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Abstract

Dyna is a planning paradigm that naturally weaves learning and planning together through
environmental models. Dyna-style reinforcement learning improves the sample efficiency using the
simulation experience generated by the environment model to update the value function. However,
the existing Dyna-style planning methods are usually based on tabular methods, only suitable
for tasks with low-dimensional and small-scale space. In addition, the quality of the simulation
experience generated by the existing methods cannot be guaranteed, which significantly limits its
application in tasks such as continuous control of high-dimensional robots and autonomous driving.
To this end, we propose a model-based approach that controls planning through a validator. The
validator filters high-quality experiences for policy learning and decides whether to stop planning.
To deal with the exploration and exploitation dilemma in reinforcement learning, a combination of
ϵ-greedy strategy and simulated annealing (SA) cooling schedule control is designed as an action
selection strategy. The excellent performance of the proposed method is demonstrated in a set of
classical Atari games. Experimental results show that learning dynamic models in some games can
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improve sample efficiency. This benefit is maximized by choosing the proper planning steps. In the
optimization planning phase, our method maintains a smaller gap with the current state-of-the-art
model-based reinforcement learning (MuZero). In order to achieve a good compromise between
model accuracy and optimal programming step size, it is necessary to control the programming
reasonably. The practical application of this method in a physical robot system helps reduce the
influence of an imprecise depth prediction model on the task. Without human supervision, it is
easier to collect training data and learn complex skills (such as grabbing and carrying items) while
being more effective at scaling tasks that have never been seen before.

Keywords: Model-based reinforcement learning (MBRL), Dyna, Simulated annealing.

1 Introduction
Reinforcement Learning (RL) is a computational method about an agent interacting with the envi-

ronment and learning an optimal strategy through trial and error, which is used for sequential decision
problems in a wide range of fields such as natural science [1], social science [2] and engineering [3].
Thanks to the development of deep learning [4] [6] and neural networks [5] [7], deep reinforcement
learning has flourished in areas such as robot control, autonomous driving, and gaming [8]. In RL,
while a learning agent interacts with an environment over time steps, it executes an action. It affects
the environment, correspondingly moving from the current state to the next and emitting a scalar
reward signal. The agent’s primary goal is to collect the largest accumulated reward in the long term.
The agent must find an optimal policy in a deterministic or stochastic environment. In general, the
RL problem is always formulated mathematically as a Markov Decision Process (MDP) [9] equipped
with a transition model. A reward function is also associated with an MDP. Collectively, the transition
and reward functions are often called the model of an environment. Suppose we have the transition
and reward functions of MDP associated with the environment. In that case, we can exploit them and
retrieve an optimal policy using model-based techniques, such as dynamic programming algorithms,
Monte Carlo search, etc.

Meanwhile, in more and more complex real-world tasks, the RL methods for discrete low-dimensional
state spaces can not meet the needs, deep reinforcement learning (DRL) [10] [11] can realize the direct
control from the original input to the output through end-to-end learning. Model-based learning is sig-
nificant to improve sample efficiency of DRL [12] [13] [14] [15], and an environment model can simply
enable agents to solve complex tasks through fewer interactions with the real world than model-free
methods.

Oh et al. [16] focused on using a predictive model to play Atari games well. In some cases, the
predictions can be quite accurate for hundreds of steps. Ha et al. [17] presented a world model by
composing a variational autoencoder with a recurrent neural network, which is successfully evaluated
on a 2D racing game and VizDoom. The policy is trained by the world model can be transferred back
into the actual environment. Similarly, Alaniz et al. [18] utilized a DNN-based transition model with
Monte Carlo tree search to solve a block-placing task in Minecraft and the model is more training
sample efficient than Deep Q-network. Dyna [19] was applied to several games from the Arcade
Learning Environment (ALE) in [20], which measures the impact of planning shapes and compares
the performance of Dyna-DQN on perfect and imperfect models. Model-based updates offer more
benefits with unfamiliar experiences during planning. Azizzadenesheli et al. [21] proposed a sample-
efficient algorithm called Generative Adversarial Tree Search (GATS) and trains a GAN-based [22]
world model along with a Q-function. Simulated Policy Learning (SimPLe), a complete model-based
deep RL algorithm based on video prediction models was proposed in [23] and outperforms state-of-
the-art model-free algorithms on a range of Atari games. Inspired by AlphaZero [24], MuZero [25]
learnd to plays games (Atari, chess, and Go) purely from the environment, with end-to-end learning
and planning.

The above works are basically in video games from images. Outside of games, model-based RL
(MBRL) has been widely used in other fields such as robotics [26] [27] [28] [29]. Kaiser et al. [23] and
Hafner et al. [30] simulate robotic control by incorporating images into the real world.

The success of MBRL in high-dimensional problems depends on the accuracy of the dynamics
model. However, despite the approach of learning dynamics models is relatively effective, the ap-
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Figure 1: Illustration of Dyna architecture. In Dyna-style reinforcement learning, planning, acting,
model learning, and direct reinforcement learning co-occur in parallel.

plication of model-based methods is still challenging in large-scale problems with high-dimensional
observations [31]. Undoubtedly, it is extremely difficult to build a perfect dynamic model.

The Dyna architecture [19] yields policies that are both more effective than model-free learning,
and more computationally efficient than the certainty-equivalence approach. The illustration of Dyna-
style methods is shown in Figure 1. It simultaneously uses real experience to build a model and adjusts
the policy by the model. Dyna operates in a loop of interaction with the environment. For direct
RL, the agent directly interacts with the real environment and is not affected by the model error.
The Dyna algorithm requires more learning cycles of indirect learning and model approximation,
but it is tremendously less than the naive model-based method [32]. Incremental learning can often
make full use of real limited experience to derive optimal policies and reduce interaction with the real
environment. At each step, the acting, model learning, and direct RL require very little computation,
and the remaining time is used for the planning process, which is inherently computation-intensive.
So how to incorporate Dyna-style methods into DRL may be a research hotspot [33] [34] [35] [36].

Dyna-style imagination plays a significant role in deep model-based algorithms. Initially, the
linear-quadratic-Gaussian method was used to improve model learning. Gu et al. [37] combined
the back-propagation iLQG method with Dyna-style comprehensive strategy promotion. In order to
accelerate modelless continuous Q learning, Locally Linear Models (Local models) are combined with
locally online strategy imagination promotion. Peng et al. [38] combined DynaQ [39] with the deep
learning method (DQN) and proposed deep DynaQ (DDQ) to effectively train the task to complete the
conversation agent at a low cost. The framework integrates world models (similar to user simulators)
into strategy learning, models real users, and simulates user behavior to complement the limited
real experience in planning. Holland et al. [40] used the Dyna variant learning environment model
to generate experience for strategy training in Atari games and evaluated the influence of different
planning shapes on the performance of the Dyna-DQN algorithm by using the perfect model and
learning model, respectively. Azizzadenesheli et al. [41] proposed a Generative Adversarial Tree Search
(GATS) algorithm, which combines the success of generative adversarial tree networks with robot
motion planning. Robot arm operation based on video input is an essential application of artificial
intelligence. Based on the pix2pix architecture [42], a generation model was introduced to model
the transfer dynamics. The model-based approach suits low-dimensional tasks with relatively simple
transformation and reward mechanisms [9]. While efficient methods (such as Gaussian processes) can
quickly learn these models with few samples, they are difficult to represent complex and discontinuous
systems [43].

Most existing model-based reinforcement learning and Dyna-style reinforcement learning methods
focus on establishing models, but few focus on the quality of experience generated by models. There is
no doubt that the quality of the simulation experience is crucial when planning longer steps, especially
if the state space is very complex. Take autonomous driving as an example. The single-step error
generated by the model is often within the acceptable range. However, in the multi-step planning
process, the accumulated errors will lead to the deviation of the later experience from the actual
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track, the waste of computing resources, and the reverse help of strategy learning. Therefore, (1) it is
necessary to balance the benefits of multi-step programming and the increased model errors at each
step. In addition, (2) the experience generated by the model needs to be ensured to be of high quality,
and the generation process needs to be controlled. These two motivations drive our work. To this
end, we designed a new action selection strategy and the Dyna-Validator architecture to accomplish
both improvements.

This study proposes a model-based RL, called Dyna-Validator, which achieves outstanding per-
formance in the ALE. The score outperforms the previous quite successful model-based approach
(SimPLe) in some games and is closer to the best one (MuZero). It makes Dyna-style methods
may be a viable approach to MBRL in high-dimensional problems with an imperfect environment
model. The model is typically used by planning methods for multiple sequential predictions, and er-
rors in predictions accumulate quickly with each step. Inspired by the generative adversarial network
(GAN) [22], a validator is proposed to differentiate high-quality simulated experiences generated by
the environment model during multi-step planning. Only the predicted frame is recognized as fake
(low-quality), the planning process will stop, otherwise, it will run to the specified number of planning
steps. With the validator for controlled planning, the learning efficiency is greatly improved and saving
the computational resources for planning.

In addition, the balance between exploration and exploitation is one of the key challenges to the
performance of RL algorithms. Pure exploitation may lead to locally optimal policies. To reach the
global one, exploration is necessary. Based on the above knowledge, the ε-greedy strategy is proposed
to deal with this problem. However, suboptimal actions will be necessarily picked by the unmodified
strategy. Excessive exploration unavoidably degrades the performance of RL algorithms even if it
may accelerate the learning process and allow to neglect the locally optimal policies. Naturally, the
Metropolis criterion from the simulated annealing (SA) algorithm is adopted [44]. The exploration
will gradually decay, leading to convergence towards the optimum.

The main contributions of this work can be summarized as follows:

• To cope with the exploration-exploitation dilemma, the ε-greedy policy with cooling schedule
control of simulated annealing (SA) is used as the action-selection strategy.

• This work proposes a model-based method, called Dyna-Validator. By employing the validator
for controlled planning, the method can alleviate the effect of model errors and obtain high-
quality experiences for policy learning with an imperfect environment model, especially in high-
dimensional domains.

The paper is organized as follows. The second section introduces the proposed model-based
method, Dyna-Validator. The third section summarizes the experimental scenarios and analysis re-
sults. The conclusions and future work are drawn in the final section.

2 Multi-step Planning with Validated Simulated Experiences
In this paper, we focus on model-based approaches to find optimal policies. This study tends

to establish the Dyna-style method as an effective solution in high-dimensional domains. Dyna is a
fundamental method to model-based reinforcement learning (MBRL) that interleaves planning, acting,
and learning. The Dyna-style method is a potentially powerful way in large-scale, high-dimensional
domains.

The challenge for model-based methods is to learn accurate models in such problems. We consider
the environment model that uses a state and action as input and output one possible next state and
reward. For Dyna to take full advantage of a model, it must apply the model to generate valuable
and unfamiliar experiences (replace exploration in the real environment). To explore efficiently, it is
necessary to generate multi-step high-quality experiences from the start state during planning. Due
to the increased number of planning steps, the convergence speed and learning efficiency may be
improved, but the computational resources are likely to be wasted. Undoubtedly, the more planning
steps, the more simulated experience will be generated. However, the environment model cannot
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Figure 2: The proposed Dyna-style method for policy learning. The main difference between our
architecture and the traditional Dyna-style architecture is the addition of a validator to mitigate the
impact of model errors during longer planning steps.

perfectly reproduce the real agent’s behaviors, therefore, the quality of model experience is crucial.
To obtain a good compromise between model accuracy and the optimal planning step length, it is
necessary to control planning reasonably.

The validator (refer Subsection 2.2) is designed to weaken the impact of model error with longer
planning steps, which identifies the low-quality experience by outputting the probability of predicted
frames are real and decides whether to stop the planning process, so as not to waste computational
resources on each planning step and further improve the policy.

As illustrated in Figure 2, the proposed Dyna-style approach consists of three stages: (1) direct
reinforcement learning: the agent interacts with the real environment, collects real experiences (tran-
sitions: frames, actions, next frames, and rewards); (2) environment model learning: the environment
model is learned and refined using real experience; (3) validator modeling for controlled planning: the
validator is learned and refined to differentiate the quality of simulated experience. Then the agent
improves the policy using real experience and high-quality simulated experience generated by the en-
vironment model and the validator. The validator identifies the low-quality experience by outputting
the probability that the prediction frame is true and decides whether to stop the planning process to
avoid wasting computing resources on each planning step and further refine the strategy.

The Arcade Learning Environment is a classic benchmark in RL. The high-dimensional frames have
long been problematic for model-based reinforcement learning. Actions in such games are discrete and
the environments are deterministic. An agent’s interaction with the environment can be formalized
as a discrete-time Markov Decision Process (MDP) in Atari games. At each time step t, the agent
observes the current state St ∈ S and selects an action At ∈ A. After executing the action, the agent
observes the next state St+1 ∈ S. Besides, a reward rt ∈ R can be obtained. The agent’s objective is to
find an optimal policy π, which maximizes the expected return Qπ(s, a) for all s, a, where S is a finite
set of states, A is a set of actions, R is a reward function. The discounted return Gt = rt + γGt+1,
and Qπ(s, a) = Eπ (Gt | St = s, At = a) = E [rt + γQπ (St+1, at+1)].

Deep Q-network. The policy is learned by the vanilla deep Q-network (DQN) method [45].
DQN can obtain valid representations of the environment from high-dimensional sensory inputs, and
learn successful policies using an end-to-end way. The optimal action-value Q′(s′, a′) of the sequence
s′ at the next time-step was known for all possible actions a′. We refer to a neural network function
approximator with weights θ as a Q-network, which can be trained by Eq(1)

L (θ) = E

[(
r + γ max

a′
Q

′ (
s′, a′; θ′) − Q (s, a; θ)

)2
]

(1)

where γ ∈ [0,1] is the discount rate, which determines the present value of future rewards, Q(·) is the
approximated value function, and Q′(·) is the target value function, its parameters only periodically
are updated by copying the Q-network’s parameters.

Finding the proper balance between exploration and exploitation in RL requiring further attention.
The Metropolis criterion from the SA algorithm is introduced into the action-selection strategy to deal
with this problem. The cooling schedule controls the annealing rate and is critical to the performance.
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In RL, the ε-greedy policy is usually employed to tackle the exploration-exploitation dilemma,
with larger ε corresponding to a larger probability of exploration. During the learning process, the
agent needs to extensively search the state space in the early stage, and adequately utilize the optimal
policy in the later stage. As the agent’s knowledge about the environment increases, the proportion
of exploration should decrease. Toward this effect, the cooling schedule of simulated annealing (SA) is
incorporated into the ε-greedy policy. So the probability ε for the action-selection strategy can change
adaptively with episodes.

εn = εf + ε0 − εf

1 + eβ(n−N/5) (2)

where εn, ε0, and εf denote the n-th episode, initial, and final greedy factors, respectively. β represents
the scaling factor and N is the total number of episodes.

Accordingly, the action-selection policy in the n-th episode as{
random, p < εn

argmaxa Q(s, a), otherwise (3)

where p ∈ (0,1) is a random number.
Obviously, the action-selection policy does not greedily reject all the suboptimal solutions, and

can eventually reach the optimal state.
During the direct reinforcement learning process, to balance exploitation and exploration in an

unknown environment, the improved ε-greedy policy, denoted by SA-greedy, is adopted to select the
action. The performance of DQN with two action selection strategies is compared in Section 3.1.

2.1 Environment Model Learning

To enable planning, a suitable environmental model is needed. The environment model should at
least meet the following desiderata. First, the model learning is best to be incremental and adaptive,
since the agent interleaves learning and planning. Second, the model is best to be data-efficient,
in order to improve the data-efficiency of learning value functions. Third, sampling is best to be
computationally efficient.

However, the perfect model is almost non-existent in a large number of tasks, planning with the
imperfect model is often the focus of research. So the basic model architecture is selected from [16],
which can make visually accurate predictions for hundreds of steps in some Atari games. The model
is extended to make reward prediction in [46]. The environment model can achieve more precise
spatial transformations because temporal correlations can be obtained directly from pixels in the
concatenated frames by convolutional filters, whereas it is not suitable for modeling arbitrarily long-
term dependencies because it requires more memory and parameters as more frames are concatenated
into the input. It is almost inevitable for the model to make noisy predictions of high-dimensional
images during multi-step planning.

Environment Model Architecture. The basic architecture, presented in Figure 3(a), consists
of a convolutional encoder and decoder. At each planning step k, the input to the model is four
stacked grayscale frames Sk (as well as the action ak) while the output is the next frame fk+1 and
expected reward, where Sk consists of four stacked frames (fk−1, fk−2, fk−1, fk). The encoder maps
four consecutive histories of previous frames into a feature vector using a series of convolution layers
and fully-connected layers. An action is represented using the one-hot vector, which is integrated
into the feature vector through element-wise vector multiplication. The advantages of multiplicative
interactions have been explored in image processing [47]. After the action transformation, the single
next frame and the current reward are reconstructed by a deconvolution architecture. Notably, the
reward history for the three transitions associated with the input frames is provided as input. By
concatenating the predicted frame with the last three history frames, and running the model forward
another step, the model can make K-step predictions until the validator shows the termination signal
(the predicted frame is considered low-quality) or it reaches the maximal steps (K), where K is the
pre-defined planning step size. The process is shown in Figure 3(c).
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(a) environment model

(b) validator

(c) K-step planning

Figure 3: The illustration of the environment model and the validator for controlled planning: (a)
environment model, (b) validator, and (c) K-step planning. The network uses three different types
of neuron layers (’Conv’ for convolutional layer, ’Deconv’ for deconvolutional layer, and ’fc’ for fully-
connected layer) in combination with two types of activation functions (’ReLU’ and ’Sigmoid’). The
current action is represented as a one-hot vector, then integrated into the compressed feature vector
through element-wise vector multiplication denoted by “X”.
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Model Training. The model is trained to minimize the mean square error (L2 loss) between the
predicted and target frames(denoted f̂κ and fκ respectively) over K-steps. After the action transfor-
mation, the reward predictor outputs a single scalar reward, so the model should also be trained to
minimize the K-step mean square error between the predicted and target rewards (denoted r̂κ and rκ

respectively). Finally, the objective function as

LK = 1
2K

K∑
κ=1

(∥∥∥f̂κ − fκ

∥∥∥2
+ ∥r̂κ − rκ∥2

)
(4)

Note that the input rewards and target rewards are clipped to the same interval [-1,1] like DQN.
Besides, the clipped loss max (Loss, C) for a constant C is used, which is crucial for improving the
model and enables it to concentrate on small but important areas (e.g. the ball in Pong) during the
optimization process. In our experiments, we set C = 15 for L2 loss on predicted frames. Finally, the
model is first trained to make 1-step, 3-step, then 5-step predictions, which is a curriculum approach
to enable stability during training.

2.2 Validator Modeling for Controlled Planning

To make model-based updates more valuable, it is necessary to increase the planning step during
the planning stage, but the model is usually flawed and easily makes unreliable predictions with
multi-step planning. The prediction error at earlier time-steps can severely affect predictions at later
time-steps, so that the model should be highly accurate short-term in order to perform reasonably
longer-term. Achieving high model accuracy has been one of the major issues in high-dimensional
problems. In contrast, it is easier to take some measures to stop the planning process when the
prediction is wrong. The validator is applied to weaken the impact of model error as the number of
planning steps increases on Dyna-style planning.

Validator. The validator, denoted by D, is used to differentiate high-quality simulated experi-
ences and determine whether the prediction process stops during planning. D consists of a series of
convolutional layers and fully-connected layers with a single output, a probability. Its architecture is
illustrated in Figure 3(b). At each planning step k, the validator D predicts the probability whether
a frame fk+1 given frames Sk and actions a is real or made by the environment model, denoted by
G, where Sk consists of four stacked frames (fk−1, fk−2, fk−1, fk). Notably, sticky actions are used
to inject stochasticity into the environment model (repeat_action_probability = 0.25) during plan-
ning [31]. In this paper, the activation function for the validator’s output layer is Sigmoid, only the
probability is greater than the threshold T (we set T = 0.8 in experiments), the predicted frame is con-
sidered real (high-quality). Only high-quality simulated experience can be placed into the experience
buffer, then used for policy learning.

Validator Training. The validator D is trained using the predicted frames produced by the
environment model, and real frames. The mini-batch training is used and the following is the validator
gradient updates: for a given set of 5 consecutive frames and an action, sampled from the replay buffer,
(f1, f2, f3, f4, a, f5).

1
m

m∑
i=1

[log D (f5) + log (1 − D (G (f1, f2, f3, f4, a)))] (5)

Practically, the predicted frames f5 are not only simply reasonable (e.g. positions of the ball and
paddles in Pong), but also fit spatial transformations based on the most recent three history frames,
(f2, f3, f4) and action, a. In summary, to make the Validator classify more precisely and the objective
function can be rewritten as

1
m

m∑
i=1

[log D (f5, f2, f3, f4, a) + log (1 − D (G (f1, f2, f3, f4, a) , f2, f3, f4, a))] (6)

where m represents the batch size.
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Figure 4: Screenshots from six Atari 2600 Games: (Left-to-right) Pong, Space Invaders, Ms Pacman,
Qbert

In the planning process, the environment model G and the validator D are applied to generate
high-quality simulated samples to improve policy. The process is repeated the maximal (K) planning
steps until the predicted frame is considered fake.

In addition, two buffers are used in our method: one for storing real experience and high-quality
model experience selected by the validator, which are used to improve policy, and the other contains
some recent real states, which for all games was multiple episodes of experience. During planning, the
second buffer has two main functions: one is used to train the environment model and the validator,
the other is used to provide start states.

The above describes how the high-quality simulated experience is generated. In theory, it may
take a lot of time to generate valuable samples if the environment model is not well-trained. However,
this never happened in experiments because D is updated whenever G is refined.

3 Experiments
Some sample screenshots from four games from the ALE used for training are shown in Figure 4.

Below we discuss the main reason for selecting each game.
Pong. Pong is chosen for our study due to its simple environment and fast convergence.
Space Invaders. Space Invaders is very difficult to model. The environment model can only achieve
accurate predictions for a few time-steps into the future.
Ms Pacman. Ms Pacman is very difficult to model. The environment model can only achieve
accurate predictions for a few time-steps into the future. The position of Ms Pacman regulates the
movement of the ghosts according to complex rules. Furthermore, the agent is hard to fully explore
certain regions of the state space.
Qbert. Qbert is also a difficult game to model. The environment model is unable to predict accurately
beyond very short-term, because the background is complicated.

In these environments, observation is a high-dimensional visual input (RGB image of the screen).
The original observation (210x160x3) in games is more than we need, so image preprocessing is nec-
essary. First, the image is cropped and downsampled to 84x84x3, and then the color is converted to
grayscale, which means the observation vector is 84x84x1. At each planning step, the model takes a
stack of the last 4 frames, which means the observation vector is 84x84x4, and action (represented as
a one-hot vector) as input, then outputs a single predicted next frame and reward. The frame skips
equal to 4 before a new action is selected. There are at least 3 and at most 18 actions in each game.

3.1 Action selection strategy

Our implementation of DQN used the same hyper-parameters as Mnih et al. [45] with some small
changes used by Machado et al. [31]. At each step, DQN selects an action by the action-selection
strategy. In view of this, a set of experiments are designed to verify the performance of SA-greedy,
compared to ε-greedy (ε = 0.3).

The SA greedy strategy has many advantages over the ε-greedy strategy, but the nonlinear cooling
plan for the exploration rate ε introduces a new hyperparameter, the scale factor β. Finding the
optimal hyperparameter (hyperparameter tuning) for the learning algorithm is often one of the most
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(a) Ms Pacman (with different scaling
factors β)

(b) Pong (c) Ms Pacman

Figure 5: The performance differences of SA-greedy on Ms Pacman using different scale factors β are
shown in (a). The results of DQN with ε-greedy and SA-greedy in (b) Pong and (c) Ms Pacman.

challenging but necessary, so the following work will investigate the effect of scale factor β on the
performance of the SA greedy strategy. Since Pong state space is relatively simple and the performance
difference of different scale factors β is small, Ms Pacman is chosen as the experimental scene. In order
to see the differences more clearly and accurately, only the highest original score was compared; that
is, Formula (7) was not used to reshape the reward. The experiment was repeated three times for each
setting, and the average was calculated. The influence of different proportion factors (β) of SA greedy
strategy on the highest score of Ms Pacman is shown in Figure 5(a). When the scale factor value is
0.5, the score is highest, so it is used in other experiments. From the experimental data, different scale
factors (β) did not significantly impact the experimental results.

Experimental settings. The experience replay buffer size is set to 500k. The discount factor γ
is set to 0.95. The SA-initial greedy factor (ε0) and SA-final (εf ) are set to 1.0 and 0.01, respectively.
The scaling factor (β) is 0.5. The episode number for Pong and Ms Pacman are 500 and 10000,
respectively. The learning rate is 1e-4.

The rewards are normalized to adapt to different games according to [45]. The following rules are
used to formulate rewards: where rs and r are the shaped and original reward and r, respectively. The
shaped reward is used during training.

rs =


1 r > 0
0 r = 0

−1 r < 0
(7)

Figure 5 shows the performance of DQN with different action-selection strategies (ε-greedy and
SA-greedy) in Pong and Ms Pacman.

It is observable that the SA-greedy policy has more advantages with respect to convergence speed
and scores. Pong is relatively simple, and the state space is easy to explore. The SA-greedy strategy
makes the agent explore the environment faster and achieve faster convergence speed than the ε-
greedy. In Pong, the SA-greedy achieves convergence around the 220-th episode and the score is 16,
however, the ε-greedy achieves convergence around the 250-th episode and the score is 15. With much
more complex state space compared with Pong, Ms Pacman is hard to fully explore. However, we
get the same result as Pong. In Ms Pacman, the SA-greedy achieves convergence around the 8000-th
episode and the score is 18, however, the ε-greedy achieves convergence around the 9000-th episode
and the score is 14.

Certainly, the agent explores the environment quickly in the early episode, then utilizes the optimal
policy to accelerate the learning process, and obtains high scores in the later episode. In the subsequent
experiments, we uniformly use the SA-greedy policy as the action selection strategy.

3.2 Environment model with various planning steps

Compared to the perfect copy of the emulator for Atari games, the environment model shown in
Figure 3(a) is relatively flawed. The experiment aims to study the impact of model error and verify
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(a) Pong (b) Space Invaders (c) Ms Pacman (d) Qbert

Figure 6: The results of Dyna-Validator with different planning steps (10, 50, and 100) on four games
compared to Dyna-DQN: (a) Pong (b) Space Invaders (c) Ms Pacman (d) Qbert. The green, black, and
red curves describe the performance of the Dyna-Validator in the three Settings, which outperformed
the Dyna-DQN in almost all episodes.

the performance of the proposed method. The impact of various planning steps is investigated and
the focus is on the performance of the model with multi-step planning.

Learning the model online is often very difficult. Initial model errors may cause the agent behavior
that fails to visit states where the errors occur, and this situation will never be corrected. Besides,
both the model and policy are constantly changing, they may uncertainly influence each other. To
address these issues, we attempt to incorporate a validator for controlled planning.

For planning, start states were selected from a separate buffer containing the 10,000 most recent
real states. Dyna-DQN draws m (m =100 in experiments) start states from the buffer and rolls out
K steps from each, produces a sequence of K states and rewards. These samples are all placed in the
experience replay buffer. DQN is incorporated into the Dyna architecture, called Dyna-DQN, which
is the attempt to combine DQN with planning [20]. Dyna-DQN was trained for 100k real frames, or
equivalently mxKx100k (e.g. the value is 10M when m = 100 and K=1) combined model and real
frames. The training frequency was every 4 steps of real and model experience.

Experimental settings. To train the model online, batches data are sampled from real experience
in the experience replay buffer. The model is trained with a 1-step prediction (batch size 32, learning
rate 1e-4) for 125k updates (500k steps, with training every 4 steps), then followed with a 3-step
prediction (batch size is 32, learning rate 1e-5), finally using a 5-step prediction (batch size is 8,
learning rate 1e-5). Other experimental settings are the same as Subsection 3.1.

The experiments measure the performance of Dyna-Validator with different planning steps (10,
50, and 100) on four games (Pong, Space Invaders, Ms Pacman, and Qbert) from the ALE. To better
evaluate the benefit of our method, we compare several methods.
DQN: the agent was trained only for 100k real frames.
Dyna-DQN: the agents were online-learned with the same environment model in Figure 3(a). The
learning process is described in Subsection 2.1. The planning steps are also set to 10, 50, 100, re-
spectively, which means that model and real frames remain the same. The detail of Dyna-DQN (the
original name is Rollout-Dyna-DQN) is in [20], which is for reference only.
Dyna-Validator(our method): the learning process was described in Subsection 2.1 and Subsec-
tion 2.2, which is the same as Dyna-DQN, but our method is learned with a validator. The number of
simulated experience may be less than Dyna-DQN in the replay buffer, but the quality is guaranteed.

The proposed method aims to weaken the impact of model error during multi-step planning. The
results for the four games are shown in Figure 6. The average reward was recorded for ten independent
runs.

Pong is relatively simple and exploration for the state space is very sufficient. The experience
buffer can easily obtain all the transition information, so there is not much difference with respect
to the mean scores between these methods. However, Dyna-Validator converges more quickly than
Dyna-DQN on the same planning step. The more planning step for Dyna-Validator, the faster the
convergence speed. Dyna-Validator achieves the best performance when the planning step is 100.
Interestingly, the performance of Dyna-Validator on 10-step planning is superior to Dyna-DQN on
100-step planning. The examples of four consecutive predicted images reconstructed by our model
in Pong at various stages during 100-step planning are shown in Figure 7. The model can extract
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Figure 7: Pong: the above and below are the example of four consecutive predicted frames at the early
stage and late stage during 100-step planning, respectively. The ball is in the red circle, otherwise, it
is disappeared.

features of images, including some important information such as the ball, and simulate dynamic
characteristics for the operating environment. The environment model is often hard to predict the
direction of the ball when hit by the agent or the opponent. Quite rarely, the ball may disappear when
hit by the agent (e.g. the fourth frame from left to right at the late stage). According to the results,
these low-quality frames are discarded by the validator, and high-quality simulated experiences can
greatly boost performance.

In the other three games, the performance of Dyna-Validator is similar and cleaner than Pong,
which all show planning with longer steps is more beneficial with respect to the mean scores and the
convergence speed. However, Dyna-DQN’s performance related to the final score is quite different
with various planning steps.

In Space Invaders, the optimal planning step for Dyna-DQN is 50, and the worst one is 100. The
model predicts the ghost’s movement very accurately but almost always fails to the bullet. At the late
stage of 100-step planning, the mean score decreased slightly. Because of the model error, the bullet
may predict difficultly, which affects the result. Small but useful details are easily overlooked due to
the model limitations. The examples of four consecutive predicted images reconstructed by our model
in SpaceInvaders at various stages during 100-step planning are shown in Figure 8. The model can
simulate the entire environment, but the small detail (the bullet) is lost in the fourth predicted frame,
and it is not sure whether the bullet trajectory is accurate. Even at the late stage, the bullet may
disappear occasionally.

In Ms Pacman, the optimal planning step for Dyna-DQN is 10, and the worst one is 100. The
environment model can predict well the movement of Ms Pacman, but fail to predict long-term the
movement of the ghosts in the episodes. In Q-bert, the performance with 100-step planning for Dyna-
DQN is the best, and with 10-step planning is the worst. After the training of a few frames, only the
background is predicted. The agent can explore the environment well to establish the environment
model in the later episode, so the quality of model experience is high and the optimal planning step
is 100.

For Dyna-DQN, some results demonstrate that the trade-off between long-step planning and the
model error is not negligible. For example, the best performance in Space Invader is on 50-step
planning and dropped off in shorter and longer steps. The same finding also appears in other games
and the best performance is often not the longer planning step. However, there is no effective method
to determine the optimal planning steps, which also limits the application of Dyna in high-dimensional
state spaces.

Dyna-Validator with learning the model and validator online achieves a great improvement in all
games. The validator can select high-quality simulated experiences for policy learning. Judging from
the results, it is indeed successful to avoid many low-quality predicted experiences during various
planning steps. During longer steps, because unfamiliar but valuable experience is easier to generate.
the improvement is generally the most obvious.
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Figure 8: SpaceInvaders: the above and below are the example of four consecutive predicted frames
at the early stage and late stage during 100-step training, respectively. The bullet is in the red circle,
otherwise, it is disappeared.

(a) Space Invaders (b) Ms Pacman (c) Qbert

Figure 9: The results of Dyna-Validator on three games with the optimal planning step: (a) Space
Invaders, (b) Ms Pacman, (c) Qbert. We compare performance differences to determine optimal
planning steps.

In summary, the environment model has difficulty in accurately predicting small objects. The
reason is that the squared error is small when the model fails to predict small objects during training.
At the same time, this model is difficult to establish long-term dependencies. Although the models do
generate new objects with reasonable shapes and movements, the predicted frames do not necessarily
match the ground-truth. Dyna-Validator takes advantage of the validator and chooses high-quality
experiences for policy learning during multi-step planning. To a certain extent, it has made up for
some shortcomings of the model.

3.3 Environment model with the optimal planning step

The environment model with various planning steps is evaluated in previous experiments. As the
above result show, the score for Dyna-Validator increases with the increase of planning steps on four
games. Now we try to find the optimal planning step for Dyna-Validator. The challenge is how to
balance the benefits of long steps for planning and the model’s error increasing with planning step size.
Fortunately, the validator has effectively weakened the impact of model error during longer planning
steps, so the optimal planning step is easier to determine.

The experiment allows us to investigate whether a Dyna-style approach with an imperfect model
can achieve competitive performance in comparison with some successful model-based RL algorithms
(e.g. SimPLe and MuZero). We only compare game scores, which is the most common way to evaluate
the performance of RL algorithms.

The experimental setup of Dyna-Validator is the same as Subsection 3.2, but adds various planning
steps for different games to find the optimal one. The number of planning steps is gradually increased
by 10 on the basis of 100 (e.g. 110, 120, 130. . . ) until the best one is found. For each planning
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step, we repeated the experiment 10 times and recorded the mean score. In principle, this process is
finite due to the limitations of the model. The results of the experiment confirmed this hypothesis.
Of course, this is only a rough estimate, we just provide one way to maximize the advantages of the
proposed method.

Note that Dyna-Validator with 100-step planning had got a relatively high score (the highest score
is 21) in Pong. So the results of Dyna-Validator on the other three games except Pong are shown in
Figure 9. In order to make the results more convincing, there are 5 curves for each game: three kinds
of curves (10-step, 50-step, 100-step) are the same as Figure 6, and the other two are the most critical
for determining the optimal planning step.

In Figure 9(a), compared with 180-step planning, the score of 200-step planning behaves rather
similarly in Space Invaders. The optimal planning step is about 180. In Figure 9(b), the score of
150-step planning is closer to 180-step in Ms Pacman. The optimal planning step is about 150. In
Figure 9(c), compared with 120-step planning, the score of 150-step did not increase in Q-bert. So the
optimal planning step is about 120. Clearly, Dyna-Validator with the optimal planning step achieved
maximal scores.

To demonstrate the competitiveness of our approach, maximal scores (original reward) over five
training runs is compared with SimPLe and MuZero in Table 1. In addition to the above four games,
the other six games from the ALE are reported. Compared with SimPLe and Dyna-DQN, Dyna-
Validator shows substantial improvements in all games except Pong. Of course, there is still a big gap
with MuZero. Some policy-based RL algorithms (e.g. Asynchronous Advantage Actor-critic [48]) are
integrated into the Dyna architecture may better narrow the gap.

Table 1: The maximal score of Dyna-Validator on ten games from the ALE compared to DQN, Dyna-
DQN, SimPLe, and MuZero baselines.

Game DQN Dyna-DQN SimPLe Dyna-Validator MuZero

Alien 165.31 325.48 616.90 6923.42 741,812.63
Asterix 341.53 423.46 1,128.30 8635.81 998,425.00
BeamRider 312.75 383.24 621.6 5867.56 454,993.53
Boxing 1.6 3.5 7.8 48.4 100.0
Hero 778.34 1534.21 2,656.60 9621.74 49,244.11
MsPacman 231.62 896.30 1480.0 7563.21 243,401.10
Pong 17 19 13 20 21
Qbert 123.2 455.24 1288.8 5705.63 72,276.00
Seaquest 134.57 277.38 683.3 2894.47 999,976.52
SpaceInvaders 178.25 190.26 367 1783.82 74,335.30

Dyna-Validator benefits from longer-step planning and the performance is less affected by the model
error. Anyway, the imperfect model with learning a validator online narrows the gap with baselines.
With the idea of this proposed method, researchers can focus on improving the model architecture.
This experiment can prove that the validator can improve the performance of Dyna-style methods with
an imperfect model in complex environments. After all, a perfect model is complicated to obtain.

In this experiment, Dyna-style methods show some advantages, which may not be the best way to
solve such problems, but it provides a feasible solution. As a long-term challenge, Dyna-style methods
may represent a promising and highly efficient alternative to model-free RL.

4 Conclusion
This paper proposed a model-based method, Dyna-Validator, incorporating a validator for con-

trolled planning. Through the environment model with various planning steps, the excellent perfor-
mance of the Dyna-Validator is verified in a series of games from the Arcade Learning Environment
(ALE). The experimental results prove that learning dynamic models in some games can benefit sam-
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ple complexity. By correctly choosing the planning step, this benefit will be maximized. During the
optimal planning step, the proposed method keeps a smaller gap with the current state-of-the-art
MBRL (MuZero). With an imperfect model, the optimal planning step length is difficult to deter-
mine, but the validator selects valuable model experience and enables the model’s reliability in longer
planning. So researchers can focus more energy on improvements in model architecture.

Collecting complete experience on state space for modeling is very time-consuming and challenging,
especially in large-scale, high-dimensional domains. With the idea of this paper, the Dyna architecture
can be further applied in high-dimensional state spaces. Dyna-style planning may be a promising
approach to training more successful model-based agents. It is even more expensive to train an agent
in the real world, so dynamics models that are trained incrementally may be useful to transfer policies
back to the real world in future work. Meanwhile, such approaches can enable highly efficient policy
learning from raw sensory inputs in domains such as robotics and autonomous driving. There are still
limitations to the proposed approach that need to be overcome. First, the Dyna-Validator method
proposed in this paper can only select the optimal planning step length by experience, which is not
efficient enough. Therefore, it is of great value to study how to choose the optimal planning step size
adaptively, perhaps by monitoring the model’s accuracy in some way. In addition, the performance
of the proposed planning method is limited by model errors. It would be interesting in the future to
explore how to learn accurate, high-dimensional dynamical models from limited data.
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