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Abstract

Financial institutions face many challenges in managing modern financial transactions and vast
data volumes. To overcome these challenges, they are increasingly harnessing advanced data man-
agement technologies such as artificial intelligence and cloud computing. This paper presents a com-
prehensive review of how these tools transform financial decision-making in various domains and ap-
plications. We analyzed both foundational and recent advancements using a rigorous methodology
based on the PRISMA 2020 guideline. Our findings indicate that many major financial institutions
are adopting AI-driven solutions to potentially enhance real-time risk assessment, transactional
efficiency, and predictive analytics. While they bring benefits like faster decision-making and re-
duced operational costs, they also pose challenges like data security and integration complexities
that require further research and development. Looking ahead, we envision a more integrated,
responsive, and secure financial ecosystem that leverages the convergence of AI, cloud computing,
and advanced data storage. This synthesis underscores the significance of contemporary data man-
agement solutions in shaping the future of data-driven financial services, offering a guideline for
stakeholders in this evolving domain.

Keywords: Data Management Technologies, Blockchain, Artificial Intelligence, Decision Sup-
port, Cloud Computing

1 Introduction
Financial institutions find themselves in a constant state of adaptation, driven by the essential

demand to deliver effective and proficient financial services. At the core of this transformational
journey is the requirement for trustworthy and precise data management systems. These institutions
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have moved beyond basic record-keeping methods to leverage innovative technologies like big data
and cloud computing. These advancements not only offer improved data management capabilities
but also facilitate better decision-making processes, reflecting the dynamic nature of the financial
sector’s evolution. The journey continues, with new challenges and opportunities arising from these
ever-evolving technologies and their application within the financial sector.

The escalating intricacy of financial transactions, paired with an exponential growth in data, em-
phasizes the necessity for proficient and accurate data management systems. Key technological break-
throughs during the mid-20th century in integrated circuit technology and data storage capabilities
mark a significant milestone in the evolutionary journey of financial institutions. Such advancements
not only initiated the automation of manual processes and storage of enormous data volumes, but
also sparked the onset of complex data analysis tools and methodologies, thus ushering in a significant
transformation in the financial sector.

In the contemporary digital era, financial institutions are faced with the daunting task of managing
and interpreting immense data volumes. This challenge has stimulated innovative progress in data
analysis, driven by burgeoning technologies such as big data and artificial intelligence. These tools
are harnessed to process and analyze data in real-time, thereby fortifying the efficiency of financial
operations, promoting informed decision-making, mitigating risks, and elevating customer experiences.

The constant improvement in data storage and processing methods is key for financial institu-
tions that need to meet growing demands for accurate and quick data, which is vital for making
informed decisions. These technological improvements have become the base for financial institutions
to quickly adapt to a fast-changing financial environment, strengthening their competitive standing
and importance in a world focused on data. By using cutting-edge technologies like big data, artificial
intelligence, and blockchain, financial institutions can make their operations more efficient, increase
the accuracy of predictions, identify new trends, and uncover hidden opportunities. This leads to
better management of risk, improved customer experiences, and better overall performance.

This paper offers a comprehensive overview of the evolution and current trends of data storage
and processing technologies in the financial sector [1].

At the core of data management, relational databases [2] have served distinct roles in supporting
both online transaction processing (OLTP) and online analytical processing (OLAP). OLTP systems
prioritize fast and reliable transactional activities, typically found in everyday database operations such
as order entry, retail sales, and financial transactions. These databases adeptly manage structured
entities like customer details or orders information. In contrast, OLAP systems, often integrated
within data warehouses [3], are designed to support complex queries and analytics, consolidating data
from various sources, and enabling multidimensional analysis. As a result, data warehouses have
become instrumental in serving as the backbone for business intelligence operations, bridging the gap
between transactional data and actionable insights.

However, with the explosion of data volume and variety, systems like Hadoop [4] have become
indispensable. Hadoop provides a scalable solution for storing and managing vast amounts of di-
verse data across distributed systems. Complementing Hadoop, Apache Spark [5] offers rapid data
processing capabilities, equipped to handle streaming data and machine learning tasks.

As data complexities grow, the concept of Data Lakes has gained traction. These are expansive
storage repositories, many times stored in the Cloud, capable of housing diverse and unstructured
data, serving as preliminary storage for raw information intended for future analysis [6]. On the
other hand, NoSQL databases [7] offer flexible data structures, accommodating both large and varied
datasets, thereby becoming a choice for certain big data projects. In the realm of real-time data
processing, Kafka [8] stands out. It efficiently moves data, streamlining the process of data transfer
and real-time analysis. Additionally, Blockchain, with its immutable records, ensures transactional
security and integrity [9]. Once data is written in systems like Blockchain, it becomes unalterable,
which is pivotal for areas such as financial auditing and supply chain management [10].

These technologies, from the foundational relational databases to the modern tools like Spark and
Kafka, collectively drive the digital transformation in the financial sector. The integration of these
tools could be visualized as a workflow: data stored in Hadoop, processed with Spark, transferred via
Kafka, and metadata potentially secured using Blockchain.
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The current digital era underscores a significant shift towards data-driven decision-making in fi-
nancial institutions. Although these advancements offer promising avenues for data management and
analysis, they also introduce challenges, especially in handling large data volumes. By understanding
the historical progression and current trends of these technologies, we aim to provide insights into the
future landscape of the financial sector.

Central to our exploration are the research questions: "How are evolving data storage and process-
ing technologies transforming the financial sector, and what are the future directions and implications
of these advancements?" and "What are the challenges and potential solutions in implementing these
new technologies within the financial sector?".

2 Methodology
To ensure the rigor and comprehensiveness of our review, we adopted the PRISMA 2020 guide-

line [11], a well-established framework for systematic reviews and meta-analyses. This methodology
provided a structured and systematic approach to identify, screen, and include relevant studies and
sources.

We began by defining a clear research question aimed at understanding the interplay of AI, Cloud
Computing, and Advanced Data Management Technologies in financial decision-making. Consider-
ing our research questions, we identified keywords and search terms relevant to the topic. These
terms included, but were not limited to, "Data Management Technologies," "Blockchain," "Artificial
Intelligence," "Decision Support," and "Cloud Computing."

Using these search terms, we conducted an exhaustive search across multiple databases, including
Web of Science, IEEE Xplore, ScienceDirect, Google Scholar, and the ACM Digital Library. Our
search spanned articles published mainly from 2000 to 2022 to capture both foundational and recent
advancements in the field. However, foundational, and historically significant papers, even if older,
were highly valued for their seminal contributions.

After retrieving a preliminary set of articles, we employed a two-step screening process. Initially, we
scanned titles and abstracts to exclude articles that were clearly not relevant to our research question.
In the second phase, the full texts of the shortlisted articles were reviewed in depth to determine their
relevance and quality. Any articles that did not provide substantial insights into the technologies or
their implications in financial decision-making were excluded.

For each included study, we extracted relevant data points, such as the technology discussed, its
application in the financial sector, benefits, challenges, and prospects. This information was tabulated
to facilitate comparative analysis and synthesis.

Given the nature of our review and the computer science focus, the quality of referenced articles
was evaluated based on several key criteria that ensure relevance, depth, and rigor:

• Source Authenticity and Prestige: Source Authenticity and Prestige: The origin of the
publication plays an important role in determining its reliability. Studies published by renowned
publishers, journals, or conferences (like ACM, IEEE, Springer, etc.) were given precedence due
to their rigorous peer-review processes. Articles in journals published directly by universities or
research centers were also favored.

• Depth and Rigor of Content: We evaluated the depth of the content in each article. Articles
that provided comprehensive insights, rigorous methodologies, and substantive discussions on
topics were deemed to be of higher quality. For instance, foundational papers like those by E. F.
Codd on relational models or discussions on SQL’s history by D. D. Chamberlin were considered
vital due to their depth and historical significance.

• Relevance to the Research Question: We assessed each paper based on its direct relevance
to our overarching theme. Papers that directly addressed the interplay of AI, Cloud Comput-
ing, and Advanced Data Management Technologies in financial decision-making, such as those
discussing NoSQL and NewSQL data stores or the evolution of data warehousing, were given
higher weight.



https://doi.org/10.15837/ijccc.2023.6.5735 4

• Recency and Timeliness: Research is constantly evolving, so it is important to stay up-to-
date on the latest findings. For this reason, recent papers are often given more weight in research
reviews and other scholarly publications.

• Citations and Impact: Citations and Impact: We also considered the impact of the paper in
the community. Articles that were widely cited and had significantly influenced the field were
preferred. publications.

• Reproducibility and Open Source: Studies were evaluated based on the availability of their
source code, datasets, and other resources. Those that provided open access or clear guidelines for
reproduction were deemed of higher quality. In this context, the ACM’s initiative of introducing
Reproducibility Badges provided a valuable benchmark. For instance, papers awarded badges
like "Artifacts Available" or "Results Replicated" indicated a strong commitment by authors to
ensure verifiable results, elevating their credibility and quality.

• Validation and Testing: The extent and rigor of validation were assessed. Studies that
showcased comprehensive testing, either on benchmark datasets, through simulations, or real-
world applications, were favored.

Using these criteria, we critically assessed each article in the bibliography. Those that did not suf-
ficiently meet these benchmarks were carefully weighed before inclusion in our discussions to maintain
the robustness and integrity of our review.

3 Thematic Breakdown of Reviewed Works
To provide clarity on the scope of our research review, we have categorized the principal papers

by distinct topic areas. Table 1 offers a concise breakdown of these categories, accompanied by brief
descriptions and key references identified by the first author and year of publication. For a more
in-depth exploration, you can easily locate these studies in our comprehensive bibliography.

Table 1: Thematic classification of reviewed literature highlighting main contributors.
Topic Area Description Key References
Historical Perspectives on
Computing

Insights into the evolution and foundational concepts
of computing.

Copeland et al. (2015)[12], Ceruzzi & As-
pray (2003) [13], Oakley & Kenneth (1990)
[14]

Database Management and
SQL

Development, significance, and early history of SQL
and relational databases.

Codd (1983) [2], Chamberlin (2012) [15],
Chamberlin & Boyce (1976) [16], Elmasri
et al. (2013) [17], Inmon (2008) [3]

NoSQL and NewSQL
Databases

Emergence, characteristics, and importance of NoSQL
and NewSQL data storage systems.

Grolinger et al. (2013)[7], Stonebraker
(2010) [18], Fudivada et al. (2014) [19]

Big Data and Distributed
Systems

Analysis and exploration of big data technologies,
Spark, distributed storage, process mining and pro-
cessing frameworks.

Harter et al. (2014) [20], Dean & Ghe-
mawat (2008), Zaharia et al. (2016) [21],
Gandomi & Haider (2015) [22] Hicham &
Anis [23]

Cloud Computing Concepts, definitions, and advancements in cloud com-
puting technologies, including Edge Computing, Fog
Computing and Cloudlet.

Varghese & Buyya (2018) [24], Red et al.
(2020) [25], Chen et al. (2021) [26]

Artificial Intelligence and
Decision Making

Role of AI in decision-making, advancements, and
prospects.

Filip (2021) [27], Filip (2022) [28], Luger
(2023) [29], Duan et al. (2019) [30], Collins
et al. (2021) [31], Singh & al. (2019)[32]

Blockchain and Digital As-
sets

Exploration of blockchain technology, its applications,
and significance in finance.

Dinh et al. (2018) [9], Ullah et al. (2022)
[33], Castonguay & Smith (2020) [10]

Financial Sector and Tech-
nology

The role of modern technologies in shaping the fi-
nancial sector, including advancements in data-driven
decision-making.

Nauta & al. (2019) [34], Javaid et al.
(2022) [35], Mirestean et al. (2022) [36],
Gul & Al-Faryan (2023) [37]

The references listed in Table 1 serve as a foundational starting point for each respective topic
area. It is important to note that these references are not exhaustive, and not all the cited articles in
the comprehensive review are represented in this table. Readers should consult the main text for a
broader range of references that provide a more comprehensive understanding of each topic.
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4 The Evolution of Data Management
The progression of data recording and processing technologies has transitioned from simple mecha-

nisms to more sophisticated and effective ones. Over the years, these systems have undergone continu-
ous advancement, with each iteration improving upon its predecessor, leading us to the contemporary
tools and methods utilized for handling and analyzing data.

Pivotal moments in the digital revolution occurred with the advent of innovative tools like the
Electronic Numerical Integrator and Computer (ENIAC). Finished in 1945, ENIAC was the inaugural
programmable, electronic, all-purpose digital computer. While preceding computers encompassed
some of these characteristics, ENIAC consolidated all these attributes into a single machine. It was
Turing-complete and could solve "a large class of numerical problems" through reprogramming and
was a significant step in the evolution of computing, marking the transition from manual programming
to the stored-program concept [12]. Its development laid the groundwork for the modern computing
era.

The development of Integrated Circuits (ICs) and Microprocessors between 1958 and 1971 revolu-
tionized the field of computing and played a crucial role in the evolution of data storage and processing.
Prior to the invention of ICs, computers relied on bulky and unreliable vacuum tubes to store and
process data [13]. ICs were smaller, faster, and more reliable, leading to the creation of smaller and
more powerful computers.

Magnetic storage gradually replaced punch cards as the principal data storage medium by the
mid-1960s. As personal computers and magnetic disk storage became more accessible and affordable,
punch cards fell out of favor.

A major leap forward was the introduction of the hard disk drive. This innovation reshaped the
landscape of data storage by enabling the storage of large volumes of data on a single device. It
facilitated direct data access and dramatically increased data storage capacity.

Fast forward to today, we are witnessing substantial enhancements in hard disk drive technology.
The advent of solid-state drives has refined the performance of traditional hard drives, offering faster
and more reliable alternatives. Although they typically come with smaller storage capacities and are
more expensive, the ongoing advancements, such as the NVM Express (NVMe) logical interface are
pushing the boundaries of data storage and processing capabilities.

SSDs, replacing traditional Hard Disk Drives, ushered in a new era of speed and durability in
storage. But the hardware revolution was only a facet of the transformation. The surge in data
volumes necessitated decentralized storage and processing solutions. Distributed databases emerged,
offering scalability and data integrity across vast networks. The Cloud didn’t just offer storage; it
presented a multitude of services from on-demand infrastructure to machine learning capabilities.

Big Data technologies like Hadoop and Spark further revolutionized the field, democratizing data
processing and allowing for real-time insights from massive datasets. As we advance into the modern
era, it’s clear that the evolution of data management has been a precursor to the current innovative
trends shaping the industry.

While the past has set the stage, the present and future of data management are brimming with
innovations that have a profound impact on various sectors, particularly financial institutions. The
tools and methodologies birthed in recent years aren’t just evolutionary—they’re revolutionary. As
we transition to modern trends and technologies, it’s essential to understand their significance and
the transformative potential they hold, especially in areas like financial decision-making.

5 Modern Trends and Technologies in Data Storage and Processing
As we see a surge in data availability, discussions on efficient data storage and retrieval have

intensified. In earlier times, the terms "Data Storage" and "memory" were often used interchangeably.
However, our contemporary understanding of these terms has evolved to distinguish between them.
Memory is generally viewed as a form of volatile short-term storage, while the concept of data storage
is commonly associated with long-term storage. The multitude of available data storage options paved
the way for advancements in relational databases, data warehouses, NoSQL databases and Big Data
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frameworks such as Hadoop or Spark.

5.1 The Advent of Modern Databases, Data Warehouses, and NoSQL

E.F. (Ted) Codd, a computer scientist at IBM’s San Jose Research Laboratory, proposed a new
way of organizing data that he called the “relational data model.” This was a significant shift in the
field of computer science in the early 1970s, particularly in the development of systems and languages
for handling persistent data. Inspired by Codd’s work, Don Chamberlin and Ray Boyce created the
Structured Query Language (SQL), which is the de-facto standard for accessing data [2].

SQL implementations, like Oracle and DB2, emerged in the late 1970s and early 1980s. By 1986, the
ANSI and ISO standards groups formally adopted a standard language definition, "Database Language
SQL" [15]. These systems are called Relational Database Management Systems (RDBMS) and allow
for data to be organized in a structured way, making it easier to search and analyze. This made it
possible to perform complex data analysis and improve the efficiency of financial operations. The
widespread adoption of relational databases paved the way for the development of new technologies
and tools, such as data mining and predictive analytics, that transformed the financial sector [16].

The primary benefit of relational databases is their ability to store and manage large amounts
of structured data in a well-organized and efficient manner and to enforce relationships between
different data elements, which helps to maintain data integrity and consistency. Relational databases
management software also provides robust security features, such as user authentication and access
control, that help to protect sensitive financial data [17].

Data warehouses, introduced in the late 1980s, emerged as a pivotal solution for the consolidation,
organization, and analysis of vast amounts of data from various sources. These systems collect and
store data from diverse operational systems within an organization, facilitating access and compre-
hensive analysis. Whether housed in an organization’s mainframe server or in cloud-based storage,
they amass data from multiple Online Transaction Processing (OLTP) applications and other sources,
serving business intelligence, decision support, and user query responses. Not only does this archi-
tecture support Online Analytical Processing (OLAP), enabling historical analysis and reporting for
enlightened decision-making, but the flexibility of their data storage structures also allows for efficiency
and versatility. While many maintain a relational structure analogous to databases, the modality of
data storage can vary; some use row-based storage, others employ column-based storage, and certain
systems can interchange between the two depending on the task at hand [3]. This adaptability has
enabled financial institutions to conduct complex data analysis, thereby enhancing the accuracy and
reliability of financial operations and enabling informed decision-making.

However, there are also some disadvantages to using relational databases and data warehouses.
One of the main challenges is the limitations of the relational model in handling large volumes of
unstructured data, such as text, images, and videos. This difficulty arises partly from the schema-
on-write approach employed by relational databases, which requires data to conform to a predefined
schema before it’s written into the database. This approach can be restrictive and time-consuming
when dealing with diverse and unstructured data types. These challenges can lead to performance
bottlenecks and make it difficult for financial institutions to analyze and make sense of big data.

Another disadvantage of relational databases is that they can be inflexible and difficult to scale,
which can make it challenging for financial institutions to respond to changing business needs and
demands. This has led to the development of new data storage solutions, such as NoSQL databases,
that are better suited to handling big data and can provide greater scalability and flexibility [7]. The
volume, velocity, and variety of data increased dramatically, pushing the limits of relational databases.
In response, in the late 2000s, NoSQL databases emerged, addressing the challenges posed by tradi-
tional relational databases in dealing with extensive, distributed, and high-speed data ecosystems [18].
The term "NoSQL" was first used around 2009 by Carlo Strozzi, who developed a lightweight database
system that did not depend on SQL [38].

CouchDB, one of the earliest NoSQL databases, was launched in 2005, utilizing a document-
based data model [39]. MongoDB, another well-known NoSQL database, was introduced in 2009 and
employed a similar document-based data model [40], [41]. Multidimensional data warehouses can be
implemented in column-oriented NoSQL systems such as HBase [20] or Cassandra [42]. One approach
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is to consolidate all related dimension attributes and all measures into a single table and column family
for each fact. While this method is straightforward, it may not be the most efficient in terms of storage
and querying. Another strategy involves storing all attributes of a single dimension in a dedicated
column family for each fact, and all fact attributes (measures) in a separate column family. This
method offers a more organized structure but may still encounter inefficiencies. A different technique
involves allocating data in dedicated tables, with one for each dimension and another for the fact
table. The fact table contains references to the dimension tables. This approach is beneficial in terms
of reducing storage space usage, but it can potentially slow down querying due to the challenges of
performing joins in NoSQL systems [43].

While Data Lakes and Big Data are part of the same data ecosystem, their functions are unique
but synergistic. Big Data covers a wide array of tasks related to data processing and management.
On the other hand, Data Lakes focus predominantly on the storage of raw data, which can encompass
structured, semi-structured, and unstructured forms. Although Data Lakes can accommodate NoSQL
databases, their principal emphasis is not on hosting such databases, but on serving as reservoirs for
raw data [44]. This specific focus promotes a more streamlined and efficient data storage process,
which can be pivotal in situations where swift data ingestion and storage are essential.

5.2 Technological Innovations: In-Memory Computing, Cloud Computing, Big
Data and Blockchain

Simultaneously, advances in hardware technology led to the development of in-memory computing
which built upon the strengths of NoSQL while pushing the boundaries of performance, speed, and
real-time processing capabilities.

In-memory storage technology, which emerged in the 2000s, has improved data processing and
analysis. By storing data directly in the main memory (RAM) rather than on disk, in-memory
storage has considerably decreased data access times, enabling real-time analysis and decision-making
across various sectors, including finance. In-memory storage allows for real-time analysis of large
data volumes, supporting applications such as fraud detection, risk management, and high-frequency
trading found in the financial industry [45].

The advancement of in-memory storage technology has also resulted in the development of in-
memory databases and analytics platforms. SAP HANA is one example of an in-memory database
platform that integrates database capabilities with advanced analytics tools like machine learning
and predictive analytics[46]. Other well-known in-memory databases include VoltDB, MemSQL, and
Apache Ignite[47].

Capitalizing on the progress of NoSQL and in-memory storage, two significant technological de-
velopments emerged in the 2000s - cloud computing and Big Data. These innovations significantly
transformed the approach to managing and analyzing financial data.

Cloud Computing, by providing computing services through the internet[48], introduces a scalable,
flexible platform capable of processing and storing massive data sets. This has effectively reduced the
requirement for large-scale on-premises infrastructure [49]. Despite the challenges of security, privacy,
and the potential for vendor lock-in, financial institutions have widely embraced cloud computing,
drawn by the multitude of benefits it brings to the table.

It’s essential to note that the key players in the cloud computing arena - AWS, Azure, and GCP
- each provide unique advantages to the financial sector. AWS’s strength lies in its scalability and
flexibility, making it particularly adept at handling large volumes of financial data. Azure, with its
seamless integration with other Microsoft software products, simplifies the migration process for fi-
nancial institutions transitioning their existing applications to the cloud. Meanwhile, GCP excels at
big data and analytics, making it an ideal choice for financial data analysis [50]. A SWOT (Strengths,
Weaknesses, Opportunities, and Threats) analysis of the leading cloud service providers - AWS, OCI
(Oracle Cloud Infrastructure), GCP (Google Cloud Platform), and Azure is presented in Table 2.
The practical consequences for individual financial institutions may vary significantly depending on a
multitude of factors such as existing infrastructure, particular application requirements, cost consider-
ations, among others. Consequently, it is crucial for financial institutions to undertake a comprehensive
assessment tailored to their unique needs prior to selecting a cloud service provider.
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Table 2: SWOT analysis of cloud providers.
Attributes AWS OCI GCP Azure
Strengths Broad range of services,

largest market share,
high scalability, robust
security

Strong hybrid capabili-
ties, optimized for Ora-
cle databases, competi-
tive pricing

Excels in big data pro-
cessing and analytics,
strong machine learning
capabilities

integration with Mi-
crosoft products, ex-
tensive compliance
coverage, strong hybrid
capabilities

Weaknesses Costs can add up with
scale, complex pricing
model

Less established in the
cloud market, machine
learning and AI services
still developing

Less market share com-
pared to AWS and
Azure, some services less
mature

Complexity and learning
curve for non-Microsoft
users

Opportunities Continued dominance in
the cloud market, ex-
panding AI and machine
learning services

Growth in the cloud
market, leveraging exist-
ing Oracle database cus-
tomers

Growth in the cloud
market, expanding AI
and machine learning ca-
pabilities

Leverage existing base of
Microsoft product users,
expanding AI and ma-
chine learning services

Threats Growing competi-
tion from other cloud
providers, risk of vendor
lock-in

Competition from estab-
lished cloud providers,
risk of vendor lock-in

Competition from estab-
lished cloud providers,
risk of vendor lock-in

Growing competi-
tion from other cloud
providers, risk of vendor
lock-in

The integration of cloud computing within financial operations has become indispensable, yet it
is not lacking complexities. Foremost among these concerns is the imperative of security and privacy.
Financial entities play the pivotal role of guardians of sensitive financial information. Compounding
this is the issue of vendor entrapment, which potentially amplifies costs and complications when
transitioning between cloud providers or contemplating a return to an on-site system.

However, the incentives for embedding cloud technologies in the realm of finance are compelling.
Through the incorporation of cloud infrastructures, financial institutions can achieve substantial cost
savings, attain a higher degree of scalability and nimbleness, fortify their security stance and regulatory
adherence, and fast-track technological and service innovations.

An essential application of cloud computing in finance is in the domain of data analytics. The
prominence of Big Data analytics in modern financial transactions is irrefutable. Cloud solutions
furnish the requisite infrastructure and tools for the swift and adept processing of vast data sets. As
an example, a global banking corporation, leveraging cloud capabilities for storing and computing
massive daily transactional data, can utilize Big Data analytical tools on this cloud-resident data.
This facilitates a nuanced understanding of consumer behaviors, real-time detection of suspicious
activities, and the customization of offerings tailored to individual clients. This synthesis between
cloud technologies and Big Data not only enhances the operational acumen of banking entities but
also vastly improves client experiences.

In summary, while cloud computing emerges as a transformative catalyst enabling financial entities
to elevate their operational proficiency, optimize costs, and usher in innovations, it’s imperative for
these organizations to critically evaluate the intertwined advantages and challenges. Ensuring robust
security protocols and strict adherence to relevant regulations is of the utmost importance.

The emergence of Big Data is attributable to several groundbreaking advancements in data storage
and processing technologies. Distributed Computing, for instance, allows for the simultaneous pro-
cessing of vast datasets across multiple computing devices, drastically enhancing performance. Cloud
Technologies provide access to flexible and expansive computing resources, ideal for processing and
analyzing large data volumes. Additionally, specialized Big Data Analytical Instruments, designed to
process and interpret vast and intricate datasets, utilize a spectrum of methods, from machine learning
to artificial intelligence, to derive insights.

The convergence of these innovations has catalyzed a paradigm where organizations are empow-
ered to gather, archive, and critically analyze vast data collections both economically and efficiently.
Consequently, Big Data has instigated profound transformations across numerous sectors, with the
financial sector standing out prominently.

Traditional data management systems struggled to keep pace with this meteoric rise in data,
highlighting the need for more sophisticated technologies. In response to this demand, solutions like
Hadoop, Spark, and NoSQL databases emerged. These technologies brought with them increased
scalability, flexibility, and performance [5], [22], [51], [52].

In this context, it’s important to discuss the concept of schema-on-read versus schema-on-write.
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Traditional relational databases, which follow a schema on write approach, require data to adhere to
a predefined schema before being written into the database (i.e, tables must be created before data
can be inserted). This method can be rigid and inefficient when dealing with Big Data, which often
encompasses varied and complex data structures.

In contrast, the schema on read approach, typically adopted by Big Data technologies such as
Hadoop and NoSQL databases, allows data to be stored in its raw form and the schema to be defined
only when it’s read for analysis. This provides the flexibility necessary for handling the diverse and
rapidly changing data structures associated with Big Data.

The schema on read approach enables real-time processing and analysis of large data sets, a
feature that is paramount in the dynamic environment of financial institutions. Hence, technologies
that employ schema on read offer a compelling solution to the challenges posed by the influx of Big
Data.

Hadoop, born out of Google’s need to tackle large-scale data collection challenges, enabled scalabil-
ity. However, the early versions of Hadoop’s MapReduce component heavily depended on the Hadoop
Distributed File System (HDFS), thereby curtailing the use of scalable cloud storage solutions [53],
[4].

Most importantly, Apache Spark, launched in 2014, delivered notable performance enhancements
by optimizing memory usage, revolutionizing the way big data processing was handled. Spark intro-
duced the DataFrame API in 2016, assisting users transitioning from data exploration to harnessing
Spark’s scalable MapReduce engine. Spark 2.0 marked the integration of Spark SQL into the same
optimization engine used for the DataFrame API [5], [54]

Other significant Big Data related technologies, such as Apache Kafka, also emerged, each with
distinct advantages and challenges, including ingesting voluminous data sets and safeguarding sensitive
financial data [8].

The key takeaway is that the intersection of Cloud Computing and Big Data technologies funda-
mentally rests on the premise that cloud computing provides the infrastructure and computational
power indispensable to meet the demands of Big Data. The scalability of cloud services facilitates
the storage, processing, and analysis of massive datasets, aligning with the essential requirements of
Big Data. Big Data analytics tools, in turn, can be deployed on the cloud, leveraging the scalability
and distributed processing capabilities of the cloud. This symbiotic relationship empowers businesses
to improve data-driven decision-making, real-time analytics, and predictive modelling, while concur-
rently reducing operational costs and augmenting efficiency. Hence, the relationship between cloud
computing and Big Data is not merely opportunistic, but rather a necessity, forming an integral link
in the chain of digital transformation.

As the volume and complexity of data skyrocketed over time, a more flexible and scalable ap-
proach to data storage and management became imperative, resulting in the conception of Data
Lakes. Emerging in the 2010s, Data Lakes represent a significant evolution from traditional data
warehouses [55], serving as centralized repositories capable of storing raw data in its native format.
This development constitutes a key component within the Big Data ecosystem, ushering in a funda-
mental shift in data management strategies. Contrary to traditional systems where data schemas are
defined on-write, Data Lakes facilitate defining schemas on read, enhancing the flexibility for data
exploration and discovery. As a result, Data Lakes prove particularly beneficial for exploratory data
analysis, data science, and machine learning applications, where the data requirements might not be
pre-defined.

The integration of blockchain technology and smart contracts into financial systems can be at-
tributed to several critical factors. Notably, the inherent transparency and trustworthiness of blockchain’s
distributed ledgers can significantly enhance the clarity of financial transactions and prevent fraud
without the need of banks or other intermediaries [35]. Therefore, it has been seen more as a threat
to the well-established financial institutions rather than an opportunity to advance the traditional
banking system, especially in emerging economies by reducing overhead [33]. Moreover, technical
challenges such as scalability, security, flexibility, reliability, and interoperability must be overcome
for effective implementation. If there are flaws in the programming languages used for smart con-
tracts or in the classes implemented, there’s a significant risk of large-scale fraudulent activities [10].
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To determine whether blockchain is an apt solution for specific financial issues, a robust evaluation
method is necessary. This includes establishing design principles for blockchain applications, consider-
ing technological, contextual, and organizational aspects to cater to financial system needs. Adoption
of blockchain can lead to organizational transformation, involving changes to strategies, processes,
operational structures, and risk management. The unmodifiable nature of data on a blockchain may
be problematic for firms that regularly need to alter stored data. Concurrently, an appropriate legal
framework is essential to accommodate the wide adoption of blockchain technologies, especially given
the regulatory nature of financial systems. This demands collaboration between different financial in-
stitutions, regulators, and technology providers to balance regulatory measures and the opportunities
provided by blockchain technology.

5.3 The Future of Data Management: AI and Machine Learning

Artificial Intelligence (AI) and Machine Learning (ML) have risen to prominence in the digital
revolution as key tools for interpreting and utilizing the extensive volumes of data that are currently
available. The advancements in big data and cloud computing, coupled with the rapid growth of
computational power, have opened new horizons for AI and ML. The transformation of Artificial
Intelligence (AI) into both a reputable scientific field and an influential set of tools has been remarkable.
Reflecting Engelbart’s vision, AI’s growth over the years has served to amplify human intelligence [56].
This has empowered individuals and organizations to tackle and resolve intricate problems in ways
that would have once been considered beyond reach. The financial sector, much like other industries,
has been quick to seize the opportunities these technologies offer [57].

Artificial Intelligence (AI) is a broad concept that encapsulates the idea of machines performing
tasks in ways that humans would consider "smart." This could range from a computer program engaging
in a game of chess to a voice-recognition system like Amazon’s Alexa or to a chatbot as ChatGPT. A
subset of AI, Machine Learning (ML), is predicated on the notion that we should be able to provide
machines with data and allow them to learn independently.

Deep learning, a further specialization within ML, is a central theme in recent research. This
research emphasizes the use of neural language models and recurrent neural networks, which are
innovative tools in the field of AI. These models are designed to learn how to convert word symbols
into word vectors or embeddings, thereby predicting the next word in a sequence. They can even
’translate’ the meaning of an image into an English sentence, demonstrating the remarkable versatility
and potential of these models [58].

Moreover, the potential of unsupervised learning, a type of machine learning where the system
learns by observing the world, much like humans and animals do, is underscored. This method of
learning doesn’t rely on explicit instructions but instead discovers the structure of the world through
observation. It is anticipated that unsupervised learning will play a significant role in the future of
AI, further expanding the capabilities of smart machines.

From automating mundane tasks to predicting trends, AI and ML offer a myriad of benefits. In
banking, AI-driven chatbots are being used to automate customer service, while ML algorithms are
being employed to detect fraudulent transactions and predict customer behavior. In insurance, AI
and ML are used to automate claims processing and risk assessment.

AI and ML algorithms require vast amounts of data to learn and improve, and the growth of
big data has fueled their advancement. The availability of large, diverse datasets has enabled the
development of complex ML models that can make accurate predictions and decisions.

The ability to store and process these large datasets has been made possible by cloud computing.
The immense computational resources provided by the cloud enable the training and execution of
complex ML models that would otherwise be prohibitively resource intensive. Cloud platforms like
Amazon Web Services, Google Cloud, and Microsoft Azure offer specialized services for AI and ML,
providing the necessary tools and infrastructure for developing, training, and deploying ML models.

Despite these advancements, technology should not be seen as a panacea for all the problems facing
the financial sector. Technology should be used as a tool to enhance the services offered by financial
institutions and improve their operational efficiency, rather than as a replacement for the core values
and principles that underpin the financial sector.
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5.4 Advancements in AI based Decision Support in the Financial Sector

As an addition to data management technologies, Decision Support Systems (DSS) have become
vital to the financial sector. These systems consist of diverse software applications, such as data anal-
ysis tools and machine learning algorithms, that assist in the organization, analysis, and management
of unstructured data, thereby supporting the decision-making process. Consequently, the integration
of DSS with data warehouses is critical, and the collaboration between them can drive unparalleled
efficiency and effectiveness in data-driven decision making.

By design, a data warehouse is an optimal solution for integrating data from various sources,
consolidating it into a unified and coherent format that is conducive to further analysis. When in-
tegrated with a DSS, the data warehouse becomes a powerful tool, providing the necessary data in
a structured and accessible format that can be leveraged to generate insights and support strate-
gic decision making[59]. Moreover, the integration of DSS with data warehousing enables real-time
decision-making. With data continually being updated and processed in the data warehouse, the DSS
can provide up-to-date insights that reflect the current state of the market, thus facilitating prompt
and informed decisions.

The DSS can employ data mining techniques to extract patterns and trends, predictive analytics
to forecast future scenarios, and machine learning algorithms to learn from historical data and make
informed predictions. The outcome is a comprehensive and dynamic system that not only stores data
but also uses it to inform strategic decisions, providing a competitive edge in the rapidly evolving
financial landscape. DSSs can be designed to incorporate advanced visualization tools, which can
transform complex data into easy-to-understand graphs, charts, and other visual representations.
These visualizations can elucidate trends, patterns, and relationships in the data, thereby improving
the overall decision-making process.

AI has been incorporated into decision support systems for a long time. During the early days of
AI, "expert systems" commanded a lot of attention. They were usually built on rules and tried to copy
how a human expert makes decisions [60]. But after some projects didn’t work out, people realized
these systems were more like helpers for human decision-makers, not experts telling humans what to
do. Because of this, the term "expert systems" became less popular.

The term "knowledge-based system" (KBS) started to get attention when the UK Government
launched the Alvey Programme for IT research in the ‘80s [14]. Some people thought expert systems
were just a part of KBS, while others thought they were the same thing. At the start of the 21st
century, businesses and managers started to prefer the term "knowledge-based systems" over "expert
systems". This was because they started to focus more on "knowledge" rather than "the expert",
especially with the rise of knowledge management in the late 1990s. Ontology and Social Networks
were identified as crucial subjects associated with the evolution of KBS in the Big Data era [61].

In the 2010s, AI became a popular term again[29]. Within AI, people started to use the terms
"machine learning" and "data mining" a lot more [31]. This change shows the progress in technology
and the success of machine learning systems that we often hear about in the news. "Data mining" is
a newer term compared to the others. It was first used in economics to describe the process of trying
different models to find the best fit for the data. It wasn’t until the mid-1990s that the term started
to be used more broadly.

Addressing the challenges of AI requires a careful and balanced approach, involving regulatory
oversight, ethical considerations, including the interaction between AI and humans, the impact of
AI on job roles and skills, and technological solutions [30], [36]. Questions have been raised about
the future of decision-making activities, specifically whether AI-based tools will evolve to become
collaborative partners and active contributors, or if humans will simply serve as sources of information
for these algorithms [28].

5.5 Comparison in the context of decision making

The blend of DSSs with data warehouses, Big Data, augmented by AI, signifies a major leap forward
in data management within the financial sector. This combination not only enhances the storage and
organization of data but also revolutionizes how this data is utilized, making it an indispensable tool
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for strategic decision-making. As the volume and complexity of financial data continue to grow, the
significance of efficient data management systems like these, augmented by AI, will only become more
prominent. The previously discussed technologies are compared in Table 3. This table focuses on
several key attributes that differentiate these technologies.

Table 3: Technology comparison.
Technology Primary Use Data

Model
Performance Scalability Flexibility Decision Sup-

port
Relational
Databases

Structured
data storage
and complex
queries

Table-
based
(Rows and
Columns)

High for struc-
tured data and
complex queries;
lower for unstruc-
tured data

Moderate; verti-
cal scaling, dis-
tributed systems
can be complex

Low; predefined
schema required,
less flexible with
unstructured
data

Moderate; sup-
ports structured
data-based deci-
sion making

Hadoop Batch process-
ing of large
data sets

File-based
(HDFS)

High for large,
batch jobs; lower
for real-time ana-
lytics

Excellent; built
for distributed
processing

Moderate; built
for structured
and semi-
structured data

Moderate;Suitable
for large-scale
data analysis and
mining; Less effi-
cient for real-time
decision making

Spark Fast, in-
memory data
processing and
machine learn-
ing

In-memory
/ Disk-
based

High for both
batch and real-
time analytics

Excellent; can
handle large data
sets in a dis-
tributed manner

High; can process
structured and
unstructured
data

High; supports
both batch and
real-time decision
making

Data
Lakes

Storage of raw
data in its na-
tive format

File-based
and object-
based

Varies depending
on the processing
engine used

Excellent; can
store massive
amounts of data

High; can han-
dle any type of
data (structured,
semi-structured,
unstructured)

Excellent for
AI/ML appli-
cations due to
diverse data
storage; Requires
efficient data
management

Kafka Real-time
streaming data

Message-
based

High for real-time
data streaming

Excellent; can
handle high-
volume real-time
data

Moderate; built
for streaming
data, not ideal
for static data

Perfect to accom-
pany real-time
decision support
systems; Less
efficient for batch
processing

NoSQL
Databases

Handling large
volumes of
structured and
unstructured
data

Varies
(document,
key-value,
column,
graph)

High; de-
signed for fast
read/write opera-
tions

Excellent; built
for horizontal
scalability

High; schema-less
design allows for
high flexibility

High; Suitable for
diverse and com-
plex data types;
Good for AI/ML
applications

Blockchain Decentralized
and secure
record keeping

Chain of
blocks

Lower; transac-
tions take longer
to process

Moderate; adding
new nodes in-
creases network
strength but
slows transaction
time

Low; transactions
are immutable,
and the structure
is predefined

Low; Not ideal
for traditional
DSS due to trans-
action speed and
immutability

It is necessary to point out that the comparison from Table 3 serves as a generalized overview.
The practical performance, scalability, and adaptability of each technology can considerably diverge
depending on the specific circumstances and implementation nuances.

Relational Databases play an integral role in decision support systems owing to their capacity
for structured data storage and complex queries. They are designed with a table-based data model,
using rows and columns to facilitate easy comprehension and detailed analysis. This makes relational
databases highly valuable for decision-making processes that rely on structured data and complex
analysis. Nevertheless, their performance and scalability are contingent on the nature of the data.
While they are high performing for structured data and complex queries, their efficiency shrinks with
unstructured data. The moderate scalability associated with relational databases is through vertical
scaling, though distributed systems can pose complexity. Furthermore, flexibility is relatively low
as a predefined schema is necessary, thus curtailing their ability to handle unstructured data fluidly.
Within the realm of relational databases, for instance, there exist multiple options such as MySQL,
PostgreSQL, Oracle, and more, each with its own unique attributes and advantages.

Hadoop is a robust tool for batch processing of voluminous data sets. The decision-making utility of
Hadoop stems from its capability to process large batches of data. It is especially beneficial in scenarios
where decision-making isn’t time-critical and can be based on comprehensive historical data analysis.



https://doi.org/10.15837/ijccc.2023.6.5735 13

Its file-based data model (Hadoop Distributed File System - HDFS) is designed to handle structured
and semi-structured data. However, when it comes to real-time analytics, Hadoop’s performance may
not be as efficient, somewhat limiting its decision support in real-time scenarios.

park is distinguished by its capacity for swift, in-memory data processing, and machine learning.
As such, Spark is a versatile tool that facilitates both batch and real-time data analytics, covering
a wide range of decision-making scenarios. Its high-performance nature, coupled with the ability to
handle large data sets in a distributed manner (it can also use HDFS), empowers decision-makers
with accurate insights both from historical and real-time data. Moreover, Spark’s capacity to process
structured and unstructured data further enhances its decision support capabilities.

Data Lakes provides a platform for the storage of raw data in its native format. This means they
store data as it is, without the need for a predetermined structure or schema. The flexibility in data
storage opens the door for a variety of analyses and decision support. Data Lakes are particularly
advantageous in complex decision-making processes that involve diverse data types - structured, semi-
structured, and unstructured. The performance of a data lake, however, hinges on the processing
engine used, influencing its effectiveness in decision support.

Kafka is a system designed for real-time streaming data. Its architecture makes it well-suited
for decisions that necessitate real-time data streaming and instantaneous decision-making. Kafka’s
capability to handle high-volume real-time data empowers decision-makers in dynamic and fast-paced
environments where swift decision-making based on real-time insights is critical. Nevertheless, Kafka’s
emphasis on streaming data makes it less ideal for static data, thus somewhat limiting its use in decision
scenarios that demand thorough historical data analysis.

NoSQL Databases cater to the need for handling substantial volumes of structured and unstruc-
tured data. Their versatility in data handling offers an unprecedented level of flexibility in decision
support. The schema-less design of NoSQL databases not only enables the accommodation of varied
data types but also allows for adaptability to evolving decision-making environments. The inherent
architecture of NoSQL databases, primed for fast read/write operations, empowers swift decision-
making based on up-to-date data. However, the umbrella of NoSQL databases covers an array of
technologies, each designed to fulfill the demands of large-scale data storage and retrieval with dis-
tinct capabilities. This category spans document databases like MongoDB, key-value stores like Redis,
wide-column stores like Cassandra[42], and graph databases like Neo4j. Therefore, a more detailed
understanding of each database type and its specific application is vital when assessing these systems.

Blockchain, with its unique attribute of decentralized and secure record-keeping, can aid decision
support in scenarios requiring data veracity. The immutable nature of transactions within a blockchain
and its predefined structure can, however, restrict flexibility in decision support. Moreover, scalability
becomes a concern in blockchain-based systems as the transaction processing time increases with the
addition of new nodes, potentially impacting real-time decision-making. The field of blockchain tech-
nologies presents a wide spectrum of options, each with unique features. Prominent examples include
Bitcoin, Ethereum, BNB and many others, each possessing distinctive capabilities and attributes.

While certain technologies such as Apache Kafka and Blockchain may seem different, given that the
former is a distributed event streaming platform and the latter a distributed ledger technology, they do
have some fundamental similarities that significantly influence their ability to support decision-making
processes:

• Distributed Architecture: Both Kafka and Blockchain are designed with a distributed ar-
chitecture. This feature allows for reliable data sharing across multiple systems in Kafka, and
resilient data storage across several nodes in Blockchain. In terms of decision support, this ar-
chitecture offers a robust and reliable system that can handle high volumes of data and ensure
data availability, key factors in data-driven decision-making processes.

• Immutable Records: Both technologies treat data as immutable once it’s written. In decision-
making scenarios, this immutability ensures the veracity of data. In Kafka, once an event
is published, it remains unchanged, providing a reliable source of historical data for decision-
making. Similarly, in Blockchain, the inability to alter a block once added to the chain ensures
an accurate and reliable history of transactions, critical for decision-making processes especially
in areas like financial auditing and supply chain management.
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• Sequential Data Storage: The storage of data in a sequential manner in both Kafka and
Blockchain helps maintain data integrity. In decision support, this feature assists in chronological
analysis of data and identification of trends over time, thereby enhancing decision accuracy.

• Fault Tolerance: Both technologies are designed to be fault-tolerant, ensuring that data is
available and durable, even in the event of system failures. This characteristic guarantees data
availability for decision-making at all times. In the case of Kafka, data is replicated across
multiple brokers, while in Blockchain, the ledger is replicated across all nodes, reinforcing system
reliability.

• Real-Time Processing: Kafka is renowned for its capability to facilitate real-time data pro-
cessing, a feature that is critical for many use-cases, including financial transactions where
decisions need to be made promptly based on real-time data. The real-time processing capa-
bility varies with different Blockchain types and consensus mechanisms, but when available, it
provides up-to-date data for timely decisions.

This comparison provides an initial understanding of the presented technology’s’ capabilities, while
the rapidly evolving technology landscape suggests that their impacts will continue to diversify and
probably deepen.

6 Conclusions and Future Directions
The continuous evolution of data storage and processing technologies has been pivotal in shaping

the financial sector. Our research journey, initiated by an intrigue into the transformative role of these
technologies, revealed their underlying impact on financial decision making.

From the foundational developments in data organization tools to the sophisticated capabilities of
relational databases, data warehouses, and NoSQL databases, the trajectory of technological adoption
has been driven by the financial sector’s quest for efficiency, accuracy, and security. As we detailed,
the emergence of AI and cloud computing has further accelerated data accessibility and processing
speeds, directly influencing real-time financial decisions.

Our findings underscore the profound influence of big data technologies like Hadoop and Spark,
which have redefined risk assessment and decision-making in financial institutions. Their ability to
process vast datasets has facilitated more informed and timely decisions, empowering institutions to
navigate the complexities of modern financial ecosystems.

However, the journey is not without challenges. The integration of AI with big data, while promis-
ing transformative interactions with clients, raises concerns related to biases, the interpretability of
AI models, and data security. Addressing these challenges is vital to maintaining trust and ensuring
ethical AI-driven financial decision making.

Looking forward, the promise of technologies like blockchain—with its potential for decentralized
and transparent transactions—is being profoundly observed, though its maturity and standardization
remain areas of development. Similarly, the nascent potential of DNA data storage suggests intriguing
possibilities for the future of financial decision-making. The successful adoption and integration of
these technologies will play a crucial role in shaping the agility and robustness of future financial
systems, but it is essential to approach them with a balanced perspective, acknowledging their current
limitations.

In sum, our research emphasizes the intertwined relationship between data technologies and finan-
cial decision making. As we progress, it is vital that the financial sector remains adaptive, ensuring
that technology serves as a tool for enhancement and not an unchecked force. The goal should be
a symbiotic relationship between technology and human expertise, leading to decisions that are not
only efficient but also ethically sound and beneficial for all stakeholders.
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