
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 18, Issue: 6, Month: December, Year: 2023
Article Number: 5505, https://doi.org/10.15837/ijccc.2023.6.5505

CCC Publications 

A Graph-Based PPO Approach in Multi-UAV Navigation for
Communication Coverage

Zhiling Jiang, Yining Chen, Ke Wang, Bowei Yang, Guanghua Song*

Zhiling Jiang
School of Aeronautics and Astronautics
Zhejiang University, China
Hangzhou 310027, China
zhilingjiang@zju.edu.cn

Yining Chen
School of Aeronautics and Astronautics
Zhejiang University, China
Hangzhou 310027, China
ch19930611@zju.edu.cn

Ke Wang
School of Aeronautics and Astronautics
Zhejiang University, China
Hangzhou 310027, China
kwang_0228@zju.edu.cn

Bowei Yang
School of Aeronautics and Astronautics
Zhejiang University, China
Hangzhou 310027, China
boweiy@zju.edu.cn

Guanghua Song*
School of Aeronautics and Astronautics
Zhejiang University, China
Hangzhou 310027, China
ghsong@zju.edu.cn

Abstract

Multi-Agent Reinforcement Learning (MARL) is widely used to solve various problems in real
life. In the multi-agent reinforcement learning tasks, there are multiple agents in the environment,
the existing Proximal Policy Optimization (PPO) algorithm can be applied to multi-agent rein-
forcement learning. However, it cannot deal with the communication problem between agents. In
order to resolve this issue, we propose a Graph-based PPO algorithm, this approach can solve the
communication problem between agents and it can enhance the exploration efficiency of agents
in the environment and speed up the learning process. We apply our algorithms to the task of
multi-UAV navigation for communication coverage to verify the functionality and performance of
our proposed algorithms.

Keywords: UAV Swarm Intelligence, Communication Coverage, Graph Learning, Multi-Agent
Reinforcement Learning.

1 Introduction
With the development of modern technology, various productive activities require the assistance of

the network. However, in certain unexpected situations, the infrastructure network systems may arise



https://doi.org/10.15837/ijccc.2023.6.5505 2

some problems, for instance, network congestion issues may occur in areas with excessive population
density during large event activities. Additionally, infrastructure failures caused by natural disasters
could result in regional communications paralysis. In these situations, providing a temporary and rapid
communication coverage service is a very important and real need. Unmanned aerial vehicles (UAVs),
a vehicle with strong maneuverability and agile deployment capabilities, have become an important
means to satisfy such needs [13] by carrying aerial devices to provide temporary communication
capabilities for ground targets. In the UAV communication coverage tasks, each UAV is loaded with
communication equipment [4]. An area of communication coverage is accomplished by a group of
UAVs going together. The UAVs need to cooperate with each other to fully utilize their coverage
capabilities and cover as many ground targets as possible [17]. If each aerial communication UAV
node is considered as an intelligent agent node, it becomes a problem of multi-agent cooperative
control [2][3], as shown in Figure 1.

Figure 1: The Task of Multi-UAV Navigation for Communication Coverage

This paper aims to use reinforcement learning methods [12] to address such problems, the multi-
agent algorithm can learn a good control scheduling strategy by interacting with the environment.
However, the traditional multi-agent reinforcement learning cannot deal with the challenges of drone-
to-drone communication, each agent can only perform its tasks lonely without the help of the com-
panions. In our work, we aim to combine the Graph Aggregator with the multi-agent reinforcement
learning algorithm PPO and enable the agents to communicate with each other. In this way, the in-
telligent agent can not only consider its own information but also the situation of neighboring agents.
A better cooperative relationship can be formed between agents and their neighbors by using com-
munication to exchange content in the observation with their neighbors. We combine the GCN graph
network proposed by Thomas Kipf [10] and the GAT graph network proposed by Shaked Brody [1]
with the PPO algorithm [19] proposed by John Schulman that is commonly used in modern industry
in a smart way to solve the multi-agent cooperative tasks. We compare our algorithm with the regular
algorithm to demonstrate the effectiveness and performance of our algorithm in solving the problem
of multi-UAV navigation for communication coverage.

The main contributions of this paper are as follows:
1) We propose a novel PPO algorithm which combines graph aggregator and PPO, named Graph-

based PPO, that can handle graph topology information, and we apply the GCN and GAT graph
aggregation modules to Graph-based PPO.

2) We use our method(Graph-based PPO) to solve the problem of multi-UAV navigation for
communication coverage.

3) We do a series of experiments to compare the performance of the Graph-based PPO algorithm
with the regular PPO algorithm in solving the problem of multi-UAV navigation for communication
coverage.

The remaining parts of this paper will be organized in the following order: Section 2 presents
an introduction to multi-agent reinforcement learning and provides an overview of policy-based re-



https://doi.org/10.15837/ijccc.2023.6.5505 3

inforcement learning algorithms related to experiments. Section 3 describes the task of multi-UAV
navigation for communication coverage, details the state space, action space of UAVs, and evaluation
indicators of mission performance. After that, we detail the description of Graph-based PPO algo-
rithm for multi-agent reinforcement learning. We validate the effectiveness of our proposed algorithm
through experiments in Section 4. Finally, we summarize our work and provide some future directions
in Section 5.

2 Background
Reinforcement learning has been widely used in solving intelligent transportation [7][21], UAV task

scheduling [16], power grid distribution and voltage regulation [22], and other fields. In reinforcement
learning, we hope to learn a strategy to solve our tasks. We can classify reinforcement learning
algorithms into two training methods, on-policy and off-policy [14]. The on-policy method means
the learning agent has the same network parameters as the agent interacting with the environment.
The off-policy method means the learning agent does not need to keep consistent with the interacting
agent. Some traditional algorithms, Q-learning [23] and DQN [11], are off-policy methods. However,
the on-policy method is more popular in the industry, because it allows for online learning without
loss of performance. Online learning allows the model to continuously interact with the environment
to adapt to changes in the environment, which is important in applications. PPO is an online learning
algorithm based on policy gradient, which has good convergence performance and high stability to
deal with high-dimensional state space and action space. PPO is a very powerful algorithm that has
a prominent and important place in the field of reinforcement learning. Our work is to use PPO as
the base model, enhancing and improving the performance of PPO.

2.1 MAPPO

As a policy gradient algorithm, PPO follows the general formula of policy gradient to update the
parameters of the network.

∇R̄θ = Eτ∼pθ(τ)[R(τ)∇ log pθ(τ)] (1)

The formula calculates the expectation of the sampled trajectory τ under the current policy πθ and
performs the parameter update of the network. After the update, the trajectory τ and the current
policy πθ are no longer aligned, and the formula is no longer applicable. Therefore, the policy needs
to be re-sampled to prepare for the next update. The subsequent sampled trajectory data can only
update the parameters once. This results in very low sampling efficiency. To improve efficiency,
PPO utilizes an important sampling technique to enhance the sample efficiency of policy gradient
updates. Important sampling technique utilizes the trajectories τ sampled from the old policy πθ′ to
update the current new policy πθ. By using a single trajectory data, the policy πθ is updated multiple
times, performing multiple gradient ascent steps. However, this approach typically introduces bias.
To address this issue, importance sampling introduces the concept of importance weights to adjust for
bias. PPO algorithm incorporates the important weight as a crucial weighting term in the network
parameter updates to correct the difference between the distributions of πθ′ and πθ. Therefore, the
updated equation for policy gradient becomes

∇R̄θ = Eτ∼pθ′(τ)

[
pθ(τ)
pθ′(τ)R(τ)∇ log pθ(τ)

]
(2)

In practice, we often can not collect the full trajectory τ . We calculate the relative advantage of
the current state by subtracting the baseline from the cumulative reward. Therefore, the advantage
function A (st, at) is used to replace the reward R(τ), as shown in Equation 3.

∇R̄θ = E(st,at)∼πθ′

[
pθ (st, at)
pθ′ (st, at)

Aθ
′
(st, at)∇ log pθ (an

t | sn
t )
]

(3)



https://doi.org/10.15837/ijccc.2023.6.5505 4

Then, using the gradient backpropagation formula ∇f(x) = f(x)∇ log f(x), the optimization function
for the parameters θ in the policy network is obtained, which is shown as Equation 4.

Jθ′(θ) = E(st,at)∼πθ′

[
pθ (at | st)
pθ′ (at | st)

Aθ′ (st, at)
]

(4)

The training progress is following Equation 4. To prevent excessive variation between the new policy
and the old policy during the update, PPO performs a clipping operation on the importance weight
term during parameter optimization. MAPPO is a reinforcement learning algorithm [26] based on PPO
and designed for multi-agent task systems. It also employs the Actor-Critic architecture [5], where the
Actor receives local states and the Critic network evaluates the quality of the Actor’s output actions.
The main difference compared to PPO is in the Critic component. Instead of using local states as
inputs, MAPPO utilizes a global state composed of the aggregated local state information from each
agent. The global state is used as input to predict the value of the current state. The Actor component
still uses local states as inputs. In scenarios with homogeneous agents, each agent shares the same set
of Actor network parameters.

2.2 Graph Aggregator

Graph Aggregator is a method to process the data of topology graph information. Graph aggre-
gator considers each agent in the environment as the information source node in the topology graph.
And then uses the topology graph connectivity feature between nodes to extract more valuable infor-
mation to help the policy network make decisions. The common graph networks include GCN [10],
GAT [1][20], GraphSAGE [6] and so on.

GCN generates an adjacency matrix and a degree matrix using the topology graph. In an envi-
ronment with N agents, the adjacency matrix is a directed graph matrix of shape N*N, the elements
0 and 1 are used in the matrix to describe whether there is a connection relationship between the
agents, 1 represents a connected relationship and 0 represents no relationship. The degree matrix is a
graph matrix of shape N*N, each element on the diagonal represents the degree of the current node.
h⃗ represent the feature vector of a node, the aggregate process of GCN can be shown in this equation

h⃗l+1 = σ
(
D−1/2AD−1/2h⃗lW l

)
(5)

h is the feature vector of a node, and W represents the weights of the network. In GCN, the distribution
of node weights is determined by the adjacency matrix and degree matrix.

GAT uses a different calculation method, GAT assigns weight to the edge weights between two
nodes by using the feature information between two nodes. The weight calculation can be expressed
by this equation below:

αij =
exp

(
LeakyReLU

(−→a T
[
Wh⃗i∥Wh⃗j

]))
∑

k∈Ni
exp

(
LeakyReLU

(−→a T
[
Wh⃗i∥Wh⃗k

])) (6)

where −→a and W are the parameters of the neural networks. After calculating the edge weights, the
following step is similar to the GCN.

Using the below equation to calculate the feature vector after aggregation.

h⃗l+1 = σ
(
αij h⃗lW l

)
(7)

Graph aggregation is widely used in game tasks [15], recommendation systems, social networks,
knowledge graphs [24], biomedical [25] and other fields. Applying graph aggregation to off-policy
learning has been studied by many previous researchers [8][18]. In this paper, we apply the graph
aggregation to on-policy learning to solve the UAVs scheduling problem. Graph aggregator is used to
aggregate the information in multi-UAV communication network and help PPO to handle the UAV
swarm topology relationships. In the following section, we detail the description of our algorithm
Graph-based PPO.



https://doi.org/10.15837/ijccc.2023.6.5505 5

3 Proposed Method
We proposed a PPO algorithm with a graph aggregation (Graph-based PPO), it can be used to

solve the task of multi-UAV navigation for communication coverage. In this section, we first discuss the
scenario of multi-UAV navigation and the task for communication coverage, and then we introduce
the design of the Graph-based PPO algorithm. The design of the Graph-based PPO algorithm is
divided into three parts. The first part presents the overall structure of the algorithm for multi-agent
control. The second part describes the graph aggregation employed in the algorithm. The third part
explains the design and significance of the Actor and Critic components.

3.1 Problem Statement

3.1.1 Multi-UAV Navigation Scenario

We use a scenario of multi-UAV navigation for communication coverage, as shown in Figure 1.
A group of UAVs need to cover targets on the ground as extensively as possible in order to provide
the communication services. We consider each target as a Point of Interest(PoI). The world is a 2D
map, we randomly generate 120 PoI in the map and our UAVs are required to cover these PoI as
much as possible. Each UAV has a coverage range, and only the PoI within this range can receive
communication services from the UAVs. At the same time, each UAV has an observation range
that allows them to detect the PoI on the ground. Additionally, UAVs have limited communication
capabilities among themselves, which allows them to communicate and exchange observations with
neighbor UAVs for better cooperation.

3.1.2 Observation Space and Action Space

Each UAV has its own observation space and action space. The contents in the observation space
are used as inputs to the policy network for making UAV flight action decisions. The observation
space consists of several components, including the UAV’s identifier, binary encoding of its x-axis
position and y-axis position, velocity in the positive x-axis direction and y-axis direction. The UAV
perceives the content in its field of view, which includes the positions of PoI within the observation
range and neighboring UAVs in the neighborhood. These elements are concatenated to generate the
observation space used for action decision-making. At each time step, in addition to outputting an
observation status for each UAV, the scenario also outputs an adjacency matrix. The adjacency
matrix is an N*N matrix that records the communication connectivity between the n UAVs. Each
UAV has a communication range, allowing UAVs within this range to establish communication and
exchange information. The corresponding positions in the adjacency matrix are set to 1 to indicate
the connectivity between UAVs. Each UAV has 17 action options, corresponding to acceleration
in different directions. This includes acceleration options for east, west, south, north, southeast,
northeast, southwest, and northwest directions. Each direction has two acceleration options, and
there is also an option for not accelerating.

3.1.3 Evaluation Metrics

The quality of UAVs’ performance is decided by the coverage of Points of Interest (PoI) on the
ground and the energy consumption of the UAVs. The coverage performance of UAVs is determined
by both individual rewards and group rewards. The individual coverage reward is determined by
the number of PoIs that the UAV covers independently. When a UAV does not cover any PoI,
individual_reward = −1, and in other cases individual_reward = n, n is the number of PoI. The
group reward is determined by the average number of PoIs covered by the remaining UAVs in the
group, excluding the number of PoIs independently covered by the current UAV, group_reward =
0.1 ∗ (group_covered − individual_covered). The individual reward and group reward are summed
together to evaluate the final performance, reward = individual_reward + group_reward. The
reward is utilized to optimize the policy network of the UAVs. To better evaluate the performance
of UAVs, we also take into account the energy consumption of the UAVs’ batteries, The reward is



https://doi.org/10.15837/ijccc.2023.6.5505 6

inversely proportional to the rate of energy consumption, the faster the battery is depleted, the worse
the performance of the strategy, reward = reward/energy_consumption.

3.2 Graph-based PPO

3.2.1 Structure

We are dealing with a cooperative control problem involving multiple UAVs, where the actions of
each UAV can influence the decisions of other UAVs. The environment is uncertain and the randomness
makes the training more challenging. Since each UAV has the same objective which is to cover PoI
as extensively as possible, we use a centralized training distributed execution (CTDE) reinforcement
learning [8].

During the training process, the reinforcement learning architecture receives global observation
information from N agents in the environment. The critic network takes input from the observations
of these N agents and outputs a value estimation of the current state, which helps to optimize the
network parameters of the Actor. During the training process, the critic and actor networks work
together. The actor network only receives the local state of the agent for decision-making, and the
critic network receives global states from N agents to provide a more accurate assessment of the current
state and offer better guidance to the Actor network. This training process is a centralized training
and it receives information from all agents.

After training is completed, the critic network is no longer used during execution. In the execution
phase, only the actor network is utilized, and it allows the agent to make decisions based on the
UAV’s own observation. This is a distributed execution process where the decision-making process
does not interfere with each other. Since all UAVs share the same task and have identical observation
and action spaces, multiple agents can utilize a single actor network and share the parameters of the
network in the training process. During execution, the actor network is distributed to each UAV. This
approach provides the structure with great flexibility and enables it to adapt to scenarios with varying
numbers of UAVs. This structure depicts in Figure 2

Figure 2: The Framework of Our Graph-based PPO

3.2.2 Graph Module

In our scenario, the UAV has the ability to communicate with its companions, and the graph mod-
ule can make full use of the information of the neighbor companions to help the action decision-making.
The graph module can address the neighbor topology by extracting features from the UAVs’ obser-
vation information and utilizing graph topology to aggregate neighboring information for decision-
making.



https://doi.org/10.15837/ijccc.2023.6.5505 7

Figure 3: The Process of Neighbor Information Aggregate

The graph module receives two inputs, as shown in Figure 3: the observation information of
the UAVs and the topology graph representing the neighbor relationships between the UAVs. The
module first encodes the observation information of the UAVs to reduce the dimensionality of the
data and extract features denoted as h⃗. Then, the module selectively aggregates information from
neighboring UAVs based on the topology graph representing the relationships between the UAVs in
the group. During the aggregation process, the module can also consider the similarity between the
feature vectors of the own node and its neighboring nodes. After the aggregation is complete, a new
feature vector h⃗

′ is outputted, which includes both the own node’s content and the information from
the neighbors. This feature vector serves as the new node representation for decision-making.

3.2.3 Graph Fusion

Figure 4: Combined Actor Branch with Graph Aggregator

We integrate the graph into the PPO algorithm, which consists of both Actor and Critic neural
networks working together to accomplish the task. The critic network directly receives the global
observation information of the UAVs, so there is no need for aggregation. The actor network in our
Graph-based PPO fully utilizes the observation data of neighbor agents and the connectivity in the
topology graph between UAVs. The actor network takes the graph G representing the relationship of
UAVs as input, and then it outputs a probability distribution over a set of 17 actions. The sampler
randomly selects an action from these 17 actions based on their respective probabilities for the UAV
to execute, as shown in Figure 4.

The loss for the Actor network is calculated as follows:

Lossactor(θ) = Eτ

[
min

(
pθ (at | st)
pθ′ (at | st)

Aθ
′
(st, at) , clip

(
pθ (at | st)
pθ′ (at | st)

, 1− ε, 1 + ε

)
Aθ

′
(st, at)

)]
(8)

Where
A (st, at) = −V alue (st, at) + Return (st) (9)



https://doi.org/10.15837/ijccc.2023.6.5505 8

Return (st) =
∞∑

si=st

reward(si) (10)

V alue(st, at) = Critic(st, at) (11)

The loss for the Critic network is calculated as follows:

Losscritic(θ) = Eτ

[
(−Critic (st, at) + Return (st))2

]
(12)

Algorithm 1 describes the process of the Graph-based PPO :

Algorithm 1 Graph-Based PPO
1: Initialize weights for aggregator, actor and critic networks
2: for episode epi = 1 to T do
3: For each agent i, set an empty trajectory τ = []
4: Reset the environment and initialize the observation obs for each agent i
5: for time steps t = 1 to episode length do
6: for agent i = 1 to N do
7: hi ← AGGREGATOR(obs, adj)
8: Select action actioni in hidden state hi via ACTOR πi(actioni | hi)
9: Execute agent’s action actioni to the environment

10: end for
11: Collect the action, reward, observation, and relationships between agents
12: Push the experience into trajectory τ+ = [action, reward, obs′, adj]
13: obs = obs′

14: end for
15: Computes advantage and return using trajectory τ
16: for update epoch epoch = 1 to update times do
17: Update weights for actor network
18: Update weights for aggregator network
19: Update weights for critic network
20: end for
21: end for

4 Experiment
In this section, we present the design details of the experiment. We will introduce the experimental

environment platform for the multi-UAV navigation for communication coverage. Finally, we present
the usability and performance of graph-based PPO in the UAV tasks, explain the training process of
the experiment and analyze the results of the experiment.

4.1 Experimental Settings

We deploy our model on a Ubuntu 18.04.5 server with 1 NVIDIA GeForce GTX 1080 Ti GPU and
1 Intel i7-7700K CPU @ 4.20GHz CPU and conduct experiments, the agents implement in Python
3.7.10, Pytorch 1.12.1, CUDA 11.4.

In the experiment, we use the proposed Graph-based PPO as the decision-making agent for UAVs
executing tasks. In the scenario of UAV navigation for communication coverage, the UAVs are required
to cover PoIs on the ground as extensively as possible. UAVs can establish communication and
exchange information with each other. We consider the communication relationships between UAVs as
a graph. Graph-based PPO can utilize not only the feature vector of the agent but also the topological
information of the graph representing the relationships between UAVs to help make decisions. We
explore various graph aggregation techniques to process the graph information and compare their
effects on the performance of PPO in our multi-UAV navigation missions.



https://doi.org/10.15837/ijccc.2023.6.5505 9

4.2 Simulation Scenarios

In this section, we present the design details of the UAV scenario. There are 20 UAVs in the map
and each UAV has a coverage range of 10 units, an observation range of 13 units and a communication
range of 18 units between UAVs. The map is a rectangular area of 200*200 units. In each episode, the
scenario randomly generates 20 UAVs and 120 PoIs at different positions. The goal of the 20 UAVs is
to utilize their coverage range to cover as many PoIs as possible. Each episode consists of 100-time
steps. We use 10 as the random seed to generate various random numbers in the training process. At
the beginning of each episode, we randomly generate different scenario maps.

4.3 Experience Results and Discussion

We verify the performance of Graph-based PPO algorithm proposed above, test its effectiveness
in controlling UAVs on the task of multi-UAV navigation for communication coverage. In the ex-
periments, we use different graph aggregation methods and use the PPO algorithm without graph
aggregation as the baseline. The performance of the algorithms is evaluated by examining their
control over the UAV swarm. The evaluation indexes include the convergence of the reward curve,
the coverage of PoIs, the energy consumption of the UAV swarm and a comprehensive metric that
combines the PoI coverage and energy efficiency.

Figure 5: Episodic Reward Curves Figure 6: Coverage Index Curves

By analyzing the reward curve in Figure 5, we can find that the graph-based PPO has better con-
vergence performance. After 1000 episodes of training, the final convergence results of the Graph-based
PPO with GCN and GAT are generally consistent. But the regular PPO without graph aggregation
does not achieve such good results. In terms of convergence speed, Graph-based PPO with GCN
performs the best. The graph-based PPO with GAT has a lower convergence speed than regular PPO
in the first 2000 episodes, but it has a better performance after 2000 episodes and gets a score that is
equally good as GCN finally.

The coverage index in Figure 6 is used to evaluate the coverage ratio of PoIs on the ground by
the UAV swarm. When all PoIs are covered, the index is 1. And it is 0 when nothing is covered.
During the experiments, we find that the PPO is very weak at the beginning of the training. The
coverage index is only 0.2. After 100 episodes, the coverage index achieves 0.3 and they achieve a score
of 0.4 after 200 episodes. In the first 200 episodes, all algorithms showed significant improvements
in performance. However, after 500 episodes, all algorithms reached a similar level of improvement,
entering a phase of slow growth. The graph-based PPO with GCN consistently maintains a lead, but
the difference with regular PPO is not significant, while the graph-based PPO with GAT lags behind
relatively. After 2000 episodes, the graph-based PPO with GAT starts to surpass regular PPO, and by
the time 6000 episodes are reached, the graph-based PPO with GAT and the graph-based PPO with
GCN have maintained a comparable level of performance. However, the regular PPO performs poorly.
Although it can achieve good performance relatively quickly, it exhibits poor stability in convergence
after 2000 episodes.



https://doi.org/10.15837/ijccc.2023.6.5505 10

Figure 7: Energy Consumption Index Curves Figure 8: Policy Loss Curves

The energy consumption index shown in Figure 7 is a metric used to measure the energy con-
sumption of UAV flight. The index is 1 when UAVs are flying at full speed and 0.5 when the UAVs
are hovering. it calculates the average consumption in 100 steps. We can observe that as the training
progresses, the algorithm continuously searches for a more energy-efficient flight mode and the index is
continuously decreasing. In the first 500 episodes, the algorithm focuses on finding a cooperative strat-
egy that improves PoI coverage while considering energy consumption during flight. After training
for 500 episodes, the efficiency of PoI coverage reaches a stable value. The algorithm then primarily
optimizes the energy consumption during UAV flight. As the training progresses, three algorithms
have found more optimal flight strategies that save energy, Overall, the Graph-based PPO algorithms
have better performance than the regular PPO.

The policy loss curve reflects the effort of optimization of a policy. As shown in Figure 8, we can
observe that in the first 2000 episodes, there is significant optimization of the policy network. After
2000 episodes, each training iteration only performs slight adjustments to the network, resulting in
the loss value approaching 0. The policy network reaches a stable state.

Figure 9: Indivudual Covered PoI per Episode Figure 10: Group Covered PoI per Episode

Individual covered PoI refers to the average number of PoIs covered independently by each UAV
in the map. As the training progresses, the UAVs can hardly cover the PoIs at the beginning. But
eventually, each UAV is able to independently cover 2 PoIs. The training converges after 1000 episodes.

Group covered index refers to the average number of PoIs covered by the UAV group in the map.
Several communication-linked UAVs form a UAV group. When the training reaches 1000 episodes, the
group coverage reaches its peak, with an average of 10 PoIs covered per UAV. This index is heavily
influenced by the map of the distribution of PoIs in the scenario, but it generally reaches a coverage
level of 7 or more PoIs.

After analyzing the performance of the algorithm, let’s now examine the generalization capability
of the trained models. We will investigate how the performance of the models is affected when the



https://doi.org/10.15837/ijccc.2023.6.5505 11

number of UAVs varies in the scenario, as shown in Figures 11, 12, 13 and 14. We will vary the size
of the UAV swarm, setting different scenarios with 5, 10, 15, 20, 25, and 30 UAVs. We conducted 100
random experiments for each scenario and calculated the average values for analysis.

Figure 11: Coverage Index in the environment
with different numbers of UAV

Figure 12: Energy Index in the environment
with different numbers of UAV

Figure 13: Individual covered index in the en-
vironment with different numbers of UAV

Figure 14: Group Covered index in the envi-
ronment with different numbers of UAV

Through our experiments, we have discovered that the trained policies can be scaled to different
sizes of UAV scenarios in our framework, demonstrating the effectiveness of our algorithm in different
UAV cooperative tasks. We find that the performance of Graph-based PPO is better than regular
PPO. In terms of the covered index, Graph-based PPO performs better than regular PPO, with a more
significant performance improvement as the number of UAVs increases. Regarding the energy index,
we observed that Graph-based PPO has lower energy consumption. In terms of the individual covered
index, the Graph-based PPO outperforms the regular PPO. This index decreases with an increasing
number of UAVs because they are more likely to collaborate as the number of UAVs increases. This
trend is also reflected in Figure 14, where a higher number of UAVs leads to a greater number of PoI
covered by group collaboration.

5 Conclusions and Future Work
In this paper, we designed a novel PPO algorithm, Graph-based PPO. Graph-based PPO can

address the problem of multi-node information communication and decision-making. With the help of
the graph topological matrix, we can enhance the learning of reinforcement learning decision-making
policies. Additionally, Graph-based PPO can address the communication issues among multiple agents
that regular PPO struggles to solve. We conducted experiments on the performance of the algorithm
in the scenario of multi-UAV navigation for communication coverage and compare the performance



https://doi.org/10.15837/ijccc.2023.6.5505 12

difference between Graph-based PPO and regular PPO. We experimented with different modes of
graph aggregation in the Graph-based PPO, GAT and GCN. The experimental results show that
although both Graph-based PPO and regular PPO can solve the problem. But with the limited
training episodes, Graph-based PPO can achieve better performance. Moreover, the convergence
stability and convergence speed have been improved to a certain extent. In the future, we would
develop heterogeneous [9] Graph-based PPO to control different types of UAVs.

Funding

This work was supported by the National Natural Science Foundation of China under Grant No.
62236007.

Author contributions

The authors contributed equally to this work.

Conflict of interest

The authors declare no conflict of interest.

References
[1] Brody, Shaked.; Alon, Uri.; Yahav, Eran. (2021). How attentive are graph attention networks?,

arXiv preprint arXiv:2105.14491, 2021.

[2] Canese, Lorenzo.; Cardarilli, Gian Carlo.; Di Nunzio, Luca.; Fazzolari, Rocco.; Giardino, Daniele.;
Re, Marco.; Spanò, Sergio. (2021). Multi-agent reinforcement learning: A review of challenges
and applications, Applied Sciences, 11(11), 4948, 2021.

[3] Gronauer, Sven.; Diepold, Klaus. (2022). Multi-agent deep reinforcement learning: a survey,
Artificial Intelligence Review, 1–49, 2022.

[4] Gupta, Lav.; Jain, Raj.; Vaszkun, Gabor. (2015). Survey of important issues in UAV communi-
cation networks, IEEE communications surveys & tutorials, 18(2), 2015.

[5] Haarnoja, Tuomas.; Zhou, Aurick.; Abbeel, Pieter.; Levine, Sergey. (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor, International
conference on machine learning, 1861–1870, 2018.

[6] Hamilton, Will.; Ying, Zhitao.; Leskovec, Jure. (2017). Inductive representation learning on large
graphs, Advances in neural information processing systems, 30, 2017.

[7] Hart, Patrick.; Knoll, Alois. (2020). Graph neural networks and reinforcement learning for be-
havior generation in semantic environments, 2020 IEEE Intelligent Vehicles Symposium (IV),
1589–1594, 2020.

[8] Jiang, Jiechuan.; Dun, Chen.; Huang, Tiejun.; Lu, Zongqing. (2018). Graph convolutional rein-
forcement learning, arXiv preprint arXiv:1810.09202, 2018.

[9] Jiang, Zhiling.; Chen, Yining.; Song, Guanghua.; Yang, Bowei.; Jiang, Xiaohong. (2023). Co-
operative planning of multi-UAV logistics delivery by multi-graph reinforcement learning, Inter-
national Conference on Computer Application and Information Security (ICCAIS 2022), 12609,
129–137, 2023.

[10] Kipf, Thomas N.; Welling, Max. (2016). Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907, 2016.



https://doi.org/10.15837/ijccc.2023.6.5505 13

[11] Mnih, Volodymyr.; Kavukcuoglu, Koray.; Silver, David.; Graves, Alex.; Antonoglou, Ioannis.;
Wierstra, Daan.; Riedmiller, Martin. (2013). Playing atari with deep reinforcement learning,
arXiv preprint arXiv:1312.5602, 2013.

[12] Mnih, Volodymyr.; Kavukcuoglu, Koray.; Silver, David.; Rusu, Andrei A.; Veness, Joel.; Belle-
mare, Marc G.; Graves, Alex.; Riedmiller, Martin.; Fidjeland, Andreas K.; Ostrovski, Georg.
(2015). Human-level control through deep reinforcement learning, nature, 518(7540), 529–533,
2015.

[13] Moradi, Mehrdad.; Sundaresan, Karthikeyan.; Chai, Eugene.; Rangarajan, Sampath.; Mao, Z
Morley. (2018). SkyCore: Moving core to the edge for untethered and reliable UAV-based LTE
networks, Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking, 35–49, 2018.

[14] Oroojlooy, Afshin.; Hajinezhad, Davood. (2022). A review of cooperative multi-agent deep rein-
forcement learning, Applied Intelligence, 1–46, 2022.

[15] Pan, Wei.; Liu, Cheng. (2023). A Graph-Based Soft Actor Critic Approach in Multi-Agent Rein-
forcement Learning, INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS
& CONTROL, 18(1), 2023.

[16] Ren, Yixiang.; Ye, Zhenhui.; Song, Guanghua.; Jiang, Xiaohong. (2022). Space-Air-Ground In-
tegrated Mobile Crowdsensing for Partially Observable Data Collection by Multi-Scale Convolu-
tional Graph Reinforcement Learning, Entropy, 24(5), 638, 2022.

[17] Ruan, Lang.; Wang, Jinlong.; Chen, Jin.; Xu, Yitao.; Yang, Yang.; Jiang, Han.; Zhang, Yuli.;
Xu, Yuhua. (2018). Energy-efficient multi-UAV coverage deployment in UAV networks: A game-
theoretic framework, China Communications, 15(10), 194–209, 2018.

[18] Ryu, Heechang.; Shin, Hayong.; Park, Jinkyoo. (2020). Multi-agent actor-critic with hierarchical
graph attention network, Proceedings of the AAAI Conference on Artificial Intelligence, 34(05),
7236–7243, 2020.

[19] Schulman, John.; Wolski, Filip.; Dhariwal, Prafulla.; Radford, Alec.; Klimov, Oleg. (2017). Prox-
imal policy optimization algorithms, arXiv preprint arXiv:1707.06347, 2017.

[20] Veličković, Petar.; Cucurull, Guillem.; Casanova, Arantxa.; Romero, Adriana.; Lio, Pietro.; Ben-
gio, Yoshua. (2017). Graph attention networks, arXiv preprint arXiv:1710.10903, 2017.

[21] Wang, Enshu.; Liu, Bingyi.; Lin, Songrong.; Shen, Feng.; Bao, Tianyu.; Zhang, Jun.; Wang, Jian-
ping.; Sadek, Adel W.; Qiao, Chunming. (2023). Double graph attention actor-critic framework
for urban bus-pooling system, IEEE Transactions on Intelligent Transportation Systems, 2023.

[22] Wang, Yi.; Qiu, Dawei.; Wang, Yu.; Sun, Mingyang.; Strbac, Goran. (2023). Graph Learning-
Based Voltage Regulation in Distribution Networks with Multi-Microgrids, IEEE Transactions
on Power Systems, 2023.

[23] Watkins, Christopher JCH.; Dayan, Peter. (1992). Q-learning, Machine learning, 8, 279–292,
1992.

[24] Xu, Xiaohan.; Zhang, Peng.; He, Yongquan.; Chao, Chengpeng.; Yan, Chaoyang. (2022). Sub-
graph neighboring relations infomax for inductive link prediction on knowledge graphs, arXiv
preprint arXiv:2208.00850, 2022.

[25] You, Jiaxuan.; Liu, Bowen.; Ying, Zhitao.; Pande, Vijay.; Leskovec, Jure. (2018). Graph convolu-
tional policy network for goal-directed molecular graph generation, Advances in neural informa-
tion processing systems, 31, 2018.



https://doi.org/10.15837/ijccc.2023.6.5505 14

Copyright ©2023 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

[26] Yu, Chao.; Velu, Akash.; Vinitsky, Eugene.; Gao, Jiaxuan.; Wang, Yu.; Bayen, Alexandre.; Wu,
Yi. (2022). The surprising effectiveness of ppo in cooperative multi-agent games, Advances in
Neural Information Processing Systems, 35, 24611–24624, 2022.

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Jiang, Z.; Chen, Y.; Wang, K.; Yang, B.; Song, G. (2023). A Graph-Based PPO Approach in Multi-
UAV Navigation for Communication Coverage, International Journal of Computers Communications
& Control, 18(6), 5505, 2023.

https://doi.org/10.15837/ijccc.2023.6.5505


	Introduction
	Background
	MAPPO
	Graph Aggregator

	Proposed Method
	Problem Statement
	Multi-UAV Navigation Scenario
	Observation Space and Action Space 
	Evaluation Metrics 

	Graph-based PPO
	Structure
	Graph Module
	Graph Fusion


	Experiment
	Experimental Settings
	Simulation Scenarios
	Experience Results and Discussion

	Conclusions and Future Work

