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Abstract

In the era of big data, massive amounts of information play an important role in individual
behavior and decision-making. In order to investigate the interaction mechanism between infor-
mation and individual behavior, we consider the influence of the "small group" network structure
in social networks, and construct an information-behavior coupled dynamics propagation model
(UAL-NBN) based on small group effect. Then we carry out theoretical analysis and derive the
dynamic evolution equations for the model used the Micro Markov Chain Approach (MMCA). And
we verify the correctness of the theoretical analysis by performing Monte Carlo simulations (MC).
The results show that the small group effect does promote the spread of information and behavior
in the population, which is reflected in reducing the epidemic threshold and increasing the outbreak
size. In addition, we also conclude that the more small group structures exist in social networks,
the more significant the promotion effect of the small group effect is. Finally, we describe the
specific application of the model in scenarios such as epidemic control, rumor governance, social
behavior advocacy, and consumer marketing, and provide theoretical reference and suggestions for
the government and other relevant departments to formulate policies which promote the spread of
behavior in society through information dissemination.

Keywords: Small group effect, information dissemination, social behavior diffusion, multi-layer
social network.
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1 Introduction
The development of the Internet and new media and the advent of the 5G era have changed

people’s social habits. Online social networks have become the main platform for people to exchange
ideas, share information and transfer knowledge, which makes information flow faster and wider [1].
According to the Global Digital Report released by Hootsuite and We Are Social in April 2022, there
are 5 billion Internet users worldwide, accounting for 63% of the world’s population; among them,
326 million new social media users were added in the past year, which is an increase of 7.5 percentage
points from the previous year; and these users use an average of 7.4 social platforms per month and
spend an average of 2 hours and 29 minutes on social networks every day, which is 7 minutes longer
than usual [2]. The massive amount of information that users encounter on social media every day
plays an increasingly important role in people’s lives, affecting people’s behavior and decision-making
[3–8]. Therefore, trying to understand the inner mechanism by which information affects people’s
behavior and decision-making can help us to better utilize the dividends brought by the information
society.

In recent years, many scholars have devoted themselves to studying the interaction between infor-
mation and behavior. The study found that information diffusion can promote the spread of social
behavior, and at the same time, social contagion can also enhance the process of information diffu-
sion [9, 10]. Literature [11, 12] used multiple networks to study the propagation mechanism of green
behavior under the influence of awareness and the impact of negative information dissemination on
the adoption of green behavior. The results showed that the formation of people’s green consensus is
closely related to the dissemination of green information, and the dissemination of green information
in turn promotes the adoption of green behaviors. Literature [13] pointed out that in the process of
innovation diffusion, individuals make adoption decisions based on the information they have obtained,
and the influence of information transfer between individuals on innovation adoption behavior is par-
ticularly important. Literature [14] proposed an optimal strategy model for epidemics by considering
interactions between individuals and the impact of online emotional information on human behavior,
striving to minimize the infection burden on the health care system and the financial loss of economic
activity during the lockdown.

Moreover, in the field of epidemiology, the impact of information dissemination on the spread of
epidemics has also attracted the attention of scholars [15–17]. Literature [18] superimposed the SIS
model of information dissemination with the SIRS model of epidemiology to study the interaction
between local behavioral responses and endemic diseases. Literature [19] explained the impact of
information on appropriate precautions on individual behavioral responses. Literature [20] found that
the spread of awareness can induce informed individuals to take action to prevent infection, thereby
affecting the infection threshold and transmission process of epidemics. Literature [21] pointed out
that the purpose of reducing disease can be achieved by controlling the dissemination of information
awareness at the information layer and the individual behavior at the other layer. Literature [22]
found that information awareness about epidemics spread through multiple channels can reduce the
infection rate by stimulating individuals to take vaccination behaviors, and awareness spread through
various information sources is positively correlated with epidemic containment. As above, previous
studies have demonstrated that information transmitted in the population can guide individuals to
adopt protective behavioral responses, thereby reducing the risk of infection in the population and
containing the spread of the epidemic [23–28].

In addition, the development of complex networks has provided new insights into the study of
spreading dynamics [29, 30]. Initially researchers developed studies based on single layer networks,
however, in reality many natural and artificial complex systems are coupled together through multiple
types of interactions [31]. Therefore, researchers have started to use multilayer networks as a basic tool
to quantitatively describe the interactions among multiple components in complex systems [27, 32, 33].
They abstract natural and artificial complex systems (e.g., communication networks, transportation
networks, biological networks, etc.) into complex networks, where nodes represent individuals or
entities, intra-layer connected edges represent interactions between nodes of the same layer, and inter-
layer connected edges represent coupling relationships between nodes of different layers [34], which
may lead to results beyond what can be captured by a single-layer network [35]. Based on multilayer
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networks, researchers have in turn conducted a number of meaningful studies on spreading dynamics
over complex networks from multiple perspectives, including network structure [36], immunization
strategies [37], and demographics [38]. Among them, understanding the specific network topology
is fundamental to understanding the function and behavior of complex systems [39, 40]. Literature
[41] explored the interaction of coupled propagation dynamics by constructing a composite network
containing community structures. The results showed that promoting the spread of information is
beneficial to suppressing the spread of disease, but changing the process of disease spread has no
significant effect on the spread of information. And reducing long-distance jumps can also help slow
the spread of the epidemic. Through theoretical analysis and computer simulation, literature [42] found
that the influence of information layer heterogeneity on the epidemic threshold is closely related to
the probability of information dissemination. When the information dissemination rate is low, strong
heterogeneity can effectively improve the epidemic threshold; when the information dissemination rate
is high, the opposite is true; when the information dissemination rate is neither too high nor too low,
weak heterogeneity of the information layer can effectively suppress the spread of epidemics. Literature
[43] proposed a new epidemic model considering partial mapping relationship based on time-varying
network, and confirmed that the corresponding ratio between two layers of nodes has a significant
impact on the epidemic threshold of the proposed model. In addition, many scholars have studied and
verified the influence of network degree distribution on the scale of epidemic outbreaks [44–46].

To sum up, network structures like the degree distribution can, to a certain extent, facilitate or
inhibit the propagation process in the population [47]. However, these related studies are based on
pairwise interactions between nodes; in fact, people are always more inclined to trust people they
are familiar with [48, 49], and individuals tend to show herd behavior in the decision-making process
[50–53]. Thus, interactions may often occur in clusters of three or more nodes and cannot be described
simply by pairwise interactions between two nodes [54]. For example, in social networks, rumors that
are shared by multiple friends are more likely to be accepted by individuals, and individuals can also
pass on rumors to multiple friends at the same time [55]. So considering the group effect produced
by the "small group" structure composed of strongly connected neighbors will make the propagation
process more realistic. However, few studies have taken into account the influence of the "small group"
structure existing in the information dissemination network and the behavior diffusion network on
spreading dynamics, that is, the influence of the group effect composed of strongly connected neighbors
on the propagation process. Therefore, we provide a general research framework for information-
behavior coupled systems based on multi-layer networks, and then consider the influence of the "small
group" structure existing in the population on the information-behavior coupling dynamics. This
can fill the gaps in the literature in this area, and can also provide theoretical reference and policy
recommendations for the prevalence of behavior in society at the information level.

The rest of this paper is organized as follows: Section 2 introduces the construction process of the
information-behavior coupled network model affected by the small group effect in detail. Section 3
uses the MMCA method to analyze the model theoretically. Section 4 analyzes the influence of the
parameters of the model on the dynamic process; Section 5 discusses the scenarios in which our model
can be applied, as well as the existing limitations and future work.

2 Models and Methods

2.1 Construction of Information-Behavior Coupling Network Model Framework

In order to analyze the interaction between the two dynamic processes of information diffusion
and behavioral diffusion, and to further explore the influence of "small group effect" on the whole
system, we establish a two-layered information-behavior coupled dynamic propagation model under
the framework of multiple networks as shown in Figure 1. The upper network is the information
dissemination layer, and the lower network is the behavior diffusion layer. The two networks have the
same number of nodes but different topological structures. The links in the information dissemination
layer represent all the ways people can receive information online or offline, and the links in the
behavior diffusion layer represent all the ways people can contact and observe the behavior of others
offline. It is worth noting that the links between the upper and lower layers overlap, but are not
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completely inclusive.

Figure 1: The framework of information-behavior coupling system based on multiple networks (UAL-
NBN). The upper network describes the process of information dissemination. The nodes in this layer
contain three states: U (white node), A (red node), and L (blue node). The lower layer network
describes the process of behavior diffusion, and the nodes in this layer have only two states: N (yellow
node) and B (green node).

Specifically, in the information dissemination layer, we use the unaware-aware-loss interest (UAL)
model to model the process of information dissemination in the crowd. The three states of the node
in this layer: U, A, L, respectively represent the three states of the node not knowing the relevant
information, knowing the information and willing to spread the information, knowing the information
but unwilling to spread the information. At time t, the node U that does not know the information
will be informed of the information by the node A that knows the information and is willing to spread
the information with the probability λ ; the node A that knows information and is willing to spread
information will lose interest in the information with the probability δ and change to the L state, and
no longer have the ability to spread information. In addition, in the information dissemination layer,
if the conditions for the "small group effect" to take effect are satisfied between nodes, the node U
that does not know the information increases the probability of λ∗ to get the information from its
neighbors in the same group. The state transition of the information dissemination layer is shown in
Figure 2.

Figure 2: The state transition diagram of the UAL model in the information dissemination layer.

In the behavior diffusion layer, we use the non-behavior–behavior-non–behavior (NBN) model to
describe the process of behavior diffusion in the population. The nodes in this layer contain two
states N and B, which represent that the node does not adopt relevant behavior and adopts relevant
behavior, respectively. At time t, the node N that does not adopt behavior will be affected by its



https://doi.org/10.15837/ijccc.2023.5.5074 5

neighbors that adopt behavior with probability β, and it will change to state B that adopts behavior.
At the same time, the node B that adopts behavior will also change to state N with probability µ,
and will no longer adopt this behavior. Moreover, in the behavior diffusion layer, if the conditions
for the "small group effect" to take effect are also satisfied between nodes, the probability that a node
N that does not adopt behavior is influenced by its group to change to state B that adopts behavior
increases by β∗. The state transition diagram in the behavioral diffusion layer is shown in Figure 3.

Figure 3: The state transition diagram of the NBN model in the behavioral diffusion layer.

In addition, there is a one-to-one correspondence between the nodes of the information dissemina-
tion layer and the behavior diffusion layer. The upper layer network acts on the lower layer network
through the behavior enhancement factor σ(0 < σ < 1), and the lower-layer network exerts a cer-
tain degree of influence on the upper-layer network through the shared interest ω(0 < ω < 1) of the
nodes. Specifically, if the node in the upper layer is in the A or L state with known information, the
probability of the node being influenced by its neighbors in the behavior diffusion layer and adopting
the behavior increases by σ, that is, βA = βL = (1 + σ)β; if the node in the lower layer is in the
B state that adopt behavior, the node will immediately become the information-aware state in the
information dissemination layer, but whether it changes to the A state that is willing to propagate or
the L state that loses interest in information depends on personal shared interests ω. Therefore, we
set that if the shared interest of a node is less than or equal to ω, the node changes to the A state that
is aware and willing to spread; if the shared interest of the node is greater than ω, the node changes
to the L state that knows the information but is unwilling to spread any more.

2.2 Construction of Information-Behavior Coupling Dynamics Propagation Model
Based on Small Group Effect

Large communities and their high-value effects are made up of countless smaller communities.
Compared with large groups, users who are active in small groups are more easily influenced by their
peers. In this paper, we refer to the phenomenon that people are active in small groups to share
information and behavioral decisions to influence dissemination as the "small group effect". And then,
we only consider the "small group" structure consisting of three individuals, and the individuals located
in this structure know each other, trust each other, and have connections with each other.

First, we need to construct the "small group" structure for our proposed two-layered network model
framework, which can be divided into the following two steps:

(1) Since the information dissemination layer simulates people’s online + offline social circle, and
the behavior diffusion layer simulates the life circle that people can reach offline, so initially, we
construct a scale-free (SF) network for the information dissemination layer, of which the power
exponent is α, and construct a small-world (WS) network for the behavioral diffusion layer that
is connected to the k nearest neighbors with a reconnection probability p.

(2) Then we add the "small group" structure by traversing all the nodes in the network in turn.
Taking node i in the information dissemination layer as an example, we take any two nodes
j and l in its neighbors. If there is no connection path between node j and node l, we add a
connection edge to it with probability p1. Similarly, we add connecting edges to form the "small
group" structure between nodes in the behavioral diffusion layer with probability p2.
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Next, we further define the conditions that make the "small group effect" work in the information
dissemination layer and the behavior diffusion layer on the network with the "small group" structure.
We assume that in a "small group" containing three individuals, the "small group effect" will only work
when one and only one node is in the susceptible state and the other two nodes are in the infected
state. At this time, the group will increase the probability of the only susceptible node in the small
group being infected by the group effect factor γ. In other words, a small group consisting of one
U node and two A nodes in the information dissemination layer can make the "small group effect "
take effect (in this case, the role of the small group effect in the upper network is λ∗ = γλ, otherwise
λ∗ = 0); a small group consisting of an N node and two B nodes in the behavior diffusion layer can
make the "small group effect" come into play (in this case, the role of the small group effect in the lower
network is β∗ = γβ, otherwise β∗ = 0). It is worth noting that the L nodes that know the information
but are unwilling to continue to spread are in a state where the information is not exposed, so the
small group consisting of a U node, an A node and an L node in the information dissemination layer
cannot make the "small group effect" take effect. The process of nodes interacting with their neighbors
through the "small group effect" in the information dissemination layer is shown in Figure 4a, and the
interaction process between nodes and their neighbors under the influence of the "small group effect"
in the behavior diffusion layer is shown in Figure 4b.

(a) (b)

Figure 4: The interaction process of nodes with their neighbors under the influence of "small group
effect": (a) information diffusion layer, (b) behavior diffusion layer.

3 Theoretical Analysis
In this section, we use the MMCA method with joint states to analyze the spreading dynamics

of the proposed model. According to the model framework we proposed in Section 2, the nodes in
the information-behavior coupled dynamics propagation model have the following five states: UN
(unaware and not adopting behavior), AN (aware, willing to spread and not adopting behavior),
LN (aware, reluctance to disseminate and not adopting behavior), AB (aware, willing to spread and
adopting behavior), LB (aware, reluctance to disseminate and adopting behavior). We assume in the
model that the node B that adopts the behavior will immediately feedback to the upper layer and
change to the state of awareness, so we remove the state of UB (unaware and adopting behavior).

Next, we denote the probability of node i becoming UN, AN, LN, AB, LB at time t as pUN
i (t),

pAN
i (t), pLN

i (t), pAB
i (t), pLB

i (t). In the information dissemination layer, the probability that an un-
aware node i which is not informed by the nearest neighbor nodes (aware individuals) is assumed to
be ri1(t); the probability that an unaware node i which is not influenced by the "small group effect" is
assumed to be ri2(t); the probability that an unaware node i remains unaware of the information is
assumed to be ri(t).
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ri1(t) = ∏

j
[1 − ajiP

A
j (t)λ],

ri2(t) = ∏
j,k

[1 − ajiakiajkP A
j (t)P A

k (t)λ∗]. (1)

ri(t) = ri1(t)ri2(t). (2)

Where {aij} is the adjacency matrix of the information dissemination layer, P A
i (t) = P AN

i (t) +
P AB

i (t) and λ∗ = γλ.
In the behavior diffusion layer, the probability that the node U that is unaware of the information,

the node A that is aware of the information and is willing to spread it, and the node L that is aware
of the information and is unwilling to spread it any more will not adopt behavior under the influence
of its neighbors is assumed to be qU

i1(t), qA
i1(t), qL

i1(t); the probability that the node does not adopt
behavior under the influence of the "small group effect" is assumed to be qi2(t); the probability that
the nodes in the three states of U, A, and L do not adopt behavior at time t is assumed to be qU

i (t),
qA

i (t), qL
i (t), respectively. 

qU
i1(t) = ∏

j
[1 − bjiP

B
j (t)βU ],

qA
i1(t) = ∏

j
[1 − bjiP

B
j (t)βA],

qL
i1(t) = ∏

j
[1 − bjiP

B
j (t)βL].

(3)

qi2(t) =
∏
j,k

[1 − bjibkibjkP B
j (t)P B

k (t)β∗]. (4)


qU

i (t) = qU
i1(t)qi2(t),

qA
i (t) = qA

i1(t)qi2(t),
qL

i (t) = qL
i1(t)qi2(t).

(5)

Where {bij} is the adjacency matrix of the behavior diffusion layer, P B
i (t) = P AB

i (t) + P LB
i (t) and

β∗ = γβ.
Based on the above definition, we can obtain the state transition tree of the proposed model (see

Figure 5). According to the state transition tree, we can use the MMCA method to obtain the dynamic
evolution equation of the five possible states of the node:

P UN
i (t + 1) = P UN

i (t)ri(t)qU
i (t),

P AN
i (t + 1) = P UN

i (t)(1 − ri(t))qA
i (t) + P AN

i (t)(1 − δ)qA
i (t) + P AB

i (t)(1 − δ)µ,

P LN
i (t + 1) = P AN

i (t)δqL
i (t) + P LN

i (t)qL
i (t) + P AB

i (t)δµ + P LB
i (t)µ,

P AB
i (t + 1) = P UN

i (t)ri(t)(1 − qU
i (t))ω + P UN

i (t)(1 − ri(t))(1 − qA
i (t))

+ P AN
i (t)(1 − δ)(1 − qA

i (t)) + P AB
i (t)(1 − δ)(1 − µ),

P LB
i (t + 1) = P UN

i (t)ri(t)(1 − qU
i (t))(1 − ω) + P AN

i (t)δ(1 − qL
i (t))

+ P LN
i (t)(1 − qL

i (t)) + P AB
i (t)δ(1 − µ) + P LB

i (t)(1 − µ).

(6)

Where P UN
i (t) + P AN

i (t) + P LN
i (t) + P AB

i (t) + P LB
i (t) ≡ 1.

4 Numerical Simulation
In Section 3, we use the MMCA method to theoretically analyze the dynamic evolution process

of the UAL-NBN model based on small group effect. Next, we will use the MC method [56, 57] to
conduct a large number of numerical simulations to verify the accuracy of our theoretical analysis.

Here we set up a multiple network with 500 nodes in each layer, and create a scale-free network
with a power exponent of 3 for the information dissemination layer, and a small-world network for the
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Figure 5: The state transition tree for the five possible states of the nodes.

behavioral diffusion layer connected to the nearest 4 neighbors with a reconnection probability of 0.3.
In the MC simulation, we take the average of 50 loops as the final result, where each loop runs 100
time steps, and each time step runs another N micro-steps, where N is the total number of nodes in the
network. When the system reaches a steady state, we use ρA to denote the density of individuals in the
system that are conscious and willing to spread in the information dissemination layer, ρL to denote
the density of individuals in the system that are conscious but unwilling to spread in the information
dissemination layer, ρB to denote the total density of individuals adopting behavior in the behavior
diffusion layer. Before a behavior is accepted and becomes popular, the information about it must
first be widely known. In addition, we set that the L state must have been transformed by the node
in the A state losing interest in the information. Thus, at the initial moment of our experiment, there
will be only three states UN, AN and AB. And initially, we set, ρUN = 1%, ρAN = 1%, ρAB = 1%.

Figure 6 shows the comparison of the evolution trends of node states in the behavioral diffusion
layer with time steps obtained by the MMCA and MC methods. In Figure 6, the solid line represents
the MMCA analysis result, and the dashed line represents the MC simulation result. We can clearly
observe that the values obtained by both methods maintain the same trend of change, that is, for our
proposed UAL-NBN model, the results of MMCA are in good agreement with those of MC simulations.
This further verifies the correctness of our theoretical analysis. Based on the comparison results of
the two methods, we will use the MC method to complete the subsequent experiments.

At first, we compare the proposed UAL-NBN model considering the "small group effect", the UAL-
NBN model that does not consider this effect and the single-layer behavioral diffusion model NBN
that does not consider the role of information and "small group effect". Figure 7 shows the evolution
of behavioral diffusion in the population under these three model mechanisms. From Figure 7, we can
see that compared with the single-layer behavior diffusion model, the existence of the information dis-
semination layer can promote the diffusion of behavior in the population, which can not only improve
the adoption rate of a certain behavior, but also make the behavior spread quickly in the population.
Similarly, compared with the UAL-NBN model that did not consider the "small group effect", the ex-
istence of the "small group effect" further increases the adoption rate of the behavior in the population
and once again accelerates the process of behavior diffusion. We can say that the inclusion of the
"small group effect" is more effective in promoting the spread of the behavior in the population than
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Figure 6: Comparison between MMCA analysis results and MC simulations. The parameters are set
as follows: λ = 0.3, δ = 0.15, β = 0.3, µ = 0.2, σ = 0.2, ω = 0.5, γ = 0.5.

considering only the effect of information dissemination. The reason for this phenomenon is that the
"small group effect" we are considering is essentially the re-dissemination of information and behavior
based on group interaction, which facilitates the evolution of the propagation process. Therefore, in
real life, considering the promotion of information dissemination and the potential influence of small
groups in which individuals trust and are often active can quickly increase the popularity of a certain
behavior in the population.

Figure 7: Comparison of the diffusion evolution trends of behavior in the population under the three
model mechanisms. The blue line is the evolution trend of our proposed UAL-NBN model considering
"small group effect" (λ1 = 0.3, δ1 = 0.15, β1 = 0.1, µ1 = 0.2, σ = 0.4, ω1 = 0.5, γ = 0.9); the red line is
the multiple network model UAL-NBN that considers information dissemination but does not consider
the "small group effect" (λ2 = 0.3, δ2 = 0.15, β2 = 0.1, µ2 = 0.2, σ = 0.4, ω2 = 0.5); the purple line is
the single-layer behavioral diffusion model NBN without considering information diffusion and "small
group effect" (β3 = 0.1, µ3 = 0.2).

Above we verified the importance of the information-behavior coupling network framework consid-
ering the "small group effect" in studying behavior diffusion in the population. Next, we will continue
to explore how each parameter affects the dynamics of behavioral diffusion. Figure 8 first studies the
effect of various parameters on the behavioral prevalence threshold (βc).

It can be seen from Figure 8 that on the whole, the behavior forgetting rate µ, the behavior
enhancement factor ρ and the group effect factor γ have a significant impact on the behavior prevalence
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(a) (b)

(c)

Figure 8: In the UAL-NBN model based on the small group effect, the influence of each parameter on
the behavioral prevalence threshold βc. (a) behavioral forgetting rate µ; (b) behavior enhancement
factor σ; (c) group effect factor γ. Other parameters are set to λ = 0.3, δ = 0.15, ω = 0.5.

threshold βc. Specifically, in Figure 8a, as the behavior forgetting rate µ gradually decreases, the
behavior prevalence threshold βc in the system is getting smaller and smaller, and the adoption rate
of the behavior in the population in steady state is also getting higher and higher. On the contrary,
the greater the behavioral forgetting rate, the more difficult it is for the individual to maintain the
state of adopting the behavior, which will make it more difficult for the behavior to become popular
in the population. In Figure 8b, the larger the behavior enhancement factor σ, that is, the greater
the promotion of information dissemination to the behavior diffusion, the smaller the threshold for
the behavior to become popular in the system, and the larger the adoption rate of the behavior that
the system finally achieves. In Figure 8c, we can see that the larger the group effect factor γ, that is,
the greater the influence of the "small group" on the individual’s behavioral decision-making, which
will make the behavioral prevalence threshold smaller and smaller, and increase the adoption rate of
behaviors in the crowd.

Through the above experimental results, we understand the influence of each parameter on the
behavioral prevalence threshold. In order to gain a deeper understanding of the interaction between
information dissemination and behavioral diffusion under the influence of the "small group effect", our
next step will continue to analyze the effect of each parameter combination on the behavioral outbreak
size (ρB).

In Figure 9, we describe the fraction of the final behavioral outbreak size (ρB) as a function of
the combined value of behavioral diffusivity β and behavioral forgetting rate µ. It can be clearly seen
from the figure that for smaller behavioral diffusivity β and higher behavioral forgetting rate µ, the
scale of behavioral bursts in the population is smaller when the system reaches a steady state; and
as the behavioral diffusivity β increases and the behavior forgetting rate µ decreases, the outbreak
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size of behavior in the population becomes larger and larger. Figure 10 shows the fraction of the final
behavioral outbreak size (ρB) as a function of the combined value of the behavioral enhancement factor
σ and the group effect factor γ. In Figure 10, we can observe that with the increase of the behavior
enhancement factor σ and the group effect factor γ, that is, the greater the promotion of information
dissemination on behavior diffusion, the greater the potential impact of the "small group effect" on
group members, the larger the scale of the outbreak of behavior in the population. In addition, by
comparing Figure 10a and Figure 10b, we can further find that the behavioral forgetting rate has a
significant impact on the behavioral outbreak size in the whole system. The larger the behavioral
forgetting rate, the smaller the outbreak size in the behavioral diffusion layer, and the slower the
behavioral prevalence rate in the population.

Figure 9: The fraction of the final behavioral outbreak size ρB as a function of the combined value of
behavioral diffusivity β and behavioral forgetting rate µ.

(a) (b)

Figure 10: The fraction of the final behavioral outbreak size ρB as a function of the combined value
of the behavioral enhancement factor σ and the group effect factor γ: (a) µ = 0.1; (b) µ = 0.5.

Finally, it is worth noting that the diffusion process of behavior is closely related to the network
topology. Therefore, we also analyzed the random edge probability p2 of constructing a "small group"
structure in the behavior diffusion layer, that is, the effect of the density of "small group" in the
behavior diffusion layer on the behavior outbreak size (ρB) as shown in Figure 11. By observing the
Figure 11, we can conclude that with the increase of the random edge probability p2 in the behavior
diffusion layer, the speed of behavior prevalent becomes faster and faster, and the behavior outbreak
size becomes larger and larger. This shows that fully mobilizing and exerting the potential influence
of the "small group" structure in the population on individuals can better and faster promote the
diffusion and popularization of a certain behavior at the social level.
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Figure 11: The influence of random edge probability p2 on behavior outbreak size ρB in behavior
diffusion layer.

5 Discussion and Conclusion
We establish an information-behavior coupled dynamics propagation model affected by the "small

group effect", which has certain universality and can be applied to the actual dynamic process in which
information dissemination affects behavior diffusion or behavior affects information, such as epidemic
control, rumor governance, social behavior advocacy, and consumer marketing, etc. Next, we will
illustrate the specific application of the internal mechanism of our proposed model framework with
several examples.

First, we take epidemic control as an example. Our two-layer network model can be used to study
how the dissemination process of disease information affects individuals to take disease prevention
behaviors, thereby affecting the outbreak and control process of epidemics. In particular, all kinds of
information about diseases published on online social platforms can help people to better recognize
the risk of being infected by the disease, thus prompting people to take the initiative to take disease
prevention behaviors. For example, the new crown pneumonia outbreak in early 2020 severely im-
pacted social and economic development[58]. During the epidemic, the dissemination of online disease
information has led to the rapid spread of disease prevention behaviors such as wearing masks, fre-
quent disinfection, and vaccination among the population. In addition, the "small group effect" we
consider can help us better understand the impact of close contact groups on the spread of epidemics,
and how effective social distancing (such as severing connections in the "small group" structure) can
be in the containment of epidemics.

Similarly, our model can be applied to the study of the spread of rumors, the widespread spread of
which can lead individuals to make incorrect behavioral decisions and can even affect social stability.
For example, the socially widespread community-wide hoarding of medicines during the epidemic and
the previous salt hoarding incident, whose related information was widely disseminated on social media
platforms, led to a market scramble, with demand outstripping supply and rising prices, affecting social
and market stability. Our model allows us to explore the interaction between the spread of rumors
and the behavior of individuals, as well as to consider the ’small group effect’ that can characterize the
influence of social groups on the entire fermentation process of events, so as to identify the evolutionary
trends in the spread of rumors, find the strongest spreaders and develop effective governance strategies
to control group behavior through rumor management.

In addition, our model can also be used for advocacy of social behavior. When we advocate a social
behavior at the level of the whole society, our model can help analyze and simulate the diffusion effect
of the behavior in the population. For example, in advocating low-carbon behaviors, we can actively
propagate low-carbon behaviors within our ability and the benefits brought by low-carbon behaviors
through online networks to enhance people’s awareness of low-carbon environmental protection, so as
to increase the popularity of low-carbon behaviors among the population. The "small group effect"
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we consider can help us further understand the extent to which the behavior of neighbors who have
strong connections with themselves has potential influence on the individual’s behavior. Moreover,
practical problems like consumer marketing can also apply our model to help analyze and simulate the
impact of marketing initiatives on consumer buying behavior, as well as the effect of recommendation
of "small group" neighbors with strong connection on marketing.

However, our work is not perfect and there are certain limitations. First of all, in this paper, we
only consider the "small group structure" composed of three individuals. Although three-person groups
are the most common and easy to maintain and exert influence in the population, it is undeniable
that there is a "small group" structure containing more individuals in the actual interpersonal network.
Therefore, in the future we can further explore the influence of the structure of "small group" containing
more individuals on the propagation dynamics. In addition, an individual may exist in multiple
"small group" structures. In the future, we can further explore how the overlapping nodes of "small
groups" affect the propagation process, and further find the nodes and small groups that have the
greatest impact on the propagation process, so as to more effectively promote or inhibit the spread
and popularization of behavior in the population. Finally, although the model framework we propose
in this paper has certain applicability to the study of information-behavior affected by groups, in fact,
the interaction between information and behavior is also affected by many other factors, such as mass
media, government intervention, individual heterogeneity, time-varying of network structure, hysteresis
between information and behavior, and so on. Therefore, we can further consider more influencing
factors on the basis of our model, so that the model is more targeted for specific applications in specific
situations and closer to reality.
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