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Abstract

Currently, mobile robot has great application value in industrial production. It can play a
unique advantage in improving industrial production efficiency and saving industrial production
costs. Path planning plays an important role in the performance of mobile robots. Therefore, to
improve the path planning efficiency of mobile robots in complex environments, a path planning
model combining genetic algorithm (GA) and whale optimization algorithm (WOA), namely WOA-
AGA model, is proposed. In the model, the traditional GA model is introduced into the difference
degree function. WOA makes up for the local optimization problem and the low proficiency of AGA
algorithm. WOA-AGA effectively solves the problems of local optimization, long convergence time
and unstable optimization results. The experiment is simulated in dynamic and static environment:
AGA algorithm has 1.87% higher efficiency than GA algorithm; Compared with AGA algorithm,
the overall operation efficiency of WOA-AGA algorithm is increased by 3.87%. Finally, two types of
complex scenes are selected for path planning in the experiment. The results indicate that WOA-
AGA algorithm can obtain shorter and more reasonable optimal path than other similar algorithms.
From the perspective of improving the path planning effect of mobile robots, this study aims to
obtain the best path through the reasonable application of WOA-AGA model to improve industrial
production efficiency.

Keywords: Genetic algorithm, Whale optimization algorithm, Robot, Path planning, Grid
method.
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1 Introduction
With the acceleration of the industrialization process, the application field of robots is more and

more extensive. In modern society, traditional industrial robots are increasingly unable to meet
the growing needs of people [1]. The mobile robot belongs to the comprehensive high and new
technology, and has a wide range of applications in industrial production. Among them, path planning
has a profound impact on the work performance of robots and is a hot issue in the research of
mobile robot perception [2]. As a method to solve problems, the most important features of path
planning are constraints, complexity and nonlinearity [3]. The environment of mobile robots is usually
uncertain and complex, so the perception ability of mobile robots is put forward higher requirements.
In addition, mobile robots are prone to judgment confusion in a variety of dynamic, complex and
hindered environments [4]. Currently, the path planning of mobile robots has become the focus of
many researchers, and more scholars have tried to combine intelligent algorithms with path planning,
and have launched a heated discussion on it. This way of thinking can significantly improve the
efficiency of path planning, and is also the mainstream of current research. However, looking at the
current research results, most path planning still has many problems such as local optimal solutions
and unstable optimization results. Therefore, how to find the optimal robot transportation path in the
shortest time is still an urgent problem to be solved. Genetic Algorithm (GA) and Whale Optimization
Algorithm (WOA) are two classical intelligent optimization algorithms, which have good applicability
in the process of robot path optimization [5]. Therefore, this study attempts to combine the two to
build a WOA-AGA model to improve the adaptability of robots to plan paths in complex environments.
The aim of this study is to optimize the path planning effect of mobile robots through the rational
application of WOA-AGA model, so as to further improve the industrial production efficiency.

2 Related work
With the rapid development of intelligent technology, more and more people pay attention to robot

path planning, which is discussed by many scholars. Chang L et al. study an improvement strategy
using Q-learning to solve the problem that dynamic window method is easy to rely on global reference
in path planning. This strategy can adaptively learn model parameters and obtain trained agents
to adapt to the unknown environment. Although this model has excellent navigation capabilities in
both static and dynamic environments, it takes a long time to navigate, thus affecting the overall
industrial production efficiency [6]. Yang Y proposes to introduce Q network into multi-robot deep
learning algorithms, focusing on the study of handling robots. This method combines Q algorithm and
experiential playback mechanism to generate target Q value, which effectively solves the problem of
slow convergence of traditional methods. The results show that the model can learn the path planning
problem faster and improve the overall work efficiency of the robot. This study provides reference
for the subsequent path planning of mobile robots, but its own shortcomings of easily falling into
local optimal need to be further solved [7]. Wang B et al. study robot path planning under large-
scale dynamic environment. Aiming at dynamic obstacles, they propose a global guided reinforcement
learning method, which solves the disadvantage of the traditional reprogramming strategy’s low overall
operation efficiency. The method combines a novel reward mechanism that works effectively in any
environment. It is verified that although the method has good generalization performance, its path
planning effect does not reach the ideal state [8]. Based on the research in the field of large-scale
transportation logistics, Li Qiang’s team proposes a distributed path planning scheme using graph
neural networks. The experiment incorporates a focus mechanism that allows message dependencies
to improve traditional networks. This mechanism can determine the important characteristics of the
information received from different neighboring robots. This model has good generalization effect
in practical application, which is of enlightening significance for the study of intelligent algorithm
combined with path planning in this paper [9]. Qi J et al. propose a new algorithm for robot navigation
in dynamic and unfamiliar environments that combines multi-objective and fast exploration techniques.
Considering the path length and smoothness, the algorithm can quickly identify the optimal node from
many candidate nodes. The simulation results of the model in the dynamic environment show that
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it has excellent performance in avoiding obstacles, but its final planned path length is relatively long
and the effect is mediocre [10].

Because of its good practical performance, intelligent algorithm has been widely used in various
fields, which brings many opportunities for robot path planning. Wu Y et al. propose a hybrid UAV
path planning algorithm combining distributed estimation algorithm and genetic algorithm. The al-
gorithm can consider the requirements of different stages in the iterative process and realize the local
adjustment strategy online. The simulation results of this study show that the proposed method can
improve the efficiency of UAV task execution, but the problem of local extremum cannot be well
optimized [11]. Hayat S et al. introduce GA algorithm into the path planning of UAV rescue mission,
and on this basis propose two adaptive strategies. This strategy can optimize search, notification,
monitoring tasks and adjust the priority of tasks in a timely manner. This strategy has certain ef-
fectiveness, but the traditional GA algorithm has not been optimized and improved, and the overall
model still has problems of slow convergence and low efficiency [12]. Zhang Z et al. combine genetic
algorithm with sparrow search to get the path planning of the robot, and proposed linear path strategy
and neighborhood search strategy according to the running speed and convergence performance of the
robot. In the experiment, a new comprehensive index evaluation method is designed to evaluate the
proposed model, and its superior performance is verified. This study has certain reference significance
for the WOA-AGA model proposed in this paper [13]. Zhou M’s team designs a hybrid path planning
model that combines improved WOA and Gray Wolf optimization algorithms. The model also intro-
duces dynamic window method for local path planning. Finally, the feasibility and effectiveness of the
method are verified by simulation experiments. This model can show good performance for local path
planning, but fails to show proper coordination ability in complex environments [14]. Alabdalbari A
and Abed introduce particle swarm optimization based on WOA algorithm to limit the planned path
of robot collision in static environment. The results show that this method can follow the perfect path
criterion and has excellent performance in path planning. This model has certain application value,
but the overall model still has defects such as local optimal solution and unstable final optimization
results [15].

In summary, robot path planning based on intelligent algorithm has made some progress in recent
years. However, for robots with complex and difficult tasks, the existing path planning methods still
cannot meet their work needs. In addition, most path planning models fail to provide appropriate
solutions to problems such as local optimal solutions and unstable optimization results. Therefore, a
path planning model is proposed, which combines WOA algorithm and AGA algorithm to realize the
optimal path planning in different environments.

3 Research Model

3.1 Whale Optimization Algorithms and Genetic Algorithm Models

The classic GA algorithm simulates the genetic evolution mechanism of organisms, replacing ge-
netic operations in the reproductive process with natural competition laws and genetic information.
GA can enable individuals in the population to produce excellent individuals adapting to environmen-
tal changes through adaptive crossover and mutation under the effect of natural selection and genetic
information. Due to its relatively simple content, easy implementation, and good search performance,
GA has been successfully applied in many fields [16, 17]. In production scheduling, it can be used
to optimize the selection of transportation methods, routes, and related equipment for raw materi-
als and finished products during the production process. In data mining, it can be used to predict
product demand and related equipment. In image processing, it can be used to segment and track
image targets. These successful implementations have greatly promoted path planning research and
application. GA’s basic implementation process is shown below.

GA is a path search algorithm based on random iteration and evolution, which simulates genetic
and biological laws, and its core idea is the natural law of survival of the fittest. To achieve the
purpose of fast optimization, unsuitable factors are excluded during iteration. The specific steps of
GA are: (1) coding the problem solution set. That is, the solution of the problem is expressed by
chromosome, the initial population is obtained by chromosome form, and the fitness function of the
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Figure 1: The Basic Process of GA Algorithm

algorithm is determined by the objective function of the optimization problem. (2) The participation of
high-quality individuals in genetic manipulation is achieved through the analysis of fitness values. (3)
Replace reproduction with the natural laws of competition and the contents of heredity until the best
results are obtained. In this process, each individual has to evaluate their own degree of adaptation
to determine their own degree of adaptation. In the process of selection, crossover and mutation, each
individual can maintain its correct direction and get the optimal result. In GA algorithm, the nature
of the initial population has a great influence on the performance of GA. This algorithm can generate
feasible paths quickly, but it has some disadvantages such as low quality of initialization path and
low efficiency of filtering rules. Therefore, this study will further improve the method to achieve a
more suitable path selection [18]. The fitness function selected by GA will directly affect whether
the optimal result can be obtained at last. Therefore, this study introduces the difference degree
function into the GA algorithm, that is, to build the AGA model. AGA algorithm mainly optimizes
its adaptability function to overcome the randomness and blindness of traditional genetic algorithm.
The general fitness function expression is shown in equation (1) :

Fitness′
t =

N∑
l=1

F (l)
F (t) (1)

In equation (1), N represents the number of individuals; F (t) represents the maximum objective
function value; F (l) is the minimum objective function value. difference function Introduce here
to meet the requirements of population diversity. Assuming the difference between two physical
examinations is shown in equation (2):

D(i, j) = 1
K

K∑
l=1

(xij − xjl) i, j = 1, 2, . . . , n

xik − xjk =
{

0 xik = xjk

1 xik ̸= xjk

(2)
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In equation (2), xik, xjk represents the value of individual xi, xj in position k. The difference
function represents the mean of the sum of differences between all individuals in the population
except for individual t and t, as shown in equation (3):

D(t) = 1
N − 1

K∑
i ̸=t

D(t, i) i = 1, 2, . . . , N (3)

In equation (3), D(t, i) represents the degree of difference between all individuals in the population
except individual t and t, and the final fitness function is shown below:

Fitnesst = D(t)
N∑

l=1

F (l)
F (t) (4)

Equation (4) is the fitness function of genetic algorithm by introducing the difference degree func-
tion. AGA can improve the randomness and blindness of GA transmission to some extent. However,
it has its own precocious defects, and it is easy to fall into local optimal. Based on this, the study ap-
plied WOA algorithms to the new chromosomes produced during each generation of genetics. WOA
is a heuristic algorithm that is mainly used to simulate the rounding, attacking, and searching of
humpback whales during feeding. WOA treats all individuals in a group as searching particles that
keep pace with others. It sets the location of the target as the closest distance to the target, and
then selects an individual from a population as the best search particle according to the principle of
closest. After that, other search particles will continue to update their position according to certain
rules. A humpback whale will move as quickly as possible to get close to its target, or cooperate
with the group to hunt. The algorithm is mainly to “exchange blood” on chromosomes to find the
optimal solution, that is, to replace the original poor population and use the new excellent population
to evolve. Combining WOA with AGA can make it have strong global optimization ability and local
optimization ability. However, in the traditional WOA algorithm, the optimal advantage of the next
iteration is often too dependent on the optimal advantage of the current iteration. Therefore, as shown
in equation (5), the study introduces information-oriented strategies to make improvements:

Y ∗(t) = w3Y1(t) + w2Y2(t) + w1Y3(t) (5)

In equation (5), Y1(t), Y2(t), Y3(t) represents the optimal position, suboptimal position, and more
optimal position of the whale population when the number of iterations is t. w1, w2, w3 represent the
weights of Y1(t), Y2(t), Y3(t) when the number of iterations is t. Y represents the individual’s position
vector. Y ∗ is the optimal individual position in the current iteration. Equation (5) represents the
WOA algorithm based on an information-oriented strategy, which enables the exchange of location
information between individuals. The information guided predatory strategy enhances the exchange
of positional information between individuals. However, when implementing predation, WOA does
not include the positional effects of previous predatory individuals. This will cause omissions in the
WOA algorithm during the solving process, reducing the convergence speed. This article proposes an
improved Golden Synthetic approach to enhance whale predation strategies, as shown in equation (6):

Y (t + 1) = Y (t) · |sin (Q1)| + Q2 · sin (Q1) · |x1 · Y ∗(t) − x2Ymean(t)| (6)

In equation (6), Ymean(t) is the average position of all whale individuals in the population after
t iterations. Q1, Q2 represents a random number. Among them, Q1 affects the individual’s move-
ment distance, and Q2 affects the individual’s movement direction. x1, x2 represent the golden section
coefficients. WOA introduces a convergence factor during iteration to adjust the convergence. How-
ever, in the classic WOA, this value is linearly reduced, resulting in a gradual decrease in the overall
optimization performance of WOA. Therefore, this study adopts a nonlinear convergence coefficient
represented in equation (7) to regulate:

a =


T 2

max
4

((
t − Tmax

2

)2
+ 1

)
, t ≤ Tmax

2
T 2

max
4

(
t − Tmax

2

)2
, t >

Tmax
2

(7)
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In equation (7), Tmax is iterations’ maximum. a represents the convergence factor. This article
adopts a combination of WOA and AGA, which first adopts WOA to imitate the predatory behavior of
humpback whale populations, optimize the chromosome population, and improve population quality.
Excellent genetic factors are optimized through the Whale Optimization Algorithm and then subjected
to a series of genetic algorithm operations to ultimately find the optimal solution. The overall WOA-
AGA implementation process is shown below.
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Figure 2: Implementation Process of WOA-AGA Model

3.2 A Robot Human Path Planning Model Integrating WOA-AGA Model

In response to the problems of local extremum, long convergence time, and unstable optimization
results in traditional GA, this study proposes an improved WOA-AGA algorithm. It regards the
mobile robot localization problem as a global optimization problem, selects a humpback whale from
the whale population, migrates it to the chromosome of the genetic algorithm, and then replaces
the humpback whale with the worst chromosome in the genetic algorithm. This not only effectively
avoids the problems of local extremum, long convergence time, and unstable optimization results in
traditional genetic algorithms, but also ensures that mobile robots can quickly find the target results
in different environments. In addition, the WOA-AGA algorithm can avoid redundant operations and
continuously optimize the optimal operator, thereby improving the solving accuracy of the genetic
algorithm [19]. For robots’ actual path planning, modelling their testing environment is needed. This
study chooses to use grid method to establish the mobile environment of robots. This study uses
grid modeling method to create a model, which can divide the robot’s workspace into multiple 2D
structured spaces, with identical grid dimensions. Throughout the path planning process, the robot
can be viewed as a particle rather than a fixed three-dimensional entity. Meanwhile, robots can
quickly determine the orientation of obstacle sizes [20, 21]. Figure 3 illustrates the representation of
the environment model for the robot’s workspace. The free space and obstacles are depicted as a
collection of grid blocks, with shaded regions indicating the presence of obstacles.
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Figure 3: Experimental Environment Model

The grid is represented by serial number method and Cartesian coordinate system method, and
the two methods can be converted to each other. The coordinate relationship of the grid S is shown
in equation (8): {

x = mod(S − 1, n) + 0.5
y = n + 0.5 − ceil(S/n) (8)

In equation (8), S represents the grid number. mod represents the remainder operation. ceil
represents an upward rounding operation. n × n represents the grid size. Figure 4 shows a binary
representation of the robot path.
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Figure 4: Binary Representation of Robot Path

When the path is discontinuous, filling it with adjacent free grid points to make it a continuous
path without crossing any obstacles is called the insertion operator. The continuity of two adjacent
grids is analyzed by the following equation (9):

δ = max {abs (xi+1 − xi) , abs (yi+1 − yi)} (9)

In equation (9), xi+1, yi+1, xi, yi represent the Cartesian coordinate system of the two adjacent
grids. abs represents absolute value. max represents the maximum value. When δ = 1, it indicates
that the two adjacent grids have continuity, otherwise there is none. When two grids do not have
continuity, the average method can solve the inserted grid in equation (10):

x′
i = int

[1
2 (xi + xi+1)

]
, y′

i = int
[1

2 (yi + yi+1)
]

(10)
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In equation (10), int represents the average interpolation method. At this point, p′
i an be expressed

as equation (11):
p′

i = x′
i + y′

i (11)

If the calculated number p′
i grid belongs to a free form grid, only the insertion needs to be filled in.

And a non free mesh using the nearest free light mesh will be inserted. If it cannot be implemented,
it is an infeasible path and the operator will be removed. This process is repeated until the individual
becomes a continuous and feasible path. If it is a discontinuous free mesh path that has not been
generated by the initial value, an operator can be inserted into the initial value to supplement it and
make it continuous [22]. On this basis, using existing knowledge and experience, it can be known
that individuals who complete initialization belong to feasible paths and do not need to apply penalty
functions [23, 24] . This method greatly reduces the computational complexity and overall execution
time of the algorithm. In the grid structure shown in Figure 3, its movement space can be represented
by a planar Cartesian coordinate system [25, 26]. For robots, path optimization and trajectory tracking
control problems can usually be described by multiple information containing n decision variables, as
shown in equation (12):

min F (x) = [f1(x), f2(x), . . . , fm(x)]T (12)

In equation (12), F (x) represents the final fused information. fm(x) represents decision information
for various variables. As a nonlinear system, robot should be linearized to achieve better trajectory
tracking. Equation (13) represents robot’s 2D motion space during this process:

V2 = {p(x, y) | x ∈ (0, width), y ∈ (0, height), x, y ∈ N} (13)

In equation (13), width and height represent the definition domain of coordinates. p(x, y) rep-
resents the coordinates. Where width represents the horizontal coordinate and height represents the
vertical coordinate. Robot’s motion state parameters can be represented by equation (14):

xk = f {xk−1, uk−1, wk−1} (14)

In equation (14), xk represents the center displacement of the robot chassis. uk represents the
rotational inertia of the robot. wk represents the measurement error during operation. The parameter
measurement equation for robot motion trajectory is:

E [MA] = E [VA] =
∞∑

i=0
i(1 − p)ip = (1 − p)/p (15)

In equation (15), M represents the obstacle blocking the main direction during the robot’s move-
ment. VA represents the measurement error generated. p represents the center of gravity of the robot.
The hybrid WOA-AGA aims at the adaptability of mobile robot path planning to complex environ-
ments. This algorithm first utilizes AGA for global path planning, and integrates WOA into each step
of the AGA operation process, selecting the optimal operator during this process. By implementing
this approach, the algorithm’s efficiency can be substantially enhanced and the issue of premature
convergence can be mitigated. This optimization technique is capable of considerably improving the
real-time performance of mobile robots’ motion trajectory in complicated settings, and can effectively
improve the quality of the motion trajectory. Afterwards, the experiment conducted simulation anal-
ysis on the proposed model. In this study, the performance of WOA-AGA model is evaluated from
the length of the final planning path of the model, the solution time, the fitness curve of the algorithm
itself and the change of the iteration curve.

4 Model validation and Results

4.1 Robot Path Simulation Analysis in Static Environment

Firstly, the effectiveness of AGA is verified. To better compare the feasibility and superiority of
AGA for robot path planning, AGA and traditional GA methods are compared in the experiment.
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This experiment uses the Ubuntu system and wireless network to control the mobile robot to complete
the route planning. This paper takes the two-wheel drive car as the research object. The system adopts
the control system such as obstacle avoidance radar and position and attitude sensor. The working
process of the cart: First, the computer side controls the development board of the cart through
wifi; Using the image data obtained by the camera and processing; Finally, the processed image is
transmitted to the computer via the wireless network in the car. In the experiment, the STM32 is
loaded on the trolley to realize the microcontroller of the mobile robot. A radar device is installed
on the car to avoid obstacles, and the actual distance between the obstacles and the cart judged by
the vision sensor is detected in real time. In addition, the three-axis sensing device can adjust the
vehicle’s position, speed and wheelbase in real time to achieve path planning goals to avoid collisions.
The experiment environment is the grid of 20 × 20, and it is carried out in MATLAB software.The
initial population size of GA algorithm is set to 100. The crossover probability is 0.8; The probability
of variation was 0.05. The maximum number of iterations is 100. In the simulation experiment, the
radius of the robot field of view is 1 cell; The speed is 1.5 cells per second; The safety threshold between
the robot and the obstacle is 0.1 cells. SPSS 22.0 statistical software was used for data processing, and
Mann-Whitney test was used for comparison between groups. Calibration level a = 0.05. If P < 0.05,
the difference was statistically significant, and if not, there was no difference. The final path planning
results of the traditional GA model and AGA algorithm are shown in Figure 5. The results in the
figure show that AGA moves more steps and turns more times than GA, which improves the accuracy
of robot path planning to a certain extent.
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Figure 5: Final Path Planning Results of GA Model and AGA Algorithm

Figure 6 shows the change comparison results of the fitness curve and iteration curve of the
two algorithms. As shown in Figure 6(a), the GA algorithm complete the iteration around the 70th
iteration, and the overall convergence rate is slow. AGA reaches a stable state in 18 iterations. Finally,
the fitness value of AGA is higher, and its stable state is better than that of GA algorithm. In Figure
6(b), the GA algorithm cannot quickly find the direction of the target point in the early stage of
the path optimization process, converging slowly. AGA accelerates convergence compared to the GA
algorithm, but it also needs to be optimized for path selection, just like the GA algorithm.

To further verify the superiority of the AGA algorithm, 15 simulation experiments are conducted
using both AGA and conventional GA models, and corresponding results are obtained in Table 1.
Data shows that the average path value of GA algorithm 15 times is 27.8768, and the average time is
18.5491. The average AGA path value is 27.6643, and the average time is 18.4374. The operational
efficiency of AGA has increased by 1.87% compared to GA. As a result, the AGA algorithm can achieve
good performance in a short period of time, and is superior to traditional GA algorithms in terms
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Table 1: Path length and time obtained from 15 GA and AGA simulations

Number of runs GA AGA P
Length Time consuming Length Time consuming Length Time consuming

1 27.7869 18.5213 27.7856 18.4568 0.000 0.025
2 27.8845 18.4569 27.7745 18.3322 0.002 0.000
3 28.4596 18.7845 28.3214 18.6654 0.025 0.000
4 27.4587 18.2697 27.1247 18.1023 0.000 0.001
5 28.8974 18.5679 28.1236 18.4896 0.000 0.004
6 28.4789 18.6548 28.4652 18.5541 0.001 0.003
7 27.4587 18.6729 27.3541 18.6423 0.000 0.000
8 28.0123 18.6547 27.1456 18.5147 0.003 0.000
9 27.1456 18.9841 27.0012 18.8451 0.000 0.000
10 28.4791 18.8845 28.4012 18.8715 0.012 0.007
11 28.2156 18.4129 28.0123 18.3329 0.014 0.001
12 27.1458 18.4625 27.0002 18.3145 0.000 0.019
13 27.1236 18.5647 27.0015 18.4167 0.000 0.000
14 27.1485 18.2312 27.1214 18.0212 0.000 0.000
15 28.4569 18.1133 28.3322 18.0013 0.011 0.000

of stability and accuracy. The difference between the two algorithms is significant (P < 0.05), which
verifies the effectiveness of introducing the difference degree function in the traditional GA algorithm.

To verify the feasibility and superiority of the WOA-AGA model in robot path planning, exper-
iments are conducted to compare it with the AGA algorithm. The path planning results are shown
below. It is not difficult to find from the figure that WOA-AGA combines the advantages of both
WOA and AGA algorithms, reducing the number of robot steps and improving the efficiency of robot
path planning. Thus, the validity of WOA-AGA model is verified.

Figure 8 shows the change comparison results of the fitness curve and iteration curve of the two
algorithms. In Figure 8(a), AGA completes the iteration around the 18th iteration, and the overall
convergence rate improves. However, AGA-WOA reaches a more stable state in the third iteration,
and its fitness value is higher. In Figure 8(b), the AGA-WOA algorithm can quickly find the direction
of the target point in the early stage of the path optimization process, with a fast convergence speed.

To further verify the superiority of the WOA AGA algorithm, 15 simulation experiments are
conducted using the WOA AGA and AGA models, and the corresponding results are obtained in Table
2. Data showes that the average AGA path value is 27.4300, and the average time is 18.2943. The
average WOA-AGA path value is 27.3342, and the average time is 17.3683. The operational efficiency
of WOA-AGA has increased by 3.87% compared to AGA. Therefore, the stability and accuracy of the
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(a) AGA Algorithm Path Simulation
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Figure 7: Path Planning Results of WOA-AGA and AGA Algorithms
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Figure 8: Change Results of fitness Curve and Iteration Curve of AGA and WOA-AGA

WOA-AGA algorithm are superior to the AGA algorithm, verifying its effectiveness. The difference
between the two algorithms is significant (P < 0.05), which further verifies the superiority of WOA-
AGA model over AGA model.

Table 2: Path length and time obtained from 15 simulations of WOA-AGA and AGA

Number of runs AGA WOA-AGA P
Length Time consuming Length Time consuming Length Time consuming

1 27.4123 18.3314 27.4101 17.5641 0.000 0.015
2 27.6547 18.3369 27.5163 17.6547 0.011 0.004
3 27.1234 18.2215 27.0025 17.2314 0.000 0.000
4 27.5689 18.2691 27.4411 17.3356 0.001 0.000
5 27.8745 18.3612 27.7796 17.5874 0.000 0.001
6 27.4789 18.3958 27.3326 17.1596 0.023 0.000
7 27.4587 18.2214 27.3369 17.2584 0.000 0.000
8 27.0125 18.2036 27.0001 17.3674 0.004 0.002
9 27.1546 18.2639 27.0458 17.5687 0.000 0.000
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Table 2 continued from previous page

Number of runs AGA WOA-AGA P
Length Time consuming Length Time consuming Length Time consuming

10 27.3698 18.3514 27.2945 17.4926 0.004 0.001
11 27.5686 18.2845 27.4316 17.4763 0.011 0.002
12 27.3345 18.3364 27.2211 17.2358 0.000 0.000
13 27.2269 18.3758 27.2023 17.1475 0.000 0.000
14 27.3365 18.2369 27.2211 17.1236 0.016 0.011
15 27.8745 18.2245 27.7769 17.3218 0.000 0.000

4.2 Robot Path Simulation Analysis in Dynamic Environment
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(c) WOA-AGA Algorithm Path Simulation
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(a) GA Algorithm Path Simulation
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Figure 9: Path Planning for Three Methods in a Dynamic Environment

To test AGA-WOA’s feasibility and superiority in path planning, an experimental comparison
is conducted between the AGA-WOA hybrid algorithm and GA and AGA algorithms. To verify the
superiority of AGA-WOA hybrid genetic algorithm under different paths, simulation verification will be
conducted on two completely different paths in a dynamic environment. The 20×20 grid environment
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space used in the simulation experiment contains two dynamic obstacles, A and B, represented by
yellow and blue identification lines. The paths planned by the three methods in a dynamic environment
are shown in Figure 9. Among them, the path length of GA algorithm is 31.2547. The path length
planned by AGA is 27.7856. The path length planned by WOA-AGA is 26.1236. As a result, the
path obtained by WOA-AGA has shorter distances and better planning results. In addition, the
GA algorithm completes its iteration in the 46th iteration. The AGA algorithm completes the 15th
iteration. The WOA-AGA algorithm completes iteration 5. The above results also demonstrates the
superior path planning performance of the WOA-AGA model.

Finally, the experiment selectes two more complex scenarios, namely “narrow valleys” and “mazes”,
for path planning. Experiments are conducted to compare and verify WOA-AGA with the currently
popular Improved Ant Colony Optimization (IACO) algorithm. Figure 10 shows the planning results
of four algorithms. In Figure 10(a), WOA-AGA requires approximately 33 iterations to find a feasible
path, and the obtained path is shorter than the other three algorithms. WOA-AGA is approximately
8 cells shorter than GA, 4 cells shorter than AGA, and 2 cells shorter than IACO. In Figure 10(b), for
a more complex “maze” map, even after 100 random population initialization, it is difficult for GA to
find an optimal and feasible path. In the “maze” map, on average, the feasible path of WOA-AGA
was about 18 cells shorter than GA, about 9 cells shorter than the path obtained by AGA, and about
5 cells shorter than IACO.
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Figure 10: Path Planning Results of Four Algorithms

5 Conclusions
In this study, a WOA-AGA model is proposed. The model introduces the difference degree function

and WOA algorithm to optimize the local optimal solution of GA algorithm, long convergence time
and unstable optimization results. The experiment is simulated under dynamic and static conditions.
Under static environment, the results show that the average path and average time of 15 simulation
experiments of GA algorithm are 27.8768 and 18.5491. The average path of AGA algorithm is 27.6643,
and the average time is 18.4374. The efficiency of AGA is increased by 1.87% compared with GA, which
verifies the effectiveness of AGA. AGA and WOA-AGA were simulated. AGA completes the iteration
around the 18th iteration, and AGA-WOA reaches a more stable state with higher fitness value in
the third iteration. The results of 15 simulation experiments of WOA-AGA show that the average
path of AGA is 27.4300 and the average time is 18.2943. The average path of WOA-AGA algorithm is
27.3342, and the average time is 17.3683. The operating efficiency of WOA-AGA is improved by 3.87%
compared with AGA, which verifies its effectiveness. Under dynamic environment, the experimental
results of the three algorithms show that the path length of GA algorithm is 31.2547; The path length
planned by AGA algorithm is 27.7856; The path length planned by WOA-AGA algorithm is 26.1236.
The simulation results of two complex scenarios show that the feasible path of WOA-AGA is about 18
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cells shorter than that of GA, 9 cells shorter than that of AGA, and 5 cells shorter than that of IACO.
Therefore, WOA-AGA has superior performance and good application prospect. The limitation of
this study is that path planning for more complex scenarios is not possible. In future research, the
concepts of grid point continuity, insertion operator, and penalty function can be considered to explain
the path planning of WOA-AGA mobile robot in more detail.
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