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Abstract

In recent years, the application of deep learning to environmental sound classification (ESC)
has received considerable attention owing to its powerful ability to recognize the context of urban
sounds. In general, deep learning models with high accuracy require substantial computing and
memory resources. Consequently, to apply complex deep learning models to ESC in the real world,
model inference has been performed on cloud servers with powerful computing resources. However,
heavy network traffic and security issues occur when inferences are performed on a cloud server.
In addition, deploying a deep learning model trained on a single public ESC dataset may not be
sufficient for classifying various classes of urban noise and emergency-related sounds. To address
these problems, we propose an on-device, real-time urban sound monitoring system that can classify
various urban sounds at low system construction costs. The proposed system consisted of an edge
artificial intelligence (AI) node and a FIWARE-based server. To enable the real-time inference on a
resource-constrained edge AI node, we developed a lightweight convolutional neural network (CNN)
by adjusting the input and model configurations to achieve high accuracy with a low number of
parameters. The model achieved 94.9% classification accuracy using only 331 K parameters on
an integrated dataset that included 17 classes of urban noises and emergencies. Furthermore,
a prototype of the proposed system was developed and evaluated to verify its feasibility. The
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prototype system was built at a cost of less than USD 50 and could perform the entire monitoring
process every 3 s. We also visualized the sound monitoring data using Grafana on a FIWARE-based
server.

Keywords: End-to-end neural network, environmental sound classification, FIWARE, on-
device deep learning.

1 Introduction
Owing to rapid urbanization, noise pollution has become a significant environmental issue. Noise

pollution causes various diseases, such as sleep disorders, cardiovascular diseases, and mental ill-
nesses [27]. A standard approach to regulate noise pollution is to set maximum sound thresholds
and apply noise mitigation activities when the noise exceeds the threshold [5]. However, this method
relies only on the magnitude of the noise without recognizing the context of the noise source; hence
addressing noise pollution based on the type of noise is difficult.

To overcome this limitation, environmental sound classification (ESC) has recently received con-
siderable attention [6]. By using the ESC to classify the context of noise sources, manual work can
be reduced, and effective decision-making for noise mitigation policies can be facilitated [19, 28, 30].
Moreover, since sound carries rich contextual information, ESC is widely used for intelligent urban
sound monitoring in smart cities. For example, studies have been conducted to detect emergency
situations, such as vehicle accidents, crimes, and sirens, from urban noise [3, 21, 29].

Deep learning has achieved remarkable performance improvements in many classification tasks
such as image, pattern, or speech recognition. Deep learning-based urban sound classification research
in ESC has also consistently achieved high accuracy [1, 11, 13, 17, 22, 25, 35]. Since urban sounds are
collected from multiple sensor nodes placed outdoors, deep learning-based ESC applications typically
perform model inference on cloud servers. However, heavy network traffic may be generated during
data transmission between the cloud and sensor nodes for computation, and security issues exist
because the collected sound data may contain personal information [20].

In recent years, on-device deep learning has gained attention for overcoming the limitations of
cloud-based deep learning applications. On-device deep learning performs model inferences on edge
devices rather than on a cloud server. Because of minimal data transmission between the cloud and
edge devices, on-device deep learning is less affected by network conditions and can effectively handle
data security problems. However, since edge devices have limited computing power and memory space,
directly applying deep and complex models to edge devices is difficult. Although model compression
techniques, such as quantization [32], pruning the redundant weights of the models [14], and knowledge
distillation [15], can facilitate the seamless migration of complex models to resource-constrained edge
devices, on-device inference without sacrificing the accuracy of the original model is a challenging
problem. Additionally, the costs of the measurement equipment for data collection and monitoring
systems for noise analysis remains high [19, 26].

To address these problems, we propose a low-cost, on-device urban sound monitoring system using
a lightweight end-to-end convolutional neural network (CNN). To this end, we first considered two
prospective candidate models, a one-dimensional (1D) CNN model and a two-dimensional (2D) CNN
model, as the baseline and compared their performances. Based on the evaluation results, we selected
the 1D CNN baseline model and adjusted the sampling rate and model configuration to determine the
optimal model architecture. Subsequently, we examined the changes in accuracy, power consumption,
and inference speed after model compression using three quantization techniques to select the best
technique. Finally, we determined the input audio length, which is a major factor in determining
the sound monitoring period. The final lightweight CNN model achieved an accuracy of 94.9% with
only 331 K parameters without preliminary feature extraction on our dataset that included emergency
sounds and traffic, industrial, and residential noises.

We also demonstrated the actual applicability of the system by constructing a prototype consisting
of an edge artificial intelligence (AI) device and a FIWARE-based server that performed real-time data
collection, sound context classification, and user-friendly data visualization processes. The prototype
was constructed at a cost of less than USD 50 and could perform real-time noise monitoring at 3 s
intervals.
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The remainder of this paper is organized as follows. In Section 2, we introduce research related to
the ESC, deep learning, and on-device deep learning. In Section 3, we suggest the overall configuration
of the proposed system and our strategy for developing a lightweight deep learning model. In Section 4,
we present the tuning results of the proposed deep learning model and the performance of the system.
Finally, in Section 5, we summarize and conclude the study.

2 Related work
Several studies have been conducted to classify environmental noise sources by using ESC. Tan-

weer et al. [28] classified bus, market, and industrial noise using machine learning algorithms. Mai-
jala et al. [19] proposed a smart sensor system using Gaussian mixture models and artificial neural
networks (ANNs) to classify the noise from a rock-crushing plant. In [30], Tsalera et al. classified the
noise generated in urban areas using the K-nearest neighbors algorithm.

Studies have also been conducted to detect emergency situations using urban sounds. Padhy et al. [21]
proposed a multi-channel CNN to recognize emergency situations for hearing-impaired individuals.
Tran and Tsai [29] proposed SirenNet that can identify emergency vehicles. Almaadeed et al. [3]
proposed a support vector machine (SVM)-based road surveillance application to detect car crashes
and tire skidding on roads.

Deep learning-based ESC is actively being studied to accurately classify complex environmental
noises that contain numerous overlapping sounds. The CNN is the most commonly used deep learning
model architecture for the ESC. Early CNN-based ESC research classified sounds using a simple 2D
CNN model after feature extraction to obtain time-frequency representations. Piczak [22] used a
simple two-layer CNN to classify sounds by extracting sound characteristics using a log-scaled mel-
spectrogram. Salamon and Bello [25] proposed methods to increase the accuracy of 2D CNN models by
applying various data augmentation techniques. Zhang et al. [35] improved the classification accuracy
for noisy data by performing feature extraction using a spectrogram energy triggering algorithm.

Recently, studies have been conducted to achieve a higher classification accuracy by applying
model ensembles or the latest CNN architectures, such as attention modules and transformer methods.
Li et al. [17] demonstrated accuracy rates of 92.2% and 92.6% for the UrbanSound8K (US8K) and
ESC-10 datasets, respectively, using a deep learning model that combined logmel-CNN and end-to-
end raw-CNN through ensemble learning. Guzhov et al. [13] proposed a model, called ESResNet, that
simultaneously used the attention mechanism and residual network techniques, achieving 97% and
91.5% accuracy on the ESC-10 and 50 datasets, respectively. Gazneli et al. [11] presented an end-to-
end audio transformer (EAT) model that performed sound classification using a 1D convolution stack
and a transformer encoder block. The EAT-S and EAT-M models proposed in this study achieved
accuracy rates of 95.25% and 96.3%, respectively, on the ESC-50 dataset. These studies achieved
accuracy rates close to 95% accuracy for human-performed ESC-10 data classifications [23]. Despite
their high accuracy, these complex models require preliminary feature extraction or have numerous
model parameters; hence, directly applying them to on-device deep learning is challenging.

Da Silva et al. [8] and Arce et al. [4] evaluated the accuracy and execution time of classical machine
learning methods and lightweight 2D CNNs on Raspberry Pi 3B devices, respectively. However, both
studies required feature extraction for inference and achieved classification accuracies of less than 80%.
Wyatt et al. [34] and Elliott et al. [9] developed transformer-based models applicable to edge devices
and tested them on the Raspberry Pi Zero and Samsung Galaxy S9 devices, respectively. These
on-device ESC studies with lightweight architectures demonstrated the potential for ESC on edge
devices. However, the inference time was excessively long owing to the computational overhead of the
log-scaled mel-spectrogram used as the feature extraction algorithm. Overall, further improvements
are required in on-device ESC research because the model accuracy is low or additional computation
is required for feature extraction.
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3 Design of the proposed system architecture
In this section, we describe the proposed system components for the on-device ESC and its de-

velopment procedure. As shown in Figure 1, the proposed system consists of edge AI nodes with
a lightweight deep learning model and a FIWARE-based server. In each sound monitoring period,
an edge AI node performs tasks such as recording ambient noise, calculating noise levels, classify-
ing sounds using a lightweight deep learning model, and transmitting the classification results to a
FIWARE-based server. The FIWARE-based server stores the sound analysis results in an internal
database and visualizes the urban sound monitoring results using these data. Using the proposed
system, users can monitor in real-time the types of sound generated around the locations where edge
AI nodes are installed.

We also developed a lightweight deep learning model that can perform real-time inference with
high accuracy on the edge AI nodes. To evaluate the model in various urban sound contexts, we
generated an integrated dataset that included 17 classes of urban sound contexts from four different
public datasets. The classification accuracy, number of operations, and size of the model parameters
were used as metrics to evaluate both the sound classification ability and computational efficiency of
the model trained on our integrated dataset. In addition, post-training quantization (PTQ) was used
to accelerate the inference of the developed model.

Edge AI Node

FIWARE-based Server

Data Transfer

Visualization

ApplicationSound Analysis Results

Context Data

Inference Result

Noise Level (dB)

Microphone

Audio Signal
Wireless

Transmission

Lightweight Deep Learning Model

Post-Training Quantization

Integrated Dataset

Quantized CNN Model

CNN Model

Location and Time
Information

Figure 1: Architecture design of the proposed system.

3.1 Edge AI node

The edge AI node classifies the sounds recorded at its installed location and delivers the classifi-
cation results to the FIWARE-based server. Since a single edge AI node has a limited coverage area,
multiple nodes must be deployed to minimize unmonitored areas. Therefore, the cost-effectiveness of
the edge AI nodes is an important factor.

We selected the Raspberry Pi Zero 2W as the target platform for the on-device inference and
data processing. Despite its limited resources, the CPU-based edge device allows for a fast inference
response for lightweight deep learning models. Furthermore, it is priced at USD 15 with an onboard
wireless communication module. Therefore, we constructed a low-cost, low-latency, on-device ESC
system using the Raspberry Pi Zero 2W. To reduce the required components of the edge AI node and
their cost, we used an omnidirectional microphone that could collect sound from all directions equally
well using only one microphone. Although its sensitivity might be lower than that of a directional
microphone, it was sufficient for our system to classify relatively loud urban noise.
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Since edge AI nodes are generally installed outdoors, we used a waterproofed polyvinyl chloride
(PVC) enclosure to protect their internal components. Although an edge AI node is intended to be
powered by an external power source, it can operate alternatively with a power bank when external
power is unavailable. Even with a power bank, an edge AI node can be built for less than USD 50.
Therefore, edge AI nodes can be installed at multiple locations at a modest cost, enabling real-time
noise monitoring and analysis without unmonitored spots. A detailed view of an edge AI node and
a list of the required components and their costs for constructing an edge AI node are presented in
Figure 2 and Table 1, respectively.

Raspberry Pi Zero 2W Power bank

Microphone
External power supply

PVC enclosure

3D printed part

Figure 2: Detailed view of the components inside an edge AI node.

Table 1: Components of an edge AI node.
Component Specification

Raspberry Pi zero 2W

CPU: 1 GHz quad-core, 64-bit ARM Cortex-A53
Connectivity: 2.4GHz 802.11 b/g/n wireless LAN
Size: 65 mm × 30 mm
Price: USD 15

Microphone

Frequency range: 100 Hz – 16 KHz
Sensitivity: -51dB – -43dB
Size: 70 mm × 15 mm
Price: USD 8

PVC enclosure Size: 150 mm × 200 mm × 120 mm
Price: USD 4.2

3D printed parts for fastening
Material: PLA
Weight: 44 g
Price: USD 3.7

Power bank

Battery capacity: 10000 mAh (3.7 V)
Output: 5.1 V / 2 A
Size: 71.2 mm × 147 mm × 14.2 mm
Price: USD 18.83

3.2 FIWARE-based server

FIWARE [7] is an open-source smart city framework used in various smart city applications, such
as smart agriculture [18, 36] and smart homes [10]. FIWARE consists of three main parts: core
context management, interface to IoT, and context processing. The core context management is
responsible for data updates, query handling, and message publishing/subscription management. The
interface part, IoT agents, is a middleware that facilitates data transmission between the core context
management and sensors or actuators. The IoT agent receives data using common IoT-level protocols
such as JSON, HTTP, and MQTT, and converts the data to the NGSI format for transmission to the
server or vice versa. IoT agents also enable the existing protocols deployed in low-level sensor and
actuator solutions to be easily integrated into FIWARE. The context processing component supports
data analysis and visualization for user convenience.

The structure of the proposed FIWARE-based server is illustrated in Figure 3. We utilized the
Orion Context Broker (OCB) to build the FIWARE server and manage the historical data using
QuantumLeap and CrateDB. The data stored in CrateDB were visualized using Grafana [37] for
monitoring systems.



https://doi.org/10.15837/ijccc.2023.5.5814 6

Visualization

Context

processing

Core context 

management

Interface

to IoT

User

Edge AI node…

Containerized services of FIWARE server

NGSI-LD

CrateDBMongoDB

IoT Agent
(UltraLight 2.0)

Quantum

Leap

Grafana

Orion

Context

Broker

Edge AI node

Figure 3: FIWARE-based server architecture for the proposed system.

3.3 Deep learning model development

To effectively monitor urban sounds, a lightweight deep learning model should be capable of
classifying a wide range of sounds, including emergency-related sounds and traffic, industrial, and
residential noises. A single public ESC dataset cannot cover all the classes of urban sounds because of
insufficient data. Therefore, we constructed an integrated dataset of urban sound-related data from
US8K [24] and ESC-50 [23], nonverbal sound data from the AI-Hub (Korea) [38], and urban sound
data from the AI-Hub (Korea) [40] for model training. Table 2 presents the origin of the data for each
class as well as the number of audio clips for each class. We divided the dataset into 80%:10%:10%
training, validation, and test datasets, respectively.

Table 2: Summary of the dataset for deep learning model development.
Category Class Data source Number of

audio clipsUS8K ESC-50 Nonverbal data Urban Sound data

Traffic
noise

car - - - 1639 1639
motorcycle - - - 4206 4206

horn 236 40 - 7171 7447
train - 40 - 2085 2125

airplane - 40 - 1761 1801
helicopter - 40 - 3225 3265

Industrial
noise

pile driver - - - 3169 3169
generator - - - 2286 2286
drilling 871 - - - 871

compressor - - - 2077 2077
jackhammer 894 - - - 894

Residential
noise

dog 752 40 - 2069 2861
cat - 40 - 1995 2035

Emergency
sound

gunshot 113 - 3016 - 3129
siren 904 40 - 1912 2856

screaming - - 509 - 509
crying - - 1432 - 1432

Number of audio clips 3770 280 4957 33595 42602
Total duration 4.06 Hours 0.39 Hours 4.13 Hours 66.66 Hours 75.24 Hours

Average length of each clip 3.88 s 5.00 s 3.00 s 7.14 s -

Since the integrated dataset used for model training in this study was imbalanced, learning the
features of classes using a small number of samples could be difficult. To address this problem, data
augmentation was required for the classes that constituted a small portion of the dataset. We employed
the sliding window technique illustrated in Figure 4 as the augmentation technique, which is commonly
used for audio data. By setting various stride sizes, this technique could generate multiple new data
samples from the original audio signal with a more balanced class distribution. In this approach, a
smaller stride size resulted in a larger overlap between adjacent samples, resulting in more samples
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being obtained. Figure 5 shows the total audio length by class before and after data augmentation
and the stride ratio set differently according to the original sound sample length for augmentation.
These results indicated that data augmentation led to a more balanced distribution of audio samples
per class.

Data Sample 1

Data Sample 3

Time (s)
0.50 1 1.5 2 2.5 3 3.5 4 4.5 5

Window Size

Stride Size = Window Size × Stride Ratio

Original Audio Signal

Data Sample 2

Figure 4: Data augmentation based on the sliding window technique.

)
s(

ht
g

n
e

L
oi

d
u

A
l

at
o

T

Before augmentation After augmentation

0

5000

35000

25000

20000

10000

• Class of 0 – 5000s        : stride ratio = 0.25

• Class of 5000 – 10000s  : stride ratio = 0.5

• Class of 10000 – 20000s  : stride ratio = 0.75

• Class of 20000s or more : stride ratio = 1

30000

15000

Figure 5: Comparison of data class distribution in the integrated dataset before and after data aug-
mentation.
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Figure 6: Procedure for building our lightweight deep learning model architecture.

Figure 6 depicts the model selection process for constructing a lightweight deep learning model
with high accuracy for real-time inference on edge AI nodes. First, we examined the accuracy, number
of parameters, and computational cost of the two prospective baseline models, and selected the best
model based on the comparison results. Next, we adjusted the input sampling rate and model con-
figuration of the selected baseline model to minimize the number of parameters and operations. We
used PTQ to reduce the model size while maintaining the inference performance on edge AI nodes.
For the quantized model, we conducted experiments on various input audio lengths to select a suf-
ficiently short input audio length for emergency detection while achieving a high noise classification
performance. Finally, we deployed the final lightweight deep learning model on our prototype edge AI
node and verified its operation.
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We selected the 1D CNN model proposed by Abdoli et al. [1] and the 2D CNN model proposed
by Salamon and Bello [25] as prospective baseline models for our on-device ESC system because they
have a relatively small number of model parameters. Table 3 lists the properties of the two baseline
models.

Table 3: Properties of candidate 1D CNN and 2D CNN models.
1D CNN [1] 2D CNN [25]

Input audio length 1 s 3 s
Input shape 16000 × 1 128 × 128

Sampling rate 16 KHz Original sampling rate
#Params 257 K 241 K
Optimizer Adadelta Adam

Feature extraction N/A (Raw signals) Log-scaled mel-spectrogram

To determine the final baseline model after comparing the performances of the candidate baseline
models under the same conditions, we evaluated and compared their performances in terms of classifica-
tion accuracy, number of model parameters, and number of operations required in mega floating-point
operations (MFLOPs) for different input audio lengths. The evaluation results are listed in Table 4.

Table 4: Comparison results of candidate baseline models with varying input audio lengths.
Input audio length

1 s 1.5 s 2 s 2.5 s 3 s

1D CNN

Input Size 16000 24000 32000 40000 48000
Test Accuracy 89.57% 91.10% 92.40% 93.49% 93.68%

#Params 257,473 388,545 519,617 650,689 765,377
MFLOPs 35.57 54.54 73.57 92.61 111.42

2D CNN

Input Size 128×128 128×128 128×128 128×128 128×128
Test Accuracy 58.96% 82.14% 83.15% 90.31% 90.92%

#Params 241,889 241,889 241,889 241,889 241,889
MFLOPs 115.60 115.60 115.60 115.60 115.60

As presented in Table 4, the 1D CNN model exhibited a higher classification accuracy than the
2D CNN model for the same input audio length. Furthermore, the normalized confusion matrices, as
shown in Figure 7, indicated that the 2D CNN had considerably low accuracy in certain classes with
a small amount of data, such as drilling, jackhammer, screaming, and crying, whereas the 1D CNN
accurately classified all the class data. Since the 2D CNN model always resizes the input to 128×128
using a log-scaled mel-spectrogram, the number of parameters and computational demand were the
same irrespective of the input audio length. By contrast, the number of parameters and computational
demand of the 1D CNN increased linearly with the input audio length because it used the input data
directly without feature extraction. However, the computational demand of the 1D CNN was lower
than that of the 2D CNN for all input audio lengths, as shown in Table 4. Additionally, although
the 1D CNN model had more parameters than the 2D CNN model, the number of model parameters
remained less than one million even for the 3 s input audio length, sufficient to meet the tight memory
and computing resource constraints of edge devices. Therefore, we selected the 1D CNN model as the
final baseline model.

Larger and deeper models are generally more accurate; however, resource constraints limit their
practical implementation on edge devices. Therefore, in Section 4, we further elaborated the model
structure by experimenting with the configuration items shown in Figure 6 to achieve high classification
accuracy while maintaining low computational costs.

After fine-tuning the different model configuration options to enhance the accuracy of the deep
learning model, we used PTQ to compress the model for lightweight edge devices. PTQ quantizes
pre-trained deep learning models by reducing the number of bits used to express each weight and
activation value. Although this technique may result in accuracy degradation owing to rounding
errors during quantization and dequantization processes, it can provide several benefits, including a
reduced memory footprint, latency, and improved throughput [2]. Figure 8 illustrates the process of



https://doi.org/10.15837/ijccc.2023.5.5814 9

(a) 1D CNN with 3 s of audio (b) 2D CNN with 3 s of audio

Figure 7: Normalized confusion matrices of 1D CNN and 2D CNN.

mapping a 32-bit real value (x) in the range of [xmin, xmax] to a B-bit quantized value (xq) in the
range of [−2B−1, 2B−1 − 1]. The quantization transformation is expressed as follows [33]:

S = 2B − 1
xmax − xmin

(1)

Z = −round(xmin × S) − 2B−1 (2)

where S and Z denote the scale factor and the zero-point, respectively.

xq = S × x + Z (3)

x = 1
S

(xq − Z) (4)

Equations 3 and 4 represent the quantization and dequantization functions, respectively. Additional
processing overhead may arise during the scale factor and zero-point calculations, as well as the
quantization and dequantization operations.

…
(32-bit real value)

(B-bit signed integer)

0

ge −2
−1

2
−1
−1… …

clippingQuantization Dequantization

Figure 8: Quantization mapping process between the 32-bit real value and the B-bit signed integer.

To analyze the inference speed, power consumption, and accuracy of the model for an actual system
deployment, we measured the performance of the model after PTQ on a prototype edge device. We
determined the final deep learning model structure for deployment in the proposed system based on
the experimental results obtained from the prototype. In Section 4, we present a detailed discussion
of the entire model optimization procedure after the baseline model setup.
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4 Model tuning and performance evaluation on edge devices
In this section, we analyze the effects of model tuning and quantization options on the performance

of the deep learning model, and verify the operation of the proposed system. The model was tuned in
the following order: input sampling rate adjustment, model configuration tuning, quantization, and
input audio length selection. We determine the input audio length in the final design stage because it
had a significant impact not only on the model accuracy and inference speed but also on the monitoring
interval of the system.

We implemented the model and training process using the TensorFlow framework and deployed
the trained model on an edge device using the TensorFlow Lite framework. Table 5 summarizes the
model training environment. We used a batch size of 32 and 100 epochs, and an Adadelta optimizer
with an initial learning rate of 1.0 for all training. The inference performance of the edge device was
measured using tflite-runtime 2.10.0 on a Raspberry Pi Zero 2W.

Table 5: Hardware and software specifications for deep learning model development.
Type Specification

OS Ubuntu 20.04
CPU Intel Xeon ® W-2235
RAM 32GB
GPU NVIDIA RTX A4000 (16GB memory)

CUDA version 11.3
CUDNN version 8.2.1

TensorFlow version 2.10.0

4.1 Input sampling rate adjustment

Increasing the input data size for the baseline 1D CNN improved the classification accuracy, as
described in Section 3.3. However, this increased the computational cost. Therefore, we intended to
reduce the computational cost by adjusting the input size, that is, by downsampling the input audio
data. Hence, we compared the accuracy and computational cost of the model at the sampling rates
of 4, 8, and 16 KHz. In the comparison, we did not consider the input audio length and sampling
rate combinations that resulted in an input data size of less than 8000 because convolution operations
cannot be performed when the input size for convolution is smaller than the filter size.
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Figure 9: Accuracy and FLOPs of the baseline model for varying input audio lengths and sampling
rates.

Figure 9 shows the accuracy and computational cost represented as MFLOPs, for each input audio
length and sampling rate of the baseline 1D CNN. When the input audio length was fixed, a higher
sampling rate increased both the accuracy and computational cost. According to the results shown
in Figure 9, the changes in the sampling rate had a greater impact on the computational cost than
on the accuracy. Therefore, employing a lower sampling rate may be more beneficial in terms of the
hardware resource utilization of the edge platform. However, utilizing a 4 KHz sampling rate decreased
the classification accuracy at input audio lengths of 2.5 s and 3 s by 1–3%p compared to using an



https://doi.org/10.15837/ijccc.2023.5.5814 11

8 or 16 KHz sampling rate because an accurate feature of the audio data could not be extracted.
Furthermore, if the input audio length was less than 2 s, using a 4 KHz sampling rate required an
overall change in the model structure; therefore, we decided not to use a 4 KHz sampling rate.

The average accuracies of the sampling rates of 8 KHz and 16 KHz were nearly identical. Since
using 8 KHz results in an approximately 2× reduction in the computational cost compared to using
16 KHz, we selected a sampling rate of 8 KHz for the proposed system.

4.2 Model configuration tuning

Subsequently, we adjusted the configuration of the baseline model with the input sampling rate
set to 8 KHz, as previously determined. The model configuration items targeted for tuning were
the number of filters and their size in the first convolutional layer, the number of units in the fully
connected (FC) layer, and the composition of the convolutional layers that did not significantly alter
the computational cost of the baseline model. To assess the impact of each item on the performance,
we measured the accuracy of the model by combining various numbers of filters (8, 16, 24) and filter
sizes (32, 64, 96) for the first convolutional layer, as well as different numbers of units (64-32, 128-64,
192-96) for the FC1-FC2 layers. The default configuration of the baseline model consisted of 16 filters
of size 64 for the first convolutional layer and 128-64 units for the FC1-FC2 layers.

In addition, we evaluated the accuracy of two different convolution layer compositions. Figure 10
shows a comparison of the structures. Figure 10 (a) shows the most frequently used compositions
in the sequence of convolution, batch normalization, and activation [16] (BN-first), which adjusts
the distribution of data before running a non-linear activation function. By contrast, the composition
illustrated in Figure 10 (b) executes batch normalization after a non-linear activation function following
the convolution operation (ReLU-first). We noted that the structures of these layer compositions did
not affect the number of model parameters or computational cost.

Conv1D

Batch Norm

ReLU

(b) ReLU-first

Conv1D

Batch Norm

ReLU

(a) BN-first

Figure 10: Layer composition for model architecture tuning.

Figures 11 (a)–(c) show the classification accuracy based on the number of filters in the first con-
volutional layer, filter size in the first convolutional layer, and the number of units in the FC layer,
respectively. The results indicated that the ReLU-first composition consistently achieved notably
higher accuracy than the BN-first composition in most cases. The effects of the other configuration
options, as depicted in Figure 11, on the model accuracy were not significant when the layer compo-
sition was set to ReLU-first. By contrast, as the input audio length increased, the accuracy of the
model tended to increase, irrespective of the model configurations. Therefore, we selected the model
configuration with the highest accuracy for each input audio length and determined the final input
audio length after the subsequent model quantization step. Table 6 lists the accuracy, number of
parameters, and computational costs of the best model configuration for each audio length.

Table 6: Model configurations achieving the best accuracy for each input audio length.
Input audio length 1.5 s 2 s 2.5 s 3 s

Model
configurations

# of filters in the first conv layer 16 24 24 16
Filter size in the first conv layer 64 64 64 32

# of units in FC1-FC2 layers 192-96 128-64 128-64 128-64
Layer composition ReLU-first ReLU-first ReLU-first ReLU-first

# of parameters 235.6 K 266.2 K 331.8 K 388.0 K
MFLOPs 26.13 51.89 65.57 42.33
Accuracy 92.95% 94.04% 95.05% 95.41%
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(a) Accuracy based on the number of filters in the first convolutional layer and layer composition
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(b) Accuracy based on the filter size in the first convolutional layer and layer composition
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(c) Accuracy based on the number of units in FC layers and layer composition
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Figure 11: Accuracy comparison of different model configurations.

4.3 Quantization and input audio length selection

To reduce inference time, we applied three PTQ techniques, as presented in Table 7. We used
the power consumption, model size, accuracy, and inference time as the performance metrics to deter-
mine the best PTQ technique. Figure 12 shows the performance comparison results of the different
quantization techniques for the Raspberry Pi Zero 2W. In this study, we referred to the models with-
out quantization as FP32, and those with dynamic range, full integer, and float16 quantization as
DYNAMIC, INT8, and FP16, respectively.

Table 7: Post-training quantization techniques provided by TFLite [39].
Quantization
Technique Benefits Hardware Description

Dynamic range 4x smaller
2x–3x speedup CPU - Quantize the model weights to 8-bit integer

- At inference, model performs operations that mix integer and float computation.

Full integer 4x smaller
3x+ speedup CPU, Edge TPU - Quantize the model weights, input, activations, and output to 8-bit integer

- To calibrate model input/output and activations, a representative dataset is needed.

Float16 2x smaller
GPU acceleration CPU, GPU - Quantize the model weights to float16

- At inference, model performs float32 operations.

Figures 12 (a) and (b) show the power consumption measured by the USB power meter during the
inference and the size of each model, respectively. According to the results, the INT8 and DYNAMIC
models had smaller model sizes and exhibited significantly lower power consumption than the FP32
and FP16 models. As listed in Table 7, the FP16 model was half the size of the FP32 model, whereas
the DYNAMIC and INT8 models were approximately four times smaller. Figure 12 (c) indicates that
the INT8 and DYNAMIC models had faster inference times of approximately 12–20 ms than the FP32
and FP16 models. However, as shown in Figure 12 (d), the INT8 model exhibited 19–26%p lower
inference accuracy than the other models, despite the advantages of low power consumption and small



https://doi.org/10.15837/ijccc.2023.5.5814 13

0

10

20

30

40

50

60

1.5 2 2.5 3

e
mi

T
e

c
n

e r
ef

nI
e

g
ar

e
v

A
(m

s
)

Input audio length (s)

1.00

1.20

1.40

1.60

1.80

2.00

1.5 2 2.5 3

r
e

w
o

P
e

g
ar

e
v

A
)

W(
n

oit
p

m
u

s
n

o
C

Input audio length (s)

60

70

80

90

100

1.5 2 2.5 3
T

e
s
t

A
c
c
u

ra
c
y

(%
)

Input audio length (s)

0

400

800

1200

1600

1.5 2 2.5 3

M
o

d
e

l
S

iz
e

 (
K

B
)

Input audio length (s)

(d) Test accuracy

(a) Average power consumption

(c) Average inference time

(b) Model size

FP32 DYNAMIC INT8 FP16FP32 DYNAMIC INT8 FP16

FP32 DYNAMIC INT8 FP16 FP32 DYNAMIC INT8 FP16

Figure 12: Performance comparison of post-training quantization techniques on a Raspberry Pi Zero
2W.

memory requirements, making it unsuitable for our system. The accuracy did not significantly differ
among the three models, except for the INT8. Consequently, we decided to use the DYNAMIC model
in the prototype system that had a smaller model size and lower power consumption than the FP32
and FP16 models while maintaining high accuracy.

After determining the PTQ technique, we investigated the most appropriate input audio length for
our system by comparing the accuracy and inference time of the dynamic range quantized models for
various input audio lengths. Figure 13 shows the comparison results of the accuracy and inference time
for different input audio lengths. As the input audio length increased, the inference accuracy of the
model increased; however, the time required to record the sound increased, resulting in a longer sound
monitoring period. On the other hand, shorter input audio lengths can reduce the sound monitoring
period while decreasing the inference accuracy. Therefore, among the four input audio lengths tested,
we selected an input audio length of 2.5 s because it allowed us to shorten the monitoring period while
providing fairly high accuracy. Figure 14 shows the final architecture of the proposed lightweight deep
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Figure 14: Final lightweight end-to-end CNN architecture for the proposed system.

learning model for urban sound classification. The proposed model is an end-to-end CNN that uses
2.5 s of audio data recorded at a sampling rate of 8 KHz without feature extraction.

4.4 Verification of the proposed system operation

We validated the performance and operation of the proposed system on a prototype consisting
of an edge AI node that performed inference using the finalized model and a FIWARE-based server
constructed on a high-end desktop computer. The entire processing flow in the edge AI node comprised
six tasks: sound recording and saving in the WAV file format, loading the audio file, model inference,
sound level calculation, data encapsulation for the FIWARE protocol, and data transfer to a FIWARE-
based server.

Table 8: Time consumption of tasks measured on the prototype edge AI node.
Task Avg. Std. Dev. Min. Max.

Sound recording 2639.02 ms (96.06%) 4.83 2629.36 ms 2650.24 ms
WAV file loading 3.55 ms (0.13%) 0.26 3.03 ms 4.83 ms
Model inference 52.68 ms (1.92%) 5.79 38.41 ms 62.44 ms

Decibel calculation 4 ms (0.14%) 0.55 3.53 ms 5.52 ms
Data encapsulation 0.31 ms (0.01%) 0.15 0.24 ms 1.06 ms

Data transfer 47.71 ms (1.74%) 9.85 35.19 ms 83.99 ms
Total processing time 2747.27 ms (100%) - 2709.76 ms 2808.08 ms

Table 8 lists the average, standard deviation, and minimum and maximum times required for each
task measured 100 times at the edge AI node. As presented in Table 8, most of the time was spent
recording and saving the acquired external sound into a WAV format file, whereas relatively little time
was required to load the saved WAV file, calculate the sound level in decibels, and process the data
for transferring to the FIWARE-based server.

Owing to our proposed lightweight deep learning model, the average inference time was 52.68 ms
that occupied a very low proportion of the monitoring cycle. At the end of each monitoring period, the
inference results, expressed as confidence scores for each class, and the decibel values of the recorded
data were transferred to the FIWARE-based server over Wi-Fi at a frequency of 2.462 GHz and a bit
rate of 72.2 MB/s. The size of data transferred to the server per monitoring cycle was approximately
500 bytes, and the data transmission took an average of 47.71 ms and a maximum of 83.99 ms. As
the network channel environment affects the data transfer speed, the standard deviation of the data
transfer time was the highest among all tasks; however, in all tests, we verified that the data were
delivered to the FIWARE-based server without any loss.

Overall, the results in Table 8 demonstrated that the proposed system could achieve a monitoring
period of approximately 3 s on the edge AI node, even in the worst-case case. Furthermore, the
sound monitoring period of 3 s considerably shorter than that of previous edge device-based ESC
studies [4, 34] that had a monitoring period of 5–6 s, excluding the time required for data transfer.
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We also implemented a data visualization function on a FIWARE-based server for real-time
decision-making in urban noise situations and emergencies. To verify the accuracy of the data vi-
sualization function, we played AudioSet [12] data that were not used for model training and testing
near the installed edge AI node, and displayed the monitoring results on the Grafana dashboard of
the FIWARE-based server.

Figure 15 illustrates the visualization results when the gunshot, drilling, and siren sounds were
played for 4 minutes each. The top dashboard shows the confidence scores of the inference results,
where the highest confidence scores of the class correspond to the given noise. The bottom dashboard
in Figure 15 shows the decibels transmitted from the edge AI node. Since small sounds are likely
to be background noises that need not be classified, the inference results were sent to the FIWARE-
based server only when the recorded sound exceeded the predefined threshold decibel value. The
World Health Organization (WHO) recommends that the average noise level should not exceed 40–55
decibels per hour to protect human health [31]. Based on this recommendation, we set the threshold
to 40 dB. The visualization results, as shown in Figure 15, confirmed that the inference results were
not delivered during silent intervals.

4 minutes of gunshot sound

2 minutes of silent interval

4 minutes of drilling sound 4 minutes of siren sound

2 minutes of silent interval

Figure 15: Real-time visualization results of urban sound monitoring and emergency detection on the
prototype FIWARE-based server.

5 Conclusions
In this study, we developed a deep learning-based on-device sound monitoring system capable

of categorizing and analyzing urban sounds in real-time. We first built an integrated dataset from
four publicly available datasets to classify various types of urban sounds and detect emergencies.
To develop a lightweight deep learning model for real-time inference on an edge AI node with tight
hardware resource constraints, we trained the model on the integrated dataset and adjusted the audio
input and model configurations through extensive performance evaluation to maintain higher accuracy
while reducing the number of parameters.

Consequently, the proposed model showed a classification accuracy of 94.9% using only 331 K
parameters on a prototype edge AI node built on a low-cost embedded platform, such as Raspberry
Pi Zero 2W. Because of the low computational complexity of our model, the inference latency on our
prototype edge AI node was only 62.44 ms in the worst case. Thus, we achieved a sound monitoring
interval of 3 s that was sufficiently short to recognize urgent urban sounds. We also demonstrated that
the contexts of sounds acquired from the edge AI node were accurately visualized on a FIWARE-based
server for high-level decision-making on the detected sounds.

Funding

This work was supported in part by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2022R1F1A1060231), and in part by the Korea Ministry



https://doi.org/10.15837/ijccc.2023.5.5814 16

of Land, Infrastructure and Transport (MOLIT) as “Innovative Talent Education Program for Smart
City”.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgment

This study partly used datasets from “The Open AI Dataset Project (AI-Hub, Korea)”. All data
information from the AI-Hub can be accessed at www.AIhub.or.kr.

References
[1] Abdoli, S.; Cardinal, P.; Koerich, A.L. (2019). End-to-end environmental sound classification

using a 1D convolutional neural network, Expert Systems with Applications, 136, 252–263, 2019.

[2] Ahn, H.; Chen, T.; Alnaasan, N.; Shafi, A.; Abduljabbar, M.; Subramoni, H.; Panda, D.K.
(2023). Performance characterization of using quantization for DNN inference on edge devices:
Extended version, arXiv:2303.05016, 2023.

[3] Almaadeed, N.; Asim, M.; Al-Maadeed, S.; Bouridane, A.; Beghdadi, A. (2018). Automatic
detection and classification of audio events for road surveillance applications, Sensors, 18(6),
1858, 2018.

[4] Arce, P.; Salvo, D.; Piñero, G.; Gonzalez, A. (2021). FIWARE based low-cost wireless acoustic
sensor network for monitoring and classification of urban soundscape, Computer Networks, 196,
108199, 2021.

[5] Asdrubali, F.; D’Alessandro, F. (2018). Innovative approaches for noise management in smart
cities: A review, Current Pollution Reports, 4(2), 143–153, 2018.

[6] Chachada, S.; Kuo, C.-C.J. (2014). Environmental sound recognition: A survey, APSIPA Trans-
actions on Signal and Information Processing, 3, e14, 2014.

[7] Cirillo, F.; Solmaz, G.; Berz, E.L.; Bauer, M.; Cheng, B.; Kovacs, E. (2019). A standard-based
open source IoT platform: FIWARE, IEEE Internet of Things Magazine, 2(3), 12–18, 2019.

[8] da Silva, B.; Happi, A.W.; Braeken, A.; Touhafi, A. (2019). Evaluation of classical machine
learning techniques towards urban sound recognition on embedded systems, Applied Sciences,
9(18), 3885, 2019.

[9] Elliott, D.; Otero, C.E.; Wyatt, S.; Martino, E. (2021). Tiny transformers for environmental
sound classification at the edge, arXiv:2103.12157, 2021.

[10] Fazio, M.; Celesti, A.; Márquez, F.G.; Glikson, A.; Villari, M. (2015). Exploiting the FIWARE
cloud platform to develop a remote patient monitoring system, 2015 IEEE Symposium on Com-
puters and Communications (ISCC), 264–270, 2015.

[11] Gazneli, A.; Zimerman, G.; Ridnik, T.; Sharir, G.; Noy, A. (2022). End-to-end audio strikes back:
Boosting augmentations towards an efficient audio classification network, arXiv:2204.11479, 2022.

[12] Gemmeke, J.F.; Ellis, D.P.W.; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R.C.; Plakal,
M.; Ritter, M. (2017). Audio Set: An ontology and human-labeled dataset for audio events, 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 776–780,
2017.



https://doi.org/10.15837/ijccc.2023.5.5814 17

[13] Guzhov, A.; Raue, F.; Hees, J.; Dengel, A. (2021). ESResNet: Environmental sound classification
based on visual domain models, Proceedings of 2020 25th International Conference on Pattern
Recognition (ICPR), 4933–4940, 2021.

[14] Han, S.; Pool, J.; Tran, J.; Dally, W. (2015). Learning both weights and connections for efficient
neural network, Advances in Neural Information Processing Systems (NIPS), 28, 2015.

[15] Hinton, G.; Vinyals, O.; Dean, J. (2015). Distilling the knowledge in a neural network,
arXiv:1503.02531, 2015.

[16] Ioffe, S.; Szegedy, C. (2015). Batch Normalization: Accelerating deep network training by reducing
internal covariate shift, Proceedings of the 32nd International Conference on Machine Learning,
37, 448–456, 2015.

[17] Li, S.; Yao, Y.; Hu, J.; Liu, G.; Yao, X.; Hu, J. (2018). An ensemble stacked convolutional neural
network model for environmental event sound recognition, Applied Sciences, 8(7), 1152, 2018.

[18] López-Riquelme, J.A.; Pavón-Pulido, N.; Navarro-Hellín, H.; Soto-Valles, F.; Torres-Sánchez, R.
(2017). A software architecture based on FIWARE cloud for precision agriculture, Agricultural
Water Management, 182, 123–135, 2017.

[19] Maijala, P.; Shuyang, Z.; Heittola, T.; Virtanen, T. (2018). Environmental noise monitoring using
source classification in sensors, Applied Acoustics, 129, 258–267, 2018.

[20] Murshed, M.G.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. (2021).
Machine learning at the network edge: A survey, ACM Computing Surveys, 54(8), 1–37, 2021.

[21] Padhy, S.; Tiwari, J.; Rathore, S.; Kumar, N. (2019). Emergency signal classification for the
hearing impaired using multi-channel convolutional neural network architecture, Proceedings of
2019 IEEE Conference on Information and Communication Technology, 1–6, 2019.

[22] Piczak, K.J. (2015). Environmental sound classification with convolutional neural networks, Pro-
ceedings of 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing
(MLSP), 1–6, 2015.

[23] Piczak, K.J. (2015). ESC: Dataset for environmental sound classification, Proceedings of the 23rd
ACM International Conference on Multimedia, 1015–1018, 2015.

[24] Salamon, J.; Jacoby, C.; Bello, J.P. (2014). A dataset and taxonomy for urban sound research,
Proceedings of the 22nd ACM International Conference on Multimedia, 1041–1044, 2014.

[25] Salamon, J.; Bello, J.P. (2017). Deep convolutional neural networks and data augmentation for
environmental sound classification, IEEE Signal Processing Letters, 24(3), 279–283, 2017.

[26] Segura-Garcia, J.; Felici-Castell, S.; Perez-Solano, J.J.; Cobos, M.; Navarro, J.M. (2015). Low-cost
alternatives for urban noise nuisance monitoring using wireless sensor networks, IEEE Sensors
Journal, 15(2), 836–844, 2015.

[27] Stansfeld, S.A.; Matheson M.P. (2003). Noise pollution: Non-auditory effects on health, British
Medical Bulletin, 68(1), 243–257, 2003.

[28] Tanweer, S.; Mobin, A.; Alam, A. (2016). Environmental noise classification using LDA, QDA,
and ANN methods, Indian Journal of Science and Technology, 9(33), 1–8, 2016.

[29] Tran, V.-T.; Tsai, W.-H. (2020). Acoustic-based emergency vehicle detection using convolutional
neural networks, IEEE Access, 8, 75702–75713, 2020.

[30] Tsalera, E.; Papadakis, A.; Samarakou, M. (2020). Monitoring, profiling, and classification of
urban environmental noise using sound characteristics and the KNN algorithm, Energy Reports,
6, 223–230, 2020.



https://doi.org/10.15837/ijccc.2023.5.5814 18

[31] World Health Organization (2018). Environmental Noise Guidelines for the European Region,
World Health Organization. Regional Office for Europe, 2018.

[32] Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. (2016). Quantized convolutional neural networks for
mobile devices, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 4820–4828, 2016.

[33] Wu, H.; Judd, P.; Zhang, X.; Isaev, M.; Micikevicius, P. (2020). Integer quantization for deep
learning inference: Principles and empirical evaluation, arXiv:2004.09602, 2020.

[34] Wyatt, S.; Elliott, D.; Aravamudan, A.; Otero, C.E.; Otero, L.D.; Anagnostopoulos, G.C.; Smith,
A.O.; Peter, A.M.; Jones, W.; Leung, S.; Lam, E. (2021). Environmental sound classification with
tiny transformers in noisy edge environments, 2021 IEEE 7th World Forum on Internet of Things
(WF-IoT), 309–314, 2021.

[35] Zhang, H.; McLoughlin, I.; Song, Y. (2015). Robust sound event recognition using convolutional
neural networks, Proceedings of 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 559–563, 2015.

[36] Zyrianoff, I.; Heideker, A.; Silva, D.; Kamienski, C. (2018). Scalability of an Internet of Things
platform for smart water management for agriculture, 2018 23rd Conference of Open Innovations
Association (FRUCT), 432–439, 2018.

[37] Grafana, [Online]. Available: https://grafana.com, Accessed on 23 June 2023.

[38] Natural and Artificial Occurrence Nonverbal Sound Datasets, [Online]. Available:
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=
realm&dataSetSn=644, Accessed on 23 June 2023.

[39] Post-training quantization, [Online]. Available: https://www.tensorflow.org/lite/
performance/post_training_quantization#optimization_methods, Accessed on 23 June
2023.

[40] Urban Sound Dataset, [Online]. Available: https://aihub.or.kr/aihubdata/data/view.do?
currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=585, Accessed on 23 June 2023.

Copyright ©2023 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

https://grafana.com
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=644
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=644
https://www.tensorflow.org/lite/performance/post_training_quantization#optimization_methods
https://www.tensorflow.org/lite/performance/post_training_quantization#optimization_methods
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=585
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=585


https://doi.org/10.15837/ijccc.2023.5.5814 19

Cite this paper as:

Park, J.; Yoo, T.; Lee, S.; Kim, T. (2023). Urban Noise Analysis and Emergency Detection System
using Lightweight End-to-End Convolutional Neural Network, International Journal of Computers
Communications & Control, 18(5), 5814, 2023.

https://doi.org/10.15837/ijccc.2023.5.5814


	Introduction
	Related work
	Design of the proposed system architecture
	Edge AI node
	FIWARE-based server
	Deep learning model development

	Model tuning and performance evaluation on edge devices
	Input sampling rate adjustment
	Model configuration tuning
	Quantization and input audio length selection
	Verification of the proposed system operation

	Conclusions

