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Abstract

Nowadays, the quality of air in the environment has been impacted by the industry. It is
important to make sure our ambient air especially in an indoor environment is clean from con-
taminating particles or harmful gases. Therefore, the air quality inside the indoor environment
should be monitored regularly. One of the major problems, when a particular environment has
been contaminated by harmful gases, is finding the source of the emission. If the indoor environ-
ment has been contaminated by a harmful source it should be instantly localized and eliminated
to prevent severe casualties. In this paper, we propose the utilization of synthetic data generated
by the Computational Fluid Dynamic (CFD) approach to train the Deep Neural Network (DNN)
model called CFD-DNN to perform gas source localization in an indoor environment. The model is
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capable to locate the contaminated source within a small area of an indoor environment. A total of
361 datasets with different locations of contaminated source release have been obtained using the
CFED approach. The obtained dataset was divided into training and testing datasets. The training
dataset was used for the model training process while the testing dataset is fed into the model to
test model reliability to predict the gas source location. The Euclidian distance equation was used
to measure the distance error between the actual and predicted location of the source. The result
shows that the model is capable to locate the gas source within a minimum and maximum error of
0.03m to 0.46m respectively.

Keywords: gas source localization, deep neural network, computational fluid dynamic, harmful
gases, deep learning.

1 Introduction

Gas source localization (GSL) commonly is known to be a task to locate a harmful gas location
in a particular contaminated area [1]. Researchers in the harmful gas field have developed various
algorithms to find the gas source location. The motivation is due to there being many cases related
to the harmful gas accidents reported lately. For example, in 2016, an incident of harmful gas leakage
occurred at a fertilizer company in the port city of Chittagong, Bangladesh. No deaths were reported
but 250 people had fallen ill due to toxic ammonia inhalation [2]. There is much more gas leakage
incident reported by the media lately. In Bangladesh, from the report data, the accident of gas
leakage jumped from 3,447 in 2016 to 4,428 in 2019 [3]. It is important to find the gas source leakage
as soon as possible to prevent more severe damage. The rescuers and the firefighters need to enter
the contaminated area to find the source of harmful gas release by using complete personal protective
equipment (PPE). This conventional method is too dangerous and risks their lives if there is an
explosion of gas, inhalation, or exposure to a high level of harmful gasses. Some of the areas are likely
to release harmful gasses such as landfill sites [4], mines [5], and factories [6]. Normally, stationary
gas sensors are used inside the factory to monitor the leakage of the gas but they are not for gas
localization purposes.

There are two methods to perform the GSL which are by utilizing the mobile robot technology
that is equipped with a gas sensor [7] or the conventional method that uses the stationary gas sensor
[8]. Both of these methods have their pros and cons. The advantage of using the mobile robot to
perform the GSL is the robot is easier to deploy and being able to enter the contaminated area that
cannot be reached by human beings. It is also able to do repetitive tasks without getting exhausted.
However, by considering the condition of the real environment the gas concentration distribution tends
to be patchy, intermittent, and time-variant [9]. This led to the misinterpretation of data collected by
the robot to locate the gas source. Otherwise, the stationary gas sensor is able to collect particular
gas concentration information in a particular area. The advantage is that it is able to provide richer
information about the harmful gasses in a particular environment and is able to collect important
data regularly. However, the disadvantage of a stationary sensor is it will consume a lot of time to be
installed and is not flexible, it is only able to monitor a certain "target" area.

The utilization of robots to find the gas source is known to be a mobile robot olfaction (MRO) [10].
Researchers in the MRO field have tried many approaches to make a robot able to find the gas source
location. This includes mimicking the animals’ behavior to find their mates and food. This is known
to be a bio-inspired approach since it is inspired by the behavior of living organisms such as silkworms,
lobsters, and beetle. The study of this approach was started by [11]. This approach is divided into two
categories which are anemotaxis and chemotaxis. The chemotaxis strategy is based on the detection
of concentration differences between two different positions or two chemical sensors. In simple words,
the concentration of the gas will drive the robot mechanism toward the gas sources [12]. Anemotaxis
instead refers to a mechanism in which the movement of an organism (or mobile robot) is determined
by the perceived airflow [13]. Follow-up wind direction can be a theoretical approach that brings the
mobile robot toward the gas sources which are motivated by the moth’s plume tracking capability.
Both of these approach categories are able to work fine in the indoor environment that has a consistent
gas distribution instead of the outdoor environment since the strong movement of wind causes the
gas concentration to fluctuate and is not consistent. Because of this problem the researcher tried to
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explore another approach that treats the gas concentration as the probabilistic way to find the gas
source location.

The probabilistic approach in MRO was proposed by [14]. They proposed a method called the
infotaxis approach which is also known to be a Bayes inference method. This method treats the gas
measurement as a probabilistic distribution. The robot will maneuver toward the gas area based on
the minimum entropy criterion such that it either stays at the same location or moves to another
neighborhood. It has a similarity with the nature of stationary sensors which try to predict the gas
distribution in the environment but the difference is the gas sensor is dynamic and is carried by the
mobile robot. Then, in the probabilistic approach, there is another method called the gas distribution
map (GDM). It is a process of creating a representation of how gas disperses in the environment
from a set of temporally and spatially distributed measurements of relevant gas data [15], [16]. The
advantage of using GDM is that the robot is able to achieve measurement not only in a particular
area but also in other areas and still be able to provide the source of the gas. Usually, the location
of the single or multiple gas sources in the GDM was predicted by global minimum or local minima
respectively.

In order to accurately represent air transport and dispersion in extremely complex systems, Com-
putational Fluid Dynamic (CFD) methodologies are now used. The utilization of CFD to solve the
governing set of equations numerically to perform the dispersion of harmful gas simulation has be-
come more and more popular in the MRO field. The reason is that in many realistic conditions
gas is dispersed by turbulent advection. The turbulent flow causes the gas plume to follow chaotic
trajectories. It will result in fluctuating, intermittent patches of the gas concentration.[17] has used
the CFD method to predict the indoor contaminant plume for testing three-dimensional (3D) and
two-dimensional (2D) plume search algorithms. The study reported that the 3D search algorithm
obtains better results compared to the 2D search algorithm. There is also another researcher who
utilizes the CFD to generate airflow and gas concentration and then imports it to other software such
as GADEN to simulate the olfaction mobile robot algorithm [18]. In this work, the gas concentration
synthetic data will be generated by the CFD simulation to provide the data for the model’s training
datasets. It will support the gas localization assessment without the use of MRO. Instead, we used
the Deep Neural Network (DNN) algorithm to model and predict the location of gas source release
inside a small empty room. There are several studies that have focused on the utilization of artificial
intelligence for gas localization assessment which are using machine learning such as Support vector
machines (SVMs) [19] and kernel ridge regression [20]. Then, the recurrent Neural Network (RNN)
with Long Short-Term Memory (LSTM-RNN) and Feedforward Neural Network (FNN) model used in
training for the identification of the leak source location has been studied by [21]. 460 scenarios have
been generated by using CFD simulation and fed into two neural network models. They find that,
after comparing the accuracy of both models for the location assessment of leak spots, LSTM-RNN ac-
curacy is around 20% higher compared to the FNN model. Besides, the combination of Convolutional
Neural Network (CNN) and Long-short term memory (LSTM) also has been performed to estimate the
location of gas in an outdoor environment [22]. The study used an array of the gas sensor in the real
environment to generate the sequential dataset to train the model and they found that artificial neural
network (ANN) is a promising prospect for the GSL tasks. In [23] they tried to predict the plastic
burning location by using an ANN model that includes 16 inputs,4 hidden, and 12 output neurons.
They generated the data such as burning location, wind speeds, and wind direction using the CFD
simulation and then trained the ANN model. They claim that the trained model is able to achieve
up to 85.71% validity with an average error of 3.86%. There is a study that focuses on the utilization
of DNN for localizing gas sources based on the Gas Distribution Map (GDM)[24]. They collected the
dataset through four different GDM samples and performed the augmentation process to increase the
number of datasets from the original GDM samples. Then, the dataset was fed into the DNN model
which has four hidden layers. The study found that the DNN model was able to predict the gas source
with a maximum distance error of 1.15m. However, the study does not focus to optimize the DNN
model hyperparameter to get the best model. This paper will focus on the synthetic dataset of gas
dispersion using the CFD method without being required to perform the data augmentation process
to increase the number of datasets. Then the dataset fed into the DNN model and the configuration
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of different model hyperparameters will be tested to find the best model performance.

The remaining sections of this paper are arranged as follows: Section 2 introduces the method for
the development of the synthetic datasets using CFD in order to perform the model training process as
well as the approach to develop the DNN algorithm model to predict the gas source location. Section
3 will cover the discussion about the result of the training process as well as the performance of the
generated DNN model. Then, plans for future research and a summary of the analysis are included
in the final section.

2 Methodology

This section will explain the experimental setup to perform the harmful gas emission in an indoor
environment using the simulation method. The setting of the model boundary condition, the location
of the gas source, size of the indoor environment will be explained in this section. This section also
will illustrate the method of the DNN model development to train and test the synthetic dataset from
the simulation.

2.1 Simulation model for data collection

The study is performed by using the computational geometry modelled based on the small size
of an office room. The ANSYS/Workbench 2020 R2 was used to perform the ANSYS/Fluid Flow
(CFX) analysis to simulate the harmful gas dispersion inside the room. ANSYS/CFX is known to
be a high-performance computational fluid dynamic (CFD) software recognized for its robustness,
high computation accuracy, and speed for gas analysis. In CFD, the basic equations that govern the
conservation of mass, momentum, and energy balance are solved numerically for a given initial, flow
domain, and boundary conditions. The flow of a Newtonian fluid is governed by the continuity and
the momentum conservation equations for total energy flow, described by equation (1) and equation
(2) respectively[25];

Continuity:
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Here, p is the density, u; is the velocity component in the ith direction, p is the pressure, u is the
viscosity of the medium, A is the second coefficient viscosity (the term involving this variable is
assumed to be negligible) and g; is the component of gravitational acceleration in the ith direction.
For equations details see the ANSYS CFX-Solver Theory Guide [26].

ANSYS/SpaceClaim is a three-dimensional(3D) modelling software used to generate the model
geometry. The dimension of the simulated office room is 6m x 6m x 3m (length x width x height)
and does not contain any ventilation system to prevent the gas plume from being affected by the
strong wind movement. The room consists of four walls, a ceiling, and a flat surface floor. There
are no windows, doors, or obstacles such as the office chair and table inside the room to create a
simple environment and to eliminate the obstacle effect on the gas dispersion. The ethanol vapor was
released into the domain through a simulated Petri dish with a size of 5 cm in diameter. The gas
was released at 361 different locations inside the room. Thus, a total of 361 sets of CFD simulation
runs were conducted in this work. All the Petri dishes arrange into a 19 x 19 matrix and have their
own coordinates, namely on the x-axis and y-axis. The distance between each of the Petri dishes is
0.3m and they are placed on the ground level to cover the office floor area. (Figure 1) shows the office
geometry model with the location of each of the gas source’s release points from the top view.
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Figure 1: (a) Isometric view of model geometry (b) Petri dish position for gas inlet

2.2 Mesh generation

A tetrahedron mesh type with a size of 0.2m was generated for the domain model using meshing
software which is ANSYS/ICEM. The total number of mesh elements and mesh nodes generated after
the meshing process is 116,058 and 21,319 respectively. (Figure 2) shows the generated mesh for the
simulated geometry room.

0,000 2500 5.000¢m)
[ - il

1.250 3750

Figure 2: Model geometry mesh generation with a tetrahedron type

2.3 Boundary setting

Since the wind velocities in the present study are fairly low and no heat transfer is considered, the
walls, ceiling, and floor will be set as the no special, wall-induced effect boundary condition and the
heat transfer between them is neglected. Then, each of the simulated Petri dishes is set to be inlet
boundary condition. The ethanol vapor was released at a rate of 0.01kg/s from the inlet.

The simulations were performed on Intel i5 core computer generation. The flow type is total
temperature and steady state. The ambient pressure and temperature are set up constant to be 1 atm
and 25°C respectively. For the global initialization, the turbulent viscosity u: was calculated by the
k-epsilon (k-€) turbulence closure model defined as follows:

pe = Cp— (3)
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In equation (3) — (5), the empirical constants are standard for the (k-¢) turbulence model which
have the following defaults values: C), = 0.09, c1c = 1.44, coc = 1.92, 0y = 1.3, 0}, = 1.0 [27]. These
values are determined from experimental data and are used to model the effects of turbulence on fluid
flow. The k-epsilon (k-€) turbulence model is widely utilized in computational fluid dynamics (CFD)
to replicate mean flow features in turbulent flow circumstances. It was chosen because of its relative
simplicity and it was used by the previous author [14]. The turbulence kinetic energy is denoted as
k, which is the measurement of velocity fluctuations variance and has units of m?/s2. The turbulence
eddy dissipation is denoted as epsilon, € which is the rate at which the velocity fluctuations dissipate
and has units of m?/s3. Typically, the computational time for each simulation of gas release took
about 45 minutes. The total time needed to perform for all locations of gas takes about 1 month.

2.4 Data extraction

After the simulation was done, the result was analysed using ANSYS/CFD-POST application. A
horizontal plane is located at the z-axis of the room model with a height of 0.05m from the ground
to acquire the ethanol mass fraction contour plot. (Figure 3) below shows several examples of the
simulation result for ethanol vapor release at different Petri dish locations (0.3m, 5.7m), (1.2m, 1.5m),
(2.7m, 0.3m) and (4.8m, 0.9m) under similar surrounding conditions. Through the contour plot view
of the ethanol vapor mass fraction, it can be observed clearly the spread area of the ethanol vapor
inside the office room. However, it was found that they have different shapes of dispersion. This is
because some of the release points are near to the room’s wall causing the ethanol vapor to accumulate
on the edge of the wall. The concentration of the ethanol vapor is highest at the release point and
decreases as they get far from the release point. Therefore, it can conclude that the CFD simulation
generated is valid and agreed well with the theoretical model of gas dispersion. All the data of the
ethanol mass fraction on the plane is collected and exported to Excel files. There are 19788 total
numbers of nodes on the plane. Each of the nodes contains an ethanol mass fraction reading. The
total Excel data generated is 361 files by referring to 361 different locations of the gas.

2.5 Deep Neural Network (DNN)

In this work, a deep neural network (DNN); more specifically, a multilayer perceptron (MLP) will
be used to predict the location of a gas source in an office room according to the collected dataset
generated by CFD result. DNN contains several numbers of neurons organized into layers, connected
to each other by synaptic weights. It also contains more than one layer of hidden layer units between
its input and output. This characteristic allows DNN to solve complex problems. In this study, the
DNN will be treated as supervised learning, and the location of the gas source as a linear regression in
the x-axis and y-axis direction. By referring to (Figure 4) below there are two phases for the DNN to
predict the gas location. The first step is to split the dataset into two groups which are the training
and also the testing dataset. The DNN model needs to be trained using the training dataset and after
it gets the solid model then it will be used to predict the location of gas accordingly to what it learned
from the testing dataset.

2.6 Model generation

The entire process to generate a complete DNN model is implemented by using the TensorFlow
package and Python programming code on the Google Collaboratory integrated development environ-
ment (IDE). The DNN model is composed of three main layers: the input layer, the hidden layer, and
also output layer. The input layer consists in a number of 19787 nodes which refers to the number of
nodes on the z-plane in the CFD simulation. Initially, the hidden layer consists of 2 layers and each
layer has a number of 300 nodes respectively. The Rectified Linear Unit (ReLLU) activation function is
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Figure 3: Contour view of ethanol mass fraction concentration (a) location of release point at (0.3m,
5.7m) (b) location of release point at (1.2m, 1.5m) (c) location of release point at (2.7m, 0.3m) (d)
location of release point at (4.8m, 0.9m)
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Figure 4: Flowchart of the proposed method

used for the hidden layer since the dataset contains only positive values. The output layer only con-
sists of 2 nodes which refer to the X-coordinate and Y-coordinate for the gas location. The activation
function used for the output layer is a linear activation function that treats the output as a regression.
The entire DNN model architecture is shown in (Figure 5).

2.7 Model training

Each of the datasets is stacked into an array followed by its two labels which are in term of X-
coordinate and Y-coordinate labels. The labels represent the location of simulated Petri dishes that
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Figure 5: Deep Neural Network (DNN) model architecture

release the ethanol vapor. Then, the array that contains all the training dataset with their labels
were randomly fed into the DNN model for the learning process. By entering the input layer with the
reading of ethanol mass fraction from the z-plane, it will be performing the multiplying between the
first layer node, x; and synaptic weights, w; connected to the first hidden layer to get the result for
the first hidden layer node. The overall input for the neuron is calculated through the weighted sum
of the output signals that are received from the neurons in the previous layer:

where x; is

xTr; = Xn (7)

where X, is the node reading on the z-plane that contained the ethanol mass fraction values.
Then,u value is inserted into the linear activation function which is Rectified Linear Unit (ReLU) to
define all negative values of u to be 0 or otherwise to be a positive value of w itself.

v for ©w>0
f(u):{O for u<0 (8)

where u is the input and f (u) is the output. As a result, if u is greater than 0, the derivative
value is 1, and even if input data go through both hidden layers, the characteristic of the data remain
without disappearing to the output layer. The same process goes onto the second layer of the hidden
layer. The weight and bias are updated based on the loss rate function which is Mean Squared Error
(MSE) between the actual and predicted gas location until an optimal value is achieved. The MSE
equations are as below:

MSE, = % S (z—2)? (9)
MSE, = ;an (y —9)* (10)

where, n is the number of target data while z and y are the actual locations of the gas source
coordinate, £ and ¢ is the predictive location of the gas source. For the purpose to optimize the
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learning process, Adaptive Learning Rate (ADAM) was used in this study because it is effective for
dealing with nonlinear problems, including outliers while the epoch for maximum learning was set to
300.

2.8 Model evaluation

To evaluate the model performance, the dataset has been divided into two categories which are
training and testing set through random selection. From the total dataset, 77% numbers of the data
are used for training while 33% numbers of the remaining data are used for testing the model. Then,
30% of the testing data is randomly selected for model validation. This is to avoid over-fitting a
particular dataset.

3 Result and Discussion

This section will discuss the result from the generated DNN model in terms of its learning process,
the accuracy of the model, and the reliability of the model to predict the gas source location. The
distance error between the actual gas source location and the predicted gas source location is calculated
using the Euclidean distance formula:

2 12
d=\w=2)+ (y-19) (1)
where d is the distance, z and y are the locations of the actual gas source. £ and ¢ are the location
of the predicted gas source.

3.1 Variable number of hidden layer nodes

This study also performed some experiments to see the improvement of the model’s accuracy to
predict gas source location by changing the hyperparameter of the model which is the number of
nodes in the hidden layer. There are five different configurations as shown in (Table 1) below. All the
configurations consisting of only 2 hidden layers and the number of nodes were chosen heuristically.
The best configuration that achieved the best performance has been chosen.

Table 1: Different configuration of the model’s hidden layer hyperparameter

Number of Nodes
Configuration
15*Hidden Layer 27d Hidden Layer
1 300 300
2 500 300
3 500 500
4 500 1000
) 1000 1000

(Figure 6) below shows all the loss graphs for the training and validation of the different models
with a different number of nodes in the hidden layer to illustrate the learning performance of the
proposed model with a different configuration. The number of model training epochs that refer to
the number of training cycles through the dataset is shown on the x-axis while the y-axis shows the
MSE loss value of the model for the X-coordinate and Y-coordinate output. Both the training and
validating loss graphs for X-coordinate and Y-coordinate output curves follow the downward trend
as the number of epochs increases. As the number of dataset epochs increases the mean square error
value decreases. This is a good sign that indicates the model was able to learn from the CFD dataset
and was able to converge to a certain level of accuracy.

(Table 2) shows the evaluation result of each different model configuration. From the displayed
table, the highest model loss error gain after the learning process was from configuration number 5
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Figure 6: Training model loss graph (a-b) for configuration 1; (c-d) for configuration 2 ; (e-f) for
configuration 3; (g-h) for configuration 4; (i-j) for configuration 5
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while the lowest total model error was gained by configuration 3. From this result, configuration 3 will
be considered to be the selected model since it has the lowest model loss error. However, relying only
on the model evaluation result without considering each model performance to predict the gas source
is insufficient. Therefore, each model’s performance has been tested by looking at the percentage of
occurrence for the model to predict the location of the gas source.

Table 2: Model loss evaluation result after the training process

Number of X- Y-
. Nodes Model Loss coordinate coordinate
Configuration

15¢ Hidden | 2°d Hidden (m) loss loss

Layer Layer (m) (m)

1 300 300 0.377 0.036 0.342

2 500 300 0.221 0.033 0.189

3 500 500 0.214 0.041 0.173

4 500 1000 0.279 0.029 0.250

5 1000 1000 0.470 0.033 0.437

(Figure 7) shows the result of all model performances to predict the location of the gas source in
terms of the percentage of occurrence of the model to perform the gas source prediction. It represents
the percentage of occurrence in 278 data for the training dataset and 83 data for the testing dataset.
The model was fed with the data from the training and testing dataset to see whether the model is
able to accurately predict the location of the gas source. The Euclidean distance between the gas
source location predicted by the DNN model and the actual gas source location was used to evaluate
whether the location of the gas source is estimated correctly or not. From the histogram chart, the
range of 0.0m to 0.3m was considered as the most accurate distance of the predicted gas location with
the true gas location. The distance range between 0.3m to 0.7 was considered as the medium accuracy
while above 0.7m was considered as low accuracy for the model.

(Figure (7b) shows that the DNN model with configuration 2 has the highest percentage of occur-
rence to predict the location of the gas source from the training dataset in the range of 0 m to 0.3m
with 73.7% while 24.2% fall within the range between 0.3 to 0.7 and the remaining was fallen between
the range of 0.7m and 1.0m which consider to be acceptable to identify the location of the gas source.
Note that the number of hidden layers of configuration 2 for the first and second hidden layers was
500 and 300 nodes respectively.

The lowest performance of the model is shown in which is for Configuration 5 which only obtained
17.2% of prediction of the output which falls in the range of 0.0m to 0.3m. Most of the prediction of
the output falls between the range of 0.3m to 0.7m with 76.8% of the percentage of occurrence while
the remaining data falls in between a range of 0.7m to 1.0m. Configuration 5 has the highest number
of nodes at the hidden layers which are 1000 nodes for both hidden layers. This evidence shows
that a higher number of nodes in the hidden layer does not provide higher learning and prediction
performance for the model. The higher number of nodes in the hidden layer will lead to the increase
in the computation time for the model to learn a particular dataset and increase the tendency to be
an overfitting model.

(Figure 8) shows the box plot for model prediction error for different model configurations in terms
of Euclidean distance between the predicted gas location and true location. The “x” marker shows
the Euclidean distance mean error for the output data. The box plot also shows the maximum and
minimum error obtained by each of the models and the maximum distance error was obtained by
Configuration 5 which is 0.9m shown in (Figure 8¢). The majority of the result shows that the mean
distance error predicted from the training dataset were much smaller compared to the mean distance
predicted using the testing dataset.

For easier to make the comparison between the model to obtain the best model to predict the
location of gas in an indoor environment (Figure 9) and (Figure 10) shows the performance of each



https://doi.org/10.15837 /ijccc.2023.3.5084

12

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

Percentage of occurance,%

20.0%

10.0%

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

Percentage of occurance,%

20.0%

10.0%

Configuration 1

80.0%
70.0% "
u Train dataset 70.0%
J— B Test dataset
: X 60.0%
o
e
£ s0.0%
2
39.4% S
5 40.0%
&
£ 300%
22.0% @
2
& 200%
8.0% 10.0%
2.0%
N—— 0.0%
(0,0.3] (0.3,07] (0.7,1.0]
Euclidian distance between the actual and predicted source location (m)
(a)
Configuration 3
70.0%
69.7% m Train dataset
60.0%
60.0% m Test dataset
_ ES
9 50.0%
2
e
s
S 40.0%
38.0% ;
28.3% % 30.0%
13
g
5 20.0%
&
10.0%
20%  2.0%
— — 0.0%
0,0.3] (0.3,07] (0.7,1.0]

Euclidian distance between the actual and predicted source location (m)

()

90.0%
80.0%

£ 70.0%

g 8 8 8
g 8 8 8

Percentage of occurance,

20.0%

10.0%

0.0%

Configuration 5

Configuration 2

73.7%
m Train dataset

= Test dataset

54.0%
44.0%
24.2%
I 2.0% 2.0%
— —

(0,03] (0.3,07] (0.7,1.0]
Euclidian distance between the actual and predicted source location (m)

(b)

Configuration 4

62.6%
m Train dataset

m Test dataset

56.0%
40.0%
35.4%
I o i
= -

(0,03] (03,07) (0.7,1.0]
Euclidian distance between the actual and predicted source location (m)

()

80.0%
76.8%

17.2%

2.0%
e

(003] (03,07]

™ Train dataset

® Test dataset

18.0%

- .
-

(0.7,10]

Euclidian distance between the actual and predicted source location (m)

(e)

Figure 7: Performance of each DNN model to predict the location of gas source (a) Configuration 1
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https://doi.org/10.15837 /ijccc.2023.3.5084 13

Predition Error for DNN Model in Configuration 1 Predition Error for DNN Model in Configuration 2

o o o o

& 2 & 8
|
|

e
o]

o
@

Euclidian distance between the actual
o
<

and predicted source location (m)
°
=

e

o

M Train Data [ Test Data

(a)

Euclidian distance between the actual

and predicted source location (m)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

M Train Data [ Test Data

(b)

Predition Error for DNN Model in Configuration 3 Predition Error for DNN Model in Configuration 4
05 0.8
0.45
E § 0.7
S 0.4 °
o E g E 06
£ c 035 £5
=5} =51
o® o 05
%3 03 %;
38 0 88 o4
83 83
€ o ca
_’E < 0.2 .‘..; T 03
S5 5B
3 015 3
53 5% o
s LN
S c 3 C
TS we o1

M Train Data [ Test Data

()

09
0.8
0.7
0.6
05
0.4
03

0.2

Euclidian distance between the actual

and predicted source location (m)

0.1

M Train Data [ Test Data

(d)

Predition Error for DNN Model in Configuration 5

M Train Data [ Test Data

(e)

Figure 8: Euclidean distance error for each model (a) Configuration 1 (b) Configuration 2 (¢) Config-
uration 3; (d) Configuration 4; (e) Configuration 5



https://doi.org/10.15837 /ijccc.2023.3.5084 14

model in terms of percentage of occurrence and prediction error side by side. From (Figure 9) it is
very obvious that the DNN model with configuration 2 has the highest performance to predict the
gas source compared to another model configuration. Configuration 2 performance was 56.5% higher
compared to the model performance of configuration 5. (Figure 10) also agrees with the result in
(Figure 9) which shows that configuration 2 has the lowest Euclidian distance mean error compared to
another model configuration. Therefore, from the obtained results, the DNN model with configuration
2 was chosen as the best model to predict the gas source in this study.

Performance for difference model configuration
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Figure 9: Comparison of model performance between the different model configurations

3.2 Model validation test

The data has been selected randomly from the validation dataset and fed into the model to observe
its ability to predict the location of the ethanol vapor source in a small simulated office room. (Table 3)
below shows the result of the model prediction in the terms of Euclidean distance error. To get a clear
picture of the distance between the predicted and true gas emission location (Figure 11) illustrates
the plotting of the predicted and actual location obtained from the table using matplotlib. As can
be seen, six number of validation samples at different locations of the ethanol source have been fed
into the model to predict the location of the gas source. From the table, most of the error of the
y-coordinate output is larger compared to the x-coordinate output. The minimum and maximum
Euclidian distance error between the actual and predicted gas source from the validation dataset is
0.20m and 0.34m respectively. The error presence might be due to the concentration of ethanol vapor
for the certain location being similar to each other. Hence, within the range of the observed error,
it is adequate for the gas localization task and it will make the task become much easier. It had
proven that the DNN model able to predict the location of the gas source inside a simulated indoor
environment.

3.3 Comparison with the ANN model

In this subsection, an ANN model with one hidden layer was trained using the same synthetic
datasets. This is to observe the performance comparison between both models in the task of predicting
the gas source location. (Figure 12) shows the performance comparison between the ANN and DNN
model in terms of the percentage of occurrence for the model to predict the gas location. As can see
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Figure 10: Box plot of Euclidian distance error for the different DNN model configurations
Table 3: Comparison between the actual gas source location and predicted gas source location
Coordinate Coordinate
of Actual of
Gas Source Predicted Fuclidean
Location Gas Source X-error Y-error distance
(m) Location (m) (m) (m)
(m)
z Y z (]
2.40 3.60 2.27 3.75 0.13 0.15 0.20
5.10 1.20 4.99 0.95 0.11 0.25 0.27
0.90 3.60 0.72 3.89 0.18 0.29 0.34
1.80 1.80 1.67 1.96 0.13 0.16 0.21
3.60 4.20 3.75 4.33 0.15 0.13 0.20
1.50 3.30 1.42 3.52 0.08 0.22 0.23

from the histogram chart, the DNN model is able to predict the gas source with Euclidean distance
error in the range of 0.0m to 0.3m with 73.7% which is higher compared to the ANN model with only
52.9%. The ANN model predicts the location of gas within the range of 0.3m to 0.7m from the actual
gas source with 46.2% of the total dataset. This result revealed that the DNN model has a better
performance and accuracy compared to the ANN model in performing the gas source localization.

4 Conclusion

In this study, a DNN model was utilized to predict the location of the gas source inside a small
simulated empty room after a sufficient training process using the TensorFlow package in the Google
Collaboratory platform. During the training process of the model, it is highly dependent on the
collected dataset. Therefore, CFD modelling was utilized to gain a sufficient dataset for the model.
361 number of simulated ethanol vapor dispersion at different locations were divided into the training
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Figure 12: Performance comparison between DNN and ANN model

and testing datasets. The model was able to identify the location of the ethanol vapor emission source
after the training process. This study also focused on the hyperparameter of the DNN model which
is the number of nodes in the hidden layer. Several combination numbers of hidden layer parameters
have been tested and it is found that the best configuration of the hidden layer for the first and
second hidden layer of the model to predict the gas source in this study was 500 nodes and 300 nodes
respectively. Therefore, the DNN model contains 19787 input nodes, 2 hidden layers, and 2 output
neurons. The model has the minimum and maximum error in terms of Euclidean distance error within
the range between 0.03m to 0.460m which is adequate to perform the gas source localization task. For
average, the model has a mean error of 0.24m. In conclusion, the CFD-DNN method to localize the
gas source inside an empty room shows low error and high accuracy.

In the future, a real gas sensor array will be used to collect the gas emission dataset in an indoor
environment. This dataset will allow researchers around the world to train the deep learning model to
obtain a gas localizing system that has been integrated with artificial intelligence for helping human
beings to make a decision.
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