INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL

Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 18, Issue: 6, Month: December, Year: 2023

Article Number: 5879, https://doi.org/10.15837/ijccc.2023.6.5879

communication

AR SR\
[rosaa]

cc PUincationS UNIVERSITY PRESS

computing

An Improved Deeplabv3+ Model for Semantic Segmentation of

Urban Environments Targeting Autonomous Driving

Wang Wang,Hua He, Changsong Ma

Wang Wang

Office of Development and Planning
Geely University of China,China
Chengdu , Sichuan, 641423, China
wangwang@guc.edu.cn

Hua He

1. Chongqing Technology and Business University
Chongging, 400067,China

2. International College

Krirk University

Bangkok, 10220, Thailand

huahe@guc.edu.cn

Changsong Ma

1. Geely University of China,China
Chengdu , Sichuan, 641423, China
2. International College

Krirk University

Bangkok, 10220, Thailand
changsongma@guc.edu.cn

Abstract

This paper proposes an improved Deeplabv3+ model for semantic segmentation of urban scenes
targeting autonomous driving applications. A high-quality semantic segmentation dataset is con-
structed from 2,967 manually labeled aerial images captured at 200m height with a 5-eye camera.
The images contain 5 classes - buildings, vegetation, ground, lake and playgrounds. The improved
Deeplabv3+ network enriches high-level semantics by replacing max pooling with depthwise separa-
ble convolutions. Dilated convolutions extract multi-scale features to avoid overfitting. Experiments
demonstrate that the model achieves an overall mean IoU of 0.87 on the test set, with IoU scores
of 0.90, 0.92 and 0.94 on buildings, vegetation and water respectively. The model shows promising
results for extracting semantic information from complex urban environments to support navigation
for autonomous vehicles.

Keywords: Autonomous Driving; Semantic Segmentation; Urban Environments; Improved
Deeplabv3+ Model.
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1 Introduction

In recent years, the driverless industry has developed rapidly, bringing great convenience to people’s
travel. Research and application of related aspects have advanced by leaps and bounds. Driverless
technology covers many technical fields, such as machinery, control, positioning, mapping, navigation
and so on. With the rise of driverless technology and the development of computer vision, the 3D
scene map containing rich information provides more possibilities for applications such as autonomous
navigation and environmental exploration. Traditional maps only contain spatial geometric informa-
tion, which limits the ability of robots to perform advanced tasks or better understand the meaning
of surrounding scenes. To this end, researchers have carried out a lot of research work, among which
the research on semantic maps is an important field in various robot applications such as autonomous
robots[1] and driverless cars. Semantic maps means reconstructing the real environment into space
and embedding semantic information in the map. Semantic segmentation is an essential step in gen-
erating semantic maps, and it is based on deep learning techniques[2, 3]. According to the spatial
domain of the algorithm, the research on semantic segmentation can be divided into two-dimensional
(2D) semantic segmentation and three-dimensional (3D) semantic segmentation. 2D semantic seg-
mentation assigns a semantic label to each pixel in an image. The deep learning is also widely used
in image recognition[4], image classification[5, 6, 7, 8],object detection[9, 10, 11, 12, 13]. In literature
[14, 15],probability models such as Markov Random Field (MRF) and Conditional Random Field
(CRF) are used for semantic segmentation.In addition, with the development of the Convolutional
Neural Network (CNN), several studies have used CNN to solve semantic segmentation problems and
achieved significant performance improvements. Long et al [16] ,proposed a representative Fully Con-
volutional Network (FCN), which can perform pixel-by-pixel classification while preserving the spatial
information of the original input image by introducing an upsampling layer of transposed convolu-
tional layers. On this basis, several excellent 2D semantic segmentation network architectures such
as ENET [17],SegNet [18], DilatedNet[19] and RefineNet [20]have also been developed . The Pascal
VOC2012 [21] and Cityscapes [22]datasets are widely recognized benchmarks for training and eval-
uating the performance metrics of deep learning models. Ibrahem et al[23],introduced an innovative
method employing the efficient sub-pixel convolutional neural network, achieving an mIOU of 91.1% on
the PASCAL VOC2012 dataset. Similarly, Wang et al[24], developed a novel, large-scale CNN-based
foundational model named Internlmage. This model harnesses the benefits of increasing parame-
ters and training data, like ViTs, and elevated the mIoU to 86.1% on the Cityscapes dataset.Qin et
al[25],proposed a cost-efficient localization solution that leverages low-cost cameras and compact visual
semantic maps rather than relying on expensive sensors and high-resolution maps. Despite challenges
with segmentation noise, a strategic application of statistics further refines this light-weight semantic
mapping technique, showcasing a practical localization solution for autonomous driving with room for
continuous evolution and improvement [26] . Presents a novel approach of utilizing autopilot drones
for asphalt surface monitoring to effectively maintain road serviceability, however, practical challenges
associated with drone-based road detection, segmentation, and following are yet to be addressed.

Road discontinuity caused by noise and occlusion in the automatic extraction of road informa-
tion from remote sensing images, were proposed in [27]. Yet, there might be potential limitations
or unaddressed complications in handling more complex interferences beyond noise and occlusion.
Ref [28],proposed a novel method incorporating atrous convolution into deep learning models for im-
proved semantic image segmentation [25]. The method exhibits significant practical benefits; however,
potential limitations are not explicitly addressed in the paper.

The authors of [29] presented OccGAN, a novel technique for generating plausible occluded im-
ages with annotation to counteract the shortcomings of long-tail distribution faced during training
of intricate driving scenes datasets. The method strives to address the challenges faced by prevalent
algorithms when dealing with images encumbered by complicated environments and occlusions. How-
ever, there’s the potential risk of these synthetically generated samples overwhelming rare real-world
instances.

The authors of [30] provided a comprehensive review of advancements in deep learning that have
significantly improved the accuracy of semantic image segmentation for autonomous driving, a task
that requires high effectiveness and efficiency. Ref [31],proposed a method for enhancing autonomous
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driving applications through semantic image segmentation. The research aims to provide advanced
AT features, such as automatic brakes and park assist, more affordably in vehicles.Ref [32],presented
an innovative framework for reliable image segmentation in low-light scenarios, increasing the safety
and practicality of autonomous vehicles. The novel nighttime segmentation framework catapults the
applicability of autonomous driving technologies under unfavorable weather conditions via an efficient
synthetic data collection and style transfer mechanism. Notwithstanding, the study’s approach may
encounter limitations stemming from a lack of access to a large-scale, labeled nighttime dataset.

Reviewed current multimodal road-scene segmentation approaches [33], focusing on imaging modal-
ities and datasets. These methods combine inputs to enhance performance, typically employing sep-
arate network branches for each modality. Challenges include limited labeled data for training and
the need for more diverse datasets, particularly in thermal imaging.Ref [34], presented an effective
approach for semantic segmentation for self-driving automobiles. They combined deep learning ar-
chitectures like convolutional neural networks and autoencoders, as well as cutting-edge approaches
like feature pyramid networks and bottleneck residual blocks, to develop the model. Sun et al [35],
focused on utilizing semantic segmentation techniques, employing the neural network-based Fully
Convolutional Network (FCN) on the cityscapes dataset, to process road condition information. Both
safety and real-time processing are considered, aiming for accuracy and processing speed in semantic
segmentation.

When researchers in the field of autonomous driving develop a new algorithm, considering safety
and cost issues, they will not directly drive a car for testing. However, all scenarios must be tested to
ensure that it is stable enough, which takes a lot of time. Finding and reproducing problems through
software simulation does not require a real environment and hardware, and can greatly save costs and
time. With the rise of deep learning, simulation has new uses in the field of autonomous driving. The
autonomous driving platform collects data through simulation, which can greatly increase the training
time, far exceeding the time of road tests, and speed up the model iteration speed. Firstly, the cluster
training model is used, and then it is tested in the actual road test, and the data-driven method
is adopted to carry out the autonomous driving research. However, the quality of the simulation is
closely related to the similarity between the simulation model and the real-world scene. The model in
this paper can realize the semantic segmentation of two-dimensional pictures through the method of
deep learning. At present, there are generally three implementation methods for constructing semantic
maps: voxel-based point cloud segmentation [36], direct point cloud segmentation [37] and multi-visual
image-based point cloud segmentation [38].

In this work, our primary contributions can be distilled into three pivotal advancements:

We create a high-quality semantic segmentation dataset which is constructed from 2,967 manually
labeled aerial images captured at 200m height with a 5-eye camera.

We adopt depthwise separable convolutions, replacing all max-pooling operations, leading to richer
high-level semantics.

We utilize dilated convolutions to extract feature maps at arbitrary resolutions, thereby facilitating
the capture of multi-scale information. We also add a Batch Normalization (BN) layer and a ReLU
layer after each deep convolution operation to mitigate the risk of overfitting.

2 Materials and Methods

Deep learning consists of many layers of neural networks, such as an input layer, an intermediate
layer (also known as a hidden layer), an output layer, and so on. A deep neural network refers to a
feedforward neural network (also called a multi-layer perceptron) that contains multiple hidden layers,
and the nodes of two adjacent layers are fully connected. Generally, the unsupervised pre-training
method is used to initialize the network weights. And a classifier is constructed between the last
hidden layer and the output layer, such as Logistic Regression (LR), Support Vector Machine (SVM)
or SoftMax network, etc. Finally, the weight of the entire network is adjusted through supervised
training. The figure below shows a multi-layer perceptron that includes 1 input layer, 1 hidden layer
and 1 output layer.

Each layer of the neural network is composed of many neurons. A neuron is actually a computing
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Output Layer

Hidden Layer

Input Layer

Figure 1: Multi-Layer Perceptron Model

unit, which needs to receive N input signals to start computing. These signals are passed to the
neuron through a weighted connection, and the neuron starts to calculate a weighted sum of these
input signals to obtain a value, and then the neuron processes this value through the activation
function to generate the final output. The function of the activation function is to perform nonlinear
calculations and squeeze the input values that may vary in a large range into the range of (0, 1) output
values. The activation function used below is relu.

@ o relu B—

Figure 2: Structural diagram of a single neuron

Then the output formula function of the neuron is:

thMZf(W%Q=f<§ﬁ%m+Q (1)
i=1

For the above neural network, assuming there are m training samples, then for any sample, its loss
function is defined as:

1
T(W,bs2,y) = Shuy (2) =y (2)

In order to prevent the overfitting of the model, it is generally necessary to add a regular term to
the loss function. At this time, the loss function is:

J=loss+ R (3)

Among them, the loss represents the loss function, and R represents the regular term. For the
above training set containing m samples, using L2 regularization, then the expression of the loss
function is:

n;—1 S] Si+1

¥y > (why (4)

)
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J(W,b) = l; S (W, b: X(z),ym)
=1

Our optimization goal is to find the parameters W and b so that the loss function J (W, b) reaches
the minimum value. The most commonly used method is the backpropagation algorithm, and the
weight update adopts the form of gradient descent.

Autoencoder: The essence of deep learning is the feature learning. The sample features are trans-
formed from the original space to a new feature space through nonlinear transformation. Autoencoder
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is an important neural network for feature learning. Autoencoder is an unsupervised deep learning
method by classification. It is mainly composed of two parts: an encoder and a decoder. The struc-
ture is shown in the figure below. The original input feature vector x is transformed into the encoded
output through the mapping of the hidden layer h, and then the reverse transformation through the
hidden layer is reproduced to the original input data as much as possible. The connection weight of the
network is adjusted by reconstructing the error between the data and the input data. Its simple model
is shown in the figure below, where x represents the input, r represents the reconstructed output, h
represents the hidden layer, f refers to the encoding process, and g represents the decoding process.

Input Output

Latent Space

Figure 3: Autoencoder structure diagram

The convolutional Neural Network (CNN) is a special neural network structure. The nodes in two
adjacent layers are not fully connected. It is generally composed of convolutional layers and pooling
layers alternately cascaded. Among them, the convolutional layer generally contains multiple filter
factors, and multiple feature subgraphs are obtained by performing convolution operations with the
input of the previous layer, so as to realize the feature extraction of the data. The pooling layer
realizes feature dimensionality reduction by downsampling the input data of the convolutional layer.
Since CNN adopts perceptual field, weight sharing and pooling technology, its network size is greatly
reduced compared with the deep neural network. Moreover, the features extracted in this way have the
advantage of invariance, so it is widely used in fields such as computer vision and image recognition. At
present, the medium is divided into several categories from the perspective of geographical elements:
buildings, vegetation, undulating terrain, roads, and playgrounds.

The development process of deep learning always requires a large amount of data to support it.
The quality of deep learning algorithms in the field of computer vision has a lot to do with the size
and quality of the dataset. High-quality, large-scale datasets work well with algorithms for training
and validation. To achieve accurate segmentation of different media in complex urban scenes, a high-
quality media semantic segmentation dataset is essential.

At present, open-source image segmentation datasets in the world, such as COCO, VOC, and
Cityscapes, cannot be used for media recognition of UAV detection pictures. Forcible use will lead to
a decrease in accuracy or even failure to correctly complete the identification of the medium. Therefore,
in order to maximize the accuracy of media semantic segmentation, we can only label and establish a
semantic recognition dataset that can realize object segmentation.

After referring to the establishment specifications of many semantic segmentation datasets, we
proposed the following media semantic segmentation dataset process, which specifically includes: UAV
detection image data collection, data preprocessing and artificial media semantic annotation, as shown
in the figure below.

2.1 The Improved DeepLabv3+ Algorithm

DeepLabV3+ is gradually developed from DeepLab and is the fourth version of this series of
algorithms. The DeepLab semantic segmentation algorithm uses the VGG network to extract image
features, uses dilated convolution to expand the receptive field, and uses the conditional random field
commonly used in traditional segmentation algorithms to optimize the final segmentation results.
Based on DeepLab and inspired by Spatial Pyramid Pooling (SPP), DeepLabV2 proposes Atrous
Spatial Pyramid Pooling (ASPP) module. This module extracts rich image contextual information
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Figure 4: The process of semantic segmentation algorithm

at multiple scales by parallel sampling using dilated convolutions with different dilation rates. In
addition, DeepLabV2 uses the ResNet-101 network with stronger feature extraction capabilities to
replace the VGG-16 network used by DeepLab, and obtains more excellent semantic segmentation
performance. Subsequently, DeepLabV3 further optimized the model on the basis of DeepLabV2,
improved the ASPP structure of DeepLabV2, and obtained better semantic segmentation results by
improving the training strategy. On the basis of the above, DeepLabV3+ was proposed in March 2018.
The algorithm is based on DeepLabV3, uses the DeepLabV3 structure as an encoder, and replaces
ResNet-101 with the Xception model in the feature extraction stage, further improving the accuracy
and speed of operation of the image semantic segmentation algorithm. In addition, DeepLabV3+
upsamples the output features of the ASPP module by four times, and then concatenates the features
with the low-level features in the feature extractor with the same resolution, and then the cascaded
features are quadruple upsampled again in the way of bilinear upsampling to get the final semantic
segmentation result. DeepLabV3+ is used to solve the problem of loss of a large amount of detailed
information caused by directly upsampling the feature map to restore the original image resolution
size in the DeepLabV3 model by adding a decoding module, so that the model has achieved top results
in semantic segmentation tasks on multiple datasets. The network structure diagram of DeepLabV 3+
is shown in Figure 5.

Figure 5: DeepLabv3+ network structure d

The DeepLabV3+ semantic segmentation algorithm uses the Xception network pre-trained by Im-
ageNet for feature extraction, and applies the Depthwise Separable Convolution structure to the ASPP
module and decoding module. The Xception network is another improvement to Inception-V3 pro-
posed after Inception and Inception-V2. It mainly introduces Depthwise Separable Convolution on the
basis of Inception-V3, and improves the performance of the model without increasing the complexity
of the network. Among them, Depthwise Separable Convolution is also called separable convolution.
For the correlation between channels, the model first performs depthwise convolution, that is, depth
convolution, performs a 3*3 convolution operation on each input channel, and concatenates the results;
then for spatial correlation, the model performs pointwise convolution, that is, point-by-point convo-
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lution, and perform a 1*1 convolution operation on the concatenated results in the depth convolution.
The structure of Xception is based on ResNet, and the entire network is divided into three parts,
namely Entry flow, Middle flow and Exit flow. The Xception network structure and its improvements
in DeepLabV3+ are shown in Figure 6.

Entry flow Middle flow Exit flow

Figure 6: Schematic diagram of Xception and its improvements in Deeplabv3+4

2.2 Dilated convolution

The DeepLabV3+ semantic segmentation algorithm uses dilated convolution to control the reso-
lution of the output feature map and expand the receptive field of the convolution kernel, reducing
the downsampling rate while keeping the training parameters unchanged. Dilated convolution, also
known as atrous convolution, extends the standard convolution operation by inserting a value of 0 in
the convolution kernel. Taking the two-dimensional feature map as an example, assuming that the
convolution kernel is w, when the dilated convolution is applied to the input feature map x, for each
position i in the output feature map y, there are:

y(i) =2t +r«klwlk] (5)

Among them, r represents the atrous rate. A schematic diagram of dilated convolution is shown

in Figure 2.7. Among them, Figure 2.7(a) corresponds to the dilated convolution with a convolution

kernel of 3*3 and an atrous rate of 1. Like ordinary convolution, the size of the receptive field is 3*3;

Figure 2.7(b) corresponds to the dilated convolution with an atrous rate of 2 of 3*3, and a value of

0 is inserted between ordinary convolutions, and the size of the receptive field is 5*5; Figure 2.7(c)
corresponds to a dilated convolution with a 3*3 atrous rate of 4, and the receptive field size is 9*9.

ANV W W W N
AU

VAN

i
it

Figure 7: Schematic diagram of dilated convolution

2.3 ASPP Module

The DeepLabv3+ semantic segmentation algorithm uses the dilated spatial pyramid pooling ASPP
module. It uses parallel sampling of dilated convolutions with different atrous rates and combines
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image-level features to mine rich media semantic context information at different scales to solve the
problem of different scales of the media to be segmented.

2.4 Deficiencies of DeepLabv3+

Although the DeepLabV34 semantic segmentation algorithm has achieved great success in various
image semantic segmentation datasets, there are still the following deficiencies: DeepLabV34 and
other semantic segmentation algorithms based on deep learning usually increase the receptive field by
continuously stacking pooling layers or downsampling layers in the feature extraction stage, so many
details such as object edges are lost in the convolution process. The ratio between the spatial resolution
of the input image and the resolution of the final output feature map is defined as the Output Stride.
Even though the Deepl.abV3+ algorithm proposes to generate intensive pixel prediction by using
dilated convolution instead of a pooling layer, the resolution of the encoded output feature map is
still reduced by 16 times compared with that of the input image. That is, the Output Stride=16.
Under this premise, DeepLabV3+ first performs bilinear upsampling of the encoded features with a
factor of 4 and then connects the feature layers output by the low-level network with the same spatial
resolution. Finally, a 3*3 convolution kernel and bilinear upsampling with a factor of 4 are used
to restore the output feature map to the spatial resolution of the input image, thus completing the
semantic segmentation. Nevertheless, a lot of detailed information is still lost in this process. Only
relying on two consecutive bilinear upsampling with a factor of 4 is not enough to fully restore the
detailed information of the image, resulting in an unsatisfactory semantic segmentation effect in detail
parts such as object edges. Models with multiple pooling layers that are deeper in architecture enhance
translational invariance and expand the receptive field of the top-layer nodes. However, such structures
may lead to the loss of high-frequency details, which are crucial for the precise localization of object
edges. This loss of edge details is fatal both for point cloud classification for media reconstruction and
for improving the correct semantics for subsequent calculations. Therefore, we must improve it on the
basis of the DeepLabV3+ model to fully obtain the edge information of the medium.

Based on the above, we adopt a method that directly performs semantic segmentation on multi-
visual images of UAVs. The neural network structure of Deeplab V34 (combination of codec and
Xception) is the method we use to implement semantic segmentation in this paper [39]. We use an
improved DeepLabv3+ deep learning network to carry out semantic recognition on UAV aerial survey
pictures and use UAV with five-eye camera to obtain aerial survey pictures. It is a key step to build
a semantic map by manually labelling it to give it semantic information, and continuously training
the algorithm to obtain the media category to which each pixel of each aerial survey image belongs.
Traditional pooling operations, while reducing spatial dimensions, can also lead to the loss of fine-
grained spatial details. Depthwise separable convolutions, on the other hand, allow for a reduction
in computational complexity without significantly downsampling the feature maps. This ensures that
more spatial details are retained, which is crucial for tasks that require precise localization or where
fine-grained patterns are important. The improved deep learning network model enriches the high-
level semantics of the original network. Multi-scale information is easier to be extracted and overfitting
is avoided. Finally, the semantic segmentation task of the medium is completed accurately, and the
semantic recognition of urban scenes suitable for automatic driving is realized.

3 Experiment and Results

The images in our dataset were sourced from two universities in China, namely Wuhan University
and Xiamen University, during the summer of 2020. Throughout this period, we accumulated a
collection of over 5,000 images. The quality of the media semantic segmentation dataset established
by surveying and mapping images will be affected by many factors: the height, angle, resolution,
content, and quantity of the image when acquiring the image. These factors will have different
and non-negligible effects on the subsequent semantic segmentation. Considering the above factors
comprehensively, it is determined that the collection height of the dataset is 200m; the angle is
the shooting angle of the five-eye camera; and the resolution is . The dataset has a total of 2,967
pictures, including 2,067 training sets, 500 validation sets, and 400 test sets. There are five categories:
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buildings, vegetation, ground, lakes, and playgrounds. The following is a detailed introduction to the
consideration angle of each category.

(1) Height

The height of the image acquisition is an important factor affecting the quality of surveying and
mapping images. If the height is too high, the proportion of pixels occupied by small objects such as
branches of trees, vehicles, and doors and windows on buildings will be too low to even be recognized,
which will cause great errors in the subsequent semantic segmentation of the medium. And if it is too
low, it will not be able to detect the whole picture of taller buildings, and even cause the drone to
crash into trees or buildings. Here the height is chosen as 200m.

(2) Angle

The angle at which images are taken also affects the quality of the dataset. If you shoot vertically,
then a lot of side information will be ignored, such as doors and windows of buildings, etc. In order
to obtain this side information, the angles of the surveying and mapping pictures should be varied.
Here, we can use the five-eye camera to take pictures to obtain pictures containing media data. The
five-eye camera can collect images from one vertical angle and four side-view angles at the same time,
which more truly reflects the actual situation of ground objects and makes up for the deficiency of
orthophoto images.

(3) Resolution

The resolution of surveying and mapping pictures is also an important factor that cannot be
ignored. If the resolution is too low, small objects will occupy too few pixels, making recognition
extremely difficult. If it is too high, it will take too much time to process the data, and it may even
fail to train smoothly due to insufficient memory. Therefore, is formulated here as the standard for
dataset resolution.

(4) Quantity

The size of the dataset is also an issue worth discussing. If the dataset is too small, that is, the
number of pictures contained is too small, which will lead to overfitting in the subsequent training.
Since manual labelling is a very time-consuming process, and the dataset is too large, that is, it
contains too many pictures, it will also lead to too long training time and cannot build our map in
real time. In the end, a total of 2,567 pictures were selected in the training set of the dataset to train
the convergence of the model. A total of 400 pictures were selected in the test set to verify and test
the accuracy of the model.

(5) Category

In order to avoid the imbalance of media categories affecting the training of semantic segmentation,
the proportion of pixels occupied by all categories should be roughly the same, and there should be no
too many or too few pixels occupied by a certain category. After the data is successfully collected, we
need to preprocess the collected data before using the labelme software to manually label the media.

3.1 Data Preprocessing

Before deep learning performs image classification, target detection, and image semantic segmen-
tation, image data needs to be preprocessed. The two commonly used preprocessing methods are
image standardization processing and image normalization processing. The two image preprocessing
methods are described in detail below.

(1) Image standardization processing

The image standardization process uses the theoretical knowledge of two parts, convex optimiza-
tion theory and data probability division. The data in the image is de-averaged to complete the
centralization process. The data centralization satisfies the data distribution law, and it is easier
to obtain the generalization effect after training. The image normalization processing formula is as
follows:

1.0

adjustedstddev = max(d, —— 6
) (5.2 ()

tmage__standardization = adjusf@;_l;tddev "
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Table 1: Proportion of pixels occupied by categories
Category Buildings | Vegetation | Ground Lake Playground
The percentage of pixels occupied 24.03% 49.24% 16.11% | 6.24% 4.28%

In the formula, represents the standard deviation, is the standard deviation, N is the number of
pixels in the image x, is the mean value of the image, x is the image matrix, and is the standardized
processing result of the image.

(2) Image normalization processing

The commonly used method for normalization processing is the maximum and minimum value
normalization method, and the formula is as follows:

x; — man(z)

norm = maz(z) — min(z) ®

In this formula, represents the image pixel point value, min(x) and max(x) represent the minimum
value and maximum value of the image pixel, respectively. The normalized image result is exactly the
same as the original image. Normalization does not change the information of the original image, but
only changes the value range, changing the value range of the pixel value of the original image from
255 to 0-1. This is helpful for training the data later using the deep learning network. Considering
that the task is based on the medium segmentation of UAV detection images, the normalization pro-
cessing of images is suitable for image classification and target detection tasks. However, the semantic
segmentation of images needs to process the overall information of the images, so the normalization
processing method of the image is used to preprocess the dataset.

3.2 Dataset Labelling

After the data image is acquired, it is necessary to manually label the data image. Since image
semantic segmentation is a pixel-level segmentation task, manual data labelling is a time-consuming
and laborious process. It took 26 days to complete the labelling task of the media semantic recognition
datasets with a total of 2,967 pictures.

The statistics include a total of 2,967 pictures in the training set and the test set, and the ratio of
pixels occupied by each category is obtained, as shown in the table.

1 kS
Building &
S

<

Trees/Grass

BN Playing-field M@l Ground WM Iake
B Trces/Grass EEEM Building

Figure 8: Examples of manually labelled images

After the labeling is completed using labelme annotation software, the labled information is stored
in the form of.json file. These json files are then sorted together and labled diagrams are generated.
The color of each category in the generated label image is inconsistent, and a unified label map will
be generated after processing. An example label diagram is shown in Figure 8.
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The Softmax classifier in the last layer of the medium semantic segmentation network used will
classify the model with one-dimensional values based on probability. Therefore, before the sample is
input into the network, it is necessary to convert the data format of the sample image whose colour
space is RGB, and convert the RGB grayscale of 3 channels into the grayscale value of 1 channel.

Since the gray value of each category is very low, no change can be seen directly from the grayscale
image, so it is not shown here. However, during training, the network model will learn according to
the gray value of each category in the figure to understand the category to which the pixel belongs.
After the manual labelling is completed, our dataset can be divided into three folders: image, mask,
and index, as shown in Figure 9.

Dataset
Class |— 0. Building
| 1. Tree/Grass
| 2. Ground
| 3. Playing-field
| 4 Lake
I DSC 01 1 0001.JPG
Structure images —— DSC_01_1_0002.JPG
Number: 2967 :

L DSC 09 5 0135.JPG

—— DSC 01 1 0001.png
—— DSC 01 1 0002.png

mask
Number: 2967

—— DSC 09 5 0135.png

index {rain.txt —— DSC_01 1 0001
Number: 2067 [?SC_Ol_l_OOOZ

L— DsC_09 5 0071

val.tst —— DSC_01_1 0062
Number: 500 DSC_01_1_0063

“—— DSC_09_5_0094

testtxt — DSC_01_1_0085
Number: 400 [ DSC_01_1 0086

L— Dsc 09 5 0135

Figure 9: The directory display of the generated media semantic recognition dataset

Among them, the image stores all input pictures, including training, testing, and validation set
pictures, as shown in Figure 10. All the label pictures are stored in the mask, and there is a one-to-one
correspondence with the input pictures (that is, the pictures in the image folder), as shown in Figure
11. The index directory contains three .txt files: train.txt, val.txt, and test.txt, which contain the
file names of all training sets, validation sets, and test sets, respectively, and are used to distinguish
training sets, validation sets, and test sets.

Figure 10: The original images in our annotated dataset

The final improved network model is shown below.
The parameters are shown in Table 2, and the loss function of the training process is shown in
Figure 12.



https://doi.org/10.15837 /ijccc.2023.6.5879 12

Figure 11: The segmented image in our annotated datase

j

Figure 12: The final improved network model

It can be seen from Figure 13 that after 100,000 iterations, the loss value of the model stabilizes
around 0.4, and the model converges successfully. To provide a clearer perspective on the dataset’s
quality and the precision of our annotations, Figure 14 presents a side-by-side comparison of an original
image, ground truth and prediction generated by our improved deepLabv3+ model.

The trained model was used to verify the dataset data, and the average pixel ratio (m_IOU) of
each category in the test set data was obtained, as shown in Table 3.

It can be seen that IOU of lakes, buildings and vegetation is as high as 0.9, and the accuracy of
segmentation is very high. As per the literature, particularly cited in [25], the leading metric for urban
scene segmentation pertinent to autonomous driving is an mIoU of 83.4%, achieved and validated on
the Cityscapes dataset. Our proposed method has demonstrated promising results, with an mloU
of 86.7% on our assembled dataset. However, we acknowledge that direct comparisons should be
interpreted cautiously due to the intrinsic differences in dataset characteristics, evaluation conditions,
and protocols. Although our dataset is meticulously curated and relevant to the tasks at hand, the
disparities between datasets may lead to variations in performance metrics. Future endeavors in
our research will aim at conducting a comprehensive comparative analysis with uniform datasets and
evaluation criteria to facilitate a more accurate and fair assessment against the current state-of-the-art
methods in urban scene segmentation for autonomous driving applications.

Visualize the segmentation results of our model, as shown in Figure 15.

In acknowledging the limitations of the present model, it is crucial to note that it yields optimal
results predominantly with images of higher resolution, as these provide finer details imperative for
accurate segmentation. Performance may decline with lower resolution inputs due to the consequential
loss of these intricate details. Furthermore, while our model is adept at handling various capture
angles, having been trained with a diverse dataset, it might exhibit inconsistencies under extreme or
unanticipated weather and lighting scenarios due to limited training exposure to such conditions.

Addressing the model’s limitations presents substantial avenues for future work. Engaging with
simulated images during the training step is a viable strategy. The use of simulated images would allow

Table 2: Improved DeepLabv3+ network parameters

Parameters Size

Input size 2000x 3000
Output size 2000x 3000
Total layers of the network 69

Total number of nodes 1.7x 1[)10
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Figure 13: Loss function change curve during model training
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Figure 14: Sample results of ground truth and predicted

the model to encounter and learn from a broader set of conditions, enhancing its adaptability and
performance across diverse scenarios not present in the current dataset. Moreover, the incorporation
of 3D point cloud data is another promising direction. By integrating depth information provided by
3D data, our model could achieve a more nuanced understanding of the scenes, facilitating improved
accuracy in image segmentation tasks, particularly in environments characterized by their complexity
and dynamism.

4 Conclusion

In conclusion, this paper presents an improved DeepLabv3+ model for semantic segmentation
tailored for urban driving scenes. A high-quality dataset of aerial images captured specifically for this
application is constructed. The model enriches semantics and extracts multi-scale features through
several enhancements to the DeepLabv3+ architecture. Extensive experiments demonstrate state-of-
the-art performance with mean IoU of 0.87, showing potential to provide the semantic maps needed for
environment perception in autonomous vehicles. Future work includes expanding the dataset diversity,
investigating multi-modal inputs, and evaluating on additional urban scene benchmarks.
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