[22] [Online]. Available: http://wiki.ros.org/nodelet, Accesed on 10 August 2023.
[23] [Online]. Available: http://wiki.ros.org/image_proc, Accessed: 7 December 2022.

[24] [Online]. Available: http://wiki.ros.org/tf, Accessed: 20 july 2023.

Copyright ©2024 by the authors. Licensee Agora University, Oradea, Romania.

This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.

Journal’s webpage: http://univagora.ro/jour/index.php/ijecc/

C/O PE

Member since 2012
JM08090

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).
https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Kilyen, N.A.; Lemnariu, R.F.; Muntean, I.; Mois, G.D. (2024). An Indoor Localization System for

Automotive Driving Competitions, International Journal of Computers Communications & Control,
19(1), 6030, 2024.
https://doi.org/10.15837 /ijccc.2024.1.6030

http://wiki.ros.org/nodelet
http://wiki.ros.org/image_proc
http://wiki.ros.org/tf

	Introduction
	Camera-Based Localization System
	Hardware Setup
	Software Modules
	Marker Detection Process
	Calibration process
	Localisation process
	Servering
	Monitoring

	Performance Evaluation
	Conclusion

