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Abstract

Multi-Agent Reinforcement Learning (MARL) is widely used to solve various real-world prob-
lems. In MARL, the environment contains multiple agents. A good grasp of the environment
can guide agents to learn cooperative strategies. In Centralized Training Decentralized Execution
(CTDE), a centralized critic is used to guide cooperative strategies learning. However, having mul-
tiple agents in the environment leads to the curse of dimensionality and influence of other agents’
strategies, resulting in difficulties for centralized critics to learn good cooperative strategies. We
propose a graph-based approach to overcome the above problems. It uses a graph neural network,
which uses partial observations of agents as input, and information between agents is aggregated
by graph methods to extract information about the whole environment. In this way, agents can
improve their understanding of the overall state of the environment and other agents in the environ-
ment while avoiding dimensional explosion. Then we combine a dual critic dynamic decomposition
method with soft actor-critic to train policy. The former uses individual and global rewards for
learning, avoiding the influence of other agents’ strategies, and the latter help to learn an optional
policy better. We call this approach Multi-Agent Graph-based soft Actor-Critic (MAGAC). We
compare our proposed method with several classical MARL algorithms under the Multi-agent Par-
ticle Environment (MPE). The experimental results show that our method can achieve a faster
learning speed while learning better policy.

Keywords: Multi-Agent System, Deep Reinforcement Learning, Graph Neural Network, Soft
Actor-Critic.
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1 Introduction
Reinforcement Learning (RL) learns strategies by interacting with the environment[1, 2]. In re-

cent years, deep learning has been widely used in various fields, such as garbage classification[3], fault
detection[4], stock prediction[5], image processing[6, 7], etc. Combining deep learning and reinforce-
ment learning effectively solves the curse of dimensionality in reinforcement learning. It enables rein-
forcement learning to be widely used in various complex tasks. Deep Reinforcement Learning (DRL)
has achieved excellence in areas such as Go[8] and robot control[9] especially in video games[10], even
beyond human performance. DRL is currently used for many more complex real-world tasks, such
as control design for unmanned aerial vehicle[11], resilient road network recovery[12] and navigation
control[13]. Multi-agent reinforcement learning is a branch of RL that aims to jointly control multiple
agents in an environment so that agents learn to cooperate with other agents to accomplish tasks.
Many algorithms in MARL are influenced by high-dimensional state and action spaces because it is
difficult for agents to learn good cooperation policies in high-dimensional state spaces. The combina-
tion of MARL and deep learning can overcome the problem of high-dimensional state spaces to some
extent due to the powerful representational capabilities of deep learning. Nevertheless, it is still an
open question of how to process a large amount of information in an environment with many agents
so that agent learns good cooperation strategies.

To solve the problems mentioned above, many MARL methods have been proposed. Using a single
agent-based RL algorithm[14] to train each agent independently is a natural idea. However, in this
approach, agents treat other agents as part of the environment. In such an unstable environment, it is
difficult for independent single-agent RL algorithms to learn good policies, let alone how to collaborate
with other agents. Multi Agent Deep Deterministic Policy Gradient (MADDPG)[15] proposes an actor-
critic architecture-based MARL algorithm based on Deep Deterministic Policy Gradient (DDPG),
which learns the cooperation of multiple agents through a centralized training, decentralized execution
paradigm. MADDPG constructed a centralized critic, which uses the observations and actions of all
agents as input to assess the value. Actors in decentralized implementation use their observations as
input to learning collaborative strategies under the guidance of centralized critics. This paradigm is
known as centralized training and decentralized execution. In one case, the good action of the current
agent may not achieve good returns because of the action of other agents. COMA[16] further proposes
a CTDE-based counterfactual baseline approach to predict a virtual return as a baseline. With a
counterfactual baseline, COMA achieves a credit assignment under multi agents, avoiding strategic
interference from other agents and helping agents learn cooperative strategies while minimizing the
influence of other agents as much as feasible.

MADDPG and COMA need to use all agents’ state and observation data when constructing their
centralized critic networks. As the number of agents increases and a large amount of information is used
to evaluate the network, it becomes difficult for the critic network to focus on the most important parts
among a large amount of redundant information. The network becomes increasingly difficult to be
trained. When the number of agents increases, in order to filter out the most important information for
the current agent from a large amount of information, MAAC[17] introduces an attention mechanism
to the centralized critic network to solve this problem. MAAC takes the state of the current agent as
a query and the state of other agents as the key. The states and actions of other agents is the value.
Attention weights are calculated by comparing the states between different agents. The attention
weights are used to weigh the states and actions of all other agents to obtain highly encoded global
information, which is used for value assessment by critics after concatenating the observations of the
current agent. MFMARL[18] proposes the mean-field approach, which solves the problem of strategic
interference of large-scale agents from another perspective. MFMARL proposes the hypothesis of a
multi-intelligent system: For a particular agent, the effect of all other agents on it can be replaced
by an average effect. The interaction between an agent and its neighboring agents is considered an
interaction between two agents. ATOC[19] proposes a soft attention-based communication mechanism
to decide when an agent should communicate with other agents.

Graph neural network (GNN)[20] is a special kind of neural network structure designed for tasks
with graphical relations. GNN was originally used for social networking, point clouds, and other issues.
In recent years, some advanced work has introduced GNN into drug development and computer vision
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and achieved remarkable results. Many real-world problems, such as social networks and point clouds,
can be constructed as graphs. A multi-agent system can use a graph to depict the relationships
between the agents. Due to this unique ability of GNN to be compatible with multi-agent systems,
the powerful information construction capability of the graph has attracted the attention of many
MARL researchers. Sequence invariance means that changing the agent order will give the same
output value in a centralized critic network. However, the critic network of multilayer perceptron
(MLP) used in MADDPG uses a concatenation of all agents’ observations and actions, so it does not
have sequence invariance. PIC[21] experimentally demonstrated that changing the order of different
agents in a sample can improve sample efficiency. The method constructs a centralized critic using
GNN, which achieves close to MLP and performs better in scenarios with a larger number of agents.
GCS[22] uses GNN to generate a cooperation graph that identifies the neighboring agents that each
agent needs to interact with and then forms a graph-based cooperation policy based on this.

In some environments where individual rewards are available, direct single-agent reinforcement
learning for training treats all other agents as part of the environment. Although strategic interference
is avoided in CTDE, in this case, while simple tasks can be learned, good cooperative strategies cannot
be learned. DE-MADDPG[23] uses two critics to focus on individual and collective rewards, combined
with the MADDPPG method to avoid strategy interference effectively. DD-MADDPG[24] proposes a
dynamic decomposition method based on DE-MADDPG, which gives different weighted attention to
the two assessment networks at different stages.

The performance of methods such as MADDPG can break down due to strategic interference,
while GNN-based methods can overcome this problem very well. We propose a GNN-based approach
to overcome inter-agent strategic interference. The method consists of three components based on a
stochastic policy, which includes partial observation encoder for the homogeneous agent, graph-based
state encoder, maximum entropy reinforcement learning combined with the dynamic decomposition
of the dual critic. A partial observation encoder encodes partial observations of a homogeneous
agent using an encoder with the same parameters, mapping them to a uniform dimension for easy
processing by subsequent modules. In this module, information from other agents is aggregated to
the node after propagation of the K-layer graph. The GNN in our state encoder takes its inspiration
from GraphSage[25]. At each layer, the summary information of the upper layer features of this node
is concatenated with the upper layer features of other nodes. Through this GNN state encoding
module, the state information of other agents can be aggregated. When facing many agents, the
proposed method can avoid curse of dimensionality, maintain good feature extraction ability, and avoid
strategic interference from other agents. Soft Actor-Critic (SAC)[26] is a stochastic policy algorithm
that introduces maximum entropy reinforcement learning. The deterministic policy algorithm learns a
policy such that the cumulative reward expectation is maximized. As for the SAC, in addition to the
above basic objectives, it requires that the action entropy of each output of the policy is maximized.
That is, the probability of each output action is spread out as much as possible rather than being
concentrated on one action.

Our contributions are as follows:
(1) A graph-based state encoder that extracts agent states in a multi-agent environment while

avoiding the curse of dimensionality. The features extracted by this module that contain a good grasp
of the environment lead to good cooperation strategies.

(2) Based on (1), a combination of soft actor criticism and dynamic decomposition dual critic
methods is proposed. The method trains the optimal cooperative strategy while avoiding the strategic
influence of other agents.

We tested our proposed MAGAC with two classical algorithms of MARL in an MPE environment.
We examined the algorithm’s robustness in relation to the number of agents. Experiments show that
the results of our proposed MAGAC method outperform other algorithms.

The rest of the article will be organized as follows. The second section will present all the prereq-
uisite knowledge used. The third section will present our approach. The fourth section will compare
our approach with other MARL algorithms in a simulation environment. Finally, the fifth section will
give the conclusion.
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2 Background

2.1 Markov games and multi-agent reinforcment learning

The Markov decision process can be extended to partially observable Markov decisions when
the number of agents is more than a single. In a Markov game with N agents at time t, There
are defined with state st, which describes the status of the entire environment at time t. The MA
system gets the joint observations of time t: ot = (ot1, · · · , oti, · · · , otN )form state s, which is partial
information of state st. Agents in the environment take joint action: at =

(
at1, · · · , ati, · · · , atN

)
.

After taking action, the environment can be moved to a new state according to a state transfer
function: T = P

(
st+1∣∣st × at1 × . . .× atN). in the next time. As states are changing, rewards are

given in the environment in relation to the preceding and following states and the action being taken
rt : st × at1 × . . .× atN → R, which joint reward:rt =

(
rt1, · · · , rti , · · · , rtN

)
. In an experimental scenario

with fully shared rewards, rt1 = · · · = rti = · · · = rtN . Each agent learns a policy πi : oi → P (ai)
that maximizes the cumulative expected reward based on the observed selection action. where the
cumulative expected reward is as:

Ji (πi) = Ea1∼π1,...,aN∼πN ,s∼T

[ ∞∑
t=0

γtrti

(
st, a

t
1, . . . , a

t
N

)]
(1)

Where γ ∈ [0, 1] determines the strategy’s balance of forwarding and near-term rewards. The state
transfer function T = P

(
st+1∣∣st × at1 × . . .× atN) determines the reward. From the equation, we can

see that the policies of other agents influence agent i in the learning process because the joint action
of all agents determines the state transfer from moment t to t+1, which is one of the core problems
in MARL. Off-policy reinforcement learning uses a replay buffer to improve sample utilization. The
system interacts to generate transactions and samples the transactions in the experience pool to update
the parameters of the policy.

2.2 Maximum entropy reinforcement learning and soft actor-critic

We discuss maximum entropy reinforcement learning and soft actor-critic in the context of single
agent reinforcement learning.

2.2.1 maximum entropy reinforcement learning

Unlike standard reinforcement learning that maximizes the expected return∑tE(st,at)∼ρπ [r (st, at)],
maximum entropy reinforcement learning adds a political entropy term to the expected return which
mean that:

J (π) =
T∑
t=0

E(st,at)∼ρπ [r (st, at) + αH (π (· | st))] (2)

the term H (π (· | st)) implies a more uniform action of policy output in the face of the same state.
It encourages the exploration of policy rather than resting on local optimal policy, which means that
the strategy can learn more near-optimal actions. So there may be more than one action that is
optimal in some states. The more uniform the probability distribution of the optimal action, the
global optimal policy can be learned. The parameter α controls the importance of the relative reward
to the stochastic policy. The larger the parameter α, the more the policy converges to the optimal
policy and the objective changes to classical reinforcement learning when α→ 0.

2.2.2 Soft Actor-Critic

The Actor-critic method[27] uses neural networks Q to approximate the expected returns, effec-
tively overcoming the large variance problem of the expected returns. The neural network Q can also
be called ad critic. The learning of critic network can be minimized by minimizing the following loss
through the Td-error method:
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LQ
(
θQ
)

= E(s,a,r,s′)∼B
[
(QθQ (s, a)− y)2

]
(3)

y = r (s, a) + γEa′∼π(s′)
[
QθQ̄

(
s

′
, a

′)] (4)

where B denotes the mini-batch of experiences sampled from the replay buffer in the off-policy
RL. QθQ̄ denotes the target Q-network[28], which is used to maintain algorithm stability. The same
approach is not used in the policy network. With the help of a critic network, policy learning with
Actor-critic can be expressed as:

∇θπJ (πθπ) = Es∼D,a∼π [∇θπ log (πθπ (a|s))QθQ (s, a)] (5)

Actor-critic can be improved to Soft Actor-Critic by adding the maximum entropy term to the
learning objective of the policy network.

∇θπJ (πθπ) = Es∼D,a∼π [∇θ log (πθπ(a | s)) (−α log (πθπ(a | s)) +Qθ(s, a))] (6)

2.3 Graph neural networks

Unlike MLPs, graph neural networks are deep networks that operate on graph structures. The
inputs to the network are nodes with a set of edges. In MADDPG’s Critic, swapping observation of
two other agents changes the network’s input, while GNN has Sequence Invariance, which improves
sample efficiency. There are currently many variants of the GNN approach. Graph Convolutional
Nets[29], GraphSAGE, which uses a limited number of interacting nodes, allowing training to extract
some subgraphs from the entire set for mini-batch, extending the application of the graph set approach
to large-scale graph data. GAT improves the graph propagation mechanism by using the attention
mechanism, which gives different attention to different graph nodes. The input graph of GNN can be
expressed as G = (V,E). That is, we define a Graph G as a set of nodes V, with a set of edges E
connecting them. E represents the connection relation on the graph. Each node can be represented
as a vector h. GNN iterates over the node vector and aggregates node information to update node h
in each iteration.

h
(k)
i =

∑
j∈N(i)

FC(k)
(
h

(k−1)
i , h

(k−1)
j

)
(7)

3 Algorithmic contribution
MAGAC is based on a maximum entropy Actor-critic method. It consists of three parts: a partial

observation encoder, a GNN-based state encoder, and an Actor-critic based on maximum entropy and
dynamic decomposition methods. We will introduce each of these three parts and the whole model
training method in this section.

3.1 Problem formulation and partial observation encoder

In the MPE environment, an agent’s observation consists of several components. As shown in Fig-
ure 1, the blue circles indicate the agents, and the black circles indicate landmarks in the environment.
All agents and landmarks are contained within a two-dimensional graph.

All agents and landmarks are randomly initialized in each episode. Each agent can obtain its
absolute position relative to origin and velocity. The absolute position of agent i is pi = (pxi , p

y
i ),

which contains two directions of position. Similarly, the velocity of A is expressed as vi = (vxi , v
y
i ).The

relative positions of landmarks Oi and A are denoted as pioj =
(
pixoj , p

iy
oj

)
.The positions of all landmarks

in the environment relative to A are expressed as pio =
(
pio1, . . . p

i
oi . . . p

i
oM

)
. M denotes the number of

landmarks observed in the environment by agent i. Similarly, the position of other agents relative to A
can be expressed as pia =

(
pia1, . . . p

i
aj . . . p

i
aN

)
. N denotes the number of agents that can be observed
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Figure 1: Description of the environment.

in the environment by agent i. In the fully observed setting, it is also possible to obtain the relative
positions of other agents in the environment by agent i. The physics engine model of the environment
is a second-order integral model, the environment has inertia, and agent collision with landmarks will
generate mutual forces. In a scenario with N agents and M landmarks, the observation of agent i
can be expressed as oi. oi =

[
pi, vi, p

i
o, p

i
a

]
in methods such as MADDPG and MAAC that use full

observation. We use partial of the observations oi =
[
pi, vi, p

i
o, p

i
a

]
, as initial graph node information,

and the information between agents is summarized by the graph. The graph uses graph feature nodes
of uniform dimension. In contrast, the observation dimension is different for different agents, so the
observations of agents need to be preprocessed by an partial observation encoder and compressed to a
fixed size and length. The partial observation encoder uses the same parameter for the homogeneous
agent. The encoder can be expressed as follow:

hi = e (oi|wc) (8)

Where c indicates the category to which the agents belong. The parametric scale of the observation
encoder is only related to the number of classes of agents, so it does not increase as the number of
agents increases.

3.2 Graph based state encoder

In RL systems, the agent interacts with the environment to maximize the expected reward con-
tinuously. Because there are other agents in the MARL environment; the environment becomes more
unstable, which makes learning cooperative strategy more difficult. During the graph propagation
accompanied by message passing between nodes, GNN aggregates information from other agents in
the environment and iterates into a new feature h. Unlike the classical GNN, our state encoder is
inspired by GraphSage and uses concatenation in each layer of iteration. The state encoder takes the
output of the partial state encoder hi as the input node of the graph h0

i . State encoder updates graph
nodes using K aggregation layers:

{
f (1), . . . , f (K)

}
. Correspondingly there are K aggregation func-

tions, denoted by AGGREGATE k,∀k ∈ {1, . . . ,K} which aggregates information from other agents.
These aggregate functions will aggregate information from other agents.

Two more sets of weights are needed in each layer iteration:W k
v , ∀k ∈ {1, . . . ,K}, and W k

f , ∀k ∈
{1, . . . ,K}. The former is used to process the aggregated information, while the latter is used to
process the concatenated information.

Algorithm1 describes the processing of the graph state encoding module: in each iteration, nodes
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Algorithm 1 Graph-based state encoder.
Define:

input features : hi, ∀i ∈ N
K := times of GNN iteration
W k
v , ∀k ∈ {1, . . . ,K}

W k
f , ∀k ∈ {1, . . . ,K}

σ := non− linearity
AGGREGATEk,∀k ∈ {1, . . . ,K}
h0
i ← hi ∀i ∈ N

for k = 1...K do:
for i in N :
hk ← AGGREGATEk

(
W k
V h

k−1
j ,∀j ∈ N

)
hki ← σ

(
W k · CONCAT

(
hk−1
i , hkN

))
end for

end for
Output := si ← hKi , ∀i ∈ N

aggregate information from their other nodes, and as this process iterates, the nodes gain more in-
formation from other agents in the environment. k denotes the number of graph iterations, and we
choose K = 3. To compute the aggregation we use average function, which brings together the vectors
of all other nodes on average. This aggregation is the same as the convolutional propagation of GCN.
After aggregation, hk−1 is concatenated with hk−1

i after a full concatenation, and the concatenated
features are subjected to a full concatenation and activation function. The obtained output is used
as the new node feature hki . The node feature hKi after K iterations is used as the output si of the
whole module. The only parameters that need to be trained in this module are W k

v ,∀k ∈ {1, . . . ,K}
and W k

f , ∀k ∈ {1, . . . ,K} for each layer, which has the advantage that the number of parameters does
not increase rapidly when the number of agents increases.

Figure 2: Overall architecture of the algorithm.

3.3 SAC with dynamic decomposition of dual-critic

In many scenarios, the agent’s individual rewards are available. To reduce the impact of other
agents’ policies on the current agent training, based on GNN’s state encoder module, we will introduce
the dynamic decomposition of the dual-critic method. The algorithm uses individual reward critics and
collective reward critics to evaluate policy. In the early stages of training, more attention is given to
individual rewards, and agents are instructed to learn simple tasks first. During this process, the weight
of collective rewards increases, and agents are instructed to learn teamwork. The importance of the
dual-critic changes dynamically in the training process. It enables agents to transition from individual
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to collective learning adaptively. We set up two critics. One uses a single agent’s observations to
evaluate actions, called the local critic. The local critic uses si to evaluate the individual rewards for
an action. Another critic, called the global critic, evaluates the collective reward of an action using si
and the actions of all other agents as input. Dynamic adjustment of the importance of two critics to
guide policy learning. The gradient of local critics is

∇lθπi J
(
πθπi

)
= Ea∼πθπ

i

[
∇θπi log

(
πθπi (ai|si)

) (
α log

(
πθπi (ai | si)

)
−Qi (si, ai)

)]
(9)

The gradient of global critics is

∇gθπi J
(
πθπi

)
= Ea∼πθπ

i

[
∇θπi log

(
πθπi (ai|si)

) (
α log

(
πθπi (ai | si)

)
−Qg

θQ
(si, a)

)]
(10)

Total gradient:

∇θπi J
(
πθπi

)
= w1 ∗ ∇gθπi J

(
πθπi

)
+ w2 ∗ ∇lθπi J

(
πθπi

)
(11)

w1 and w2 denote attention to different critics, respectively. w2 is initialized to 1. and decays with
the training process.

w2 = w2 ∗ decay and w1 = 1− w2 (12)
The updates to the local critics are as follows

LQi
(
θQi

)
= Es,a,r,s′

[(
Q
θQi

(si)− yi
)2
]

(13)

Where

yi = ri + γ
[
Q
θQi

(
s′i, a

′
i

)
− α log

(
πθπi

(
a′i | s′i

))]
(14)

The updates to the global critic are as follows

LQg
(
θQ
)

= Es,a,r,s′

[(
Qg
θQ

(si, ai)− yg
)2
]

(15)

Where

yg = rg + γ
[
Qg
θQ

(
s′i, a

′
i

)
− α log

(
πθπi

(
a′i− | s′i

))]
(16)

Algorithm 2 Graph-Based Soft Actor Critic for MARL.
Initialize all network and replay buffer
for episode e = 1 to T do:

for time steps t = 1 to episode length do:
Get union observation ot from environment
Get ht by Equation 8
Get st by Algorithm 1
For each agent i, select action ati = πθπi

(
sti
)

Execute joint action at and get union observation ot+1 and rt

Store transaction to replay buffer
if e % d == 0 then:
For each agent i update local critic by minimizing Equation 13
Update global critic by minimizing Equation 13
For each agent i update policy according Equation 11
Update w1 and w2 according Equation 12
Update all target network parameters

The overall architecture of the algorithm is shown in Figure 2. ati donates the joint action at time
t except for the action of agent i. The partial observation gets preprocessed to hti, which has a fixed
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dimension. Then graph-based state encoder uses ht extract st. Policy network gets action by sti and
is trained with the dynamic decomposition of duel critic. The detailed training process is shown in
Algorithm 2.

4 Experiments
This section describes the setup of the experiment, the baseline used for comparison, and the

hyperparameters used in the experiment. We tested and evaluated our algorithm in multi-agent
particle environment. A diagram of the application of MAGAC in the environment is shown in
figure3.

Figure 3: Overall architecture of the algorithm.

4.1 Experimental environment

We tested three scenarios under MPE, with the following details for each scenario, as shown in
Figure4. The scenarios focus on target tracking and formation and can be used as a reference for
practical applications.

(a) Cover control (b) Formation Control (c) Predator-prey

Figure 4: An overview of the MPE environments used in the experiments.
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4.1.1 Cover control

Here there are N agents and N landmarks. Agents are rewarded if they approach the corresponding
landmarks and punished if they collide with other agents. Agents need to learn to cover all the
landmarks while avoiding collisions with other agents.

4.1.2 Formation Control

Here there are N agents and one landmark, and the agents are distributed as evenly as possible
around the landmark to form an equilateral polygon. The reward increases according to the similarity
of the agents to the equilateral polygon.

4.1.3 Predator-prey

Predator-prey scenario is means chase, with three red hunters, several black roadblocks, and red
prey. The prey takes inspired action, and the hunters need to learn to cooperate to complete the chase
of the prey. If the hunters collide with each other, they are punished. Each agent can see the relative
positions of the other agents. The prey is faster than the hunters, so the hunters need to learn to
cooperate.

4.1.4 Experimental Details setting

Table 1: The parameters used for all algorithms in the experiments.
MASAC MAAC MADDPG

buffer size 1e6 1e6 1e6
mini batch size 128 128 128

lr-actor 0.001 0.001 0.001
lr-critic 0.001 0.001 0.001
decay 0.001 0.001 0.001
gamma 0.99 0.99 0.99

Temperature parameters α 0.02 0.02 0

MADDPG and MAAC are both classical MARL algorithm. All three experimental algorithms
are based on the AC structure. MAAC and MAGAC introduce a maximum entropy reinforcement
learning method based on the AC structure. All three algorithms use the same training method and
hyperparameter settings, and all employ techniques such as target networks to verify the effectiveness
of our methods. The parameters are set as shown in the table 1. Each hidden layer consists of 128 cells.
We use the adam optimizer to train all neural networks, which automatically adjusts the learning rate
during training to improve the stability of the training. For all scenarios, we used a length such that
each scene had 25 steps and trained 5000 episodes for each scenarios. For each scenario, five random
seeds were run.

4.2 Result and analysis

We evaluate the algorithm’s performance mainly regarding learning stability and global reward.
The global reward plot can directly demonstrate how effectively the agent learns the policy during the
different training phases. In addition, the average reward and confidence interval of the last episode
can be digitized as a better indicator of the final strategy learned by the algorithm. To verify the
robustness of the proposed method when the number of agents increases, we compare the algorithm’s
performance by increasing the number of agents in the same experimental scenario.

Figures 5, 6 and 7 show how the global reward of the agents varies with the training process. The
lighter area is the error band under the five random seeds, and the darker area is the average of the
five experiments. Table 2 shows the last episode’s average reward and confidence interval for the three
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Table 2: The mean global reward in the last episodes on 1000 times. In scenarios A and B, where
individual rewards are available, we tested MAGAC in combination with the Dual critic Dynamic
decomposition method, named MAGAC-DD. * means increasing the number of agents in the same
scenario. Cover* and Formation* contain 10 agents, Predator-prey* contains 8 agents

MASAC MASAC-DD MAAC MADDPG
Cover -133.22 -131.02 -138.4 -147.09

Formation -18.18 -19.84 -31.03
Predator-prey 128.12 141.30 67.32 82.24

Cover* -1052.87 -1011.04 -1507.21 -1159.07
Formation* -47.23 -52.75 -88.31

Predator-prey* 604.43 759.09 376.53 236.49

(a) Cover control (b) Formation Control

Figure 5: Graph of average global rewards with training episodes.

algorithms under different experimental scenarios. Overall, our MAGAS algorithm’s learning stability
and global reward generally outperformed the baseline algorithm to a greater extent.

For the Cover task, as shown in Figure 5a, MAGAC slightly outperforms the MADDPG method
in terms of global reward and has some advantages compared to MAAC. In the global average reward
metric of the final episode, MAGAC achieves -133.22, MAAC achieves -138.40, and MADDPG achieves
147.90. MADDPG is significantly slower than the other two in convergence speed, and MAAC is
closer to our MASAC. It is because MAAC and MAGAC use the maximum entropy reinforcement
learning method. Meanwhile, in the Formation environment, the performance of the three algorithms
is similar to that in the cover scenario, with MAAC and MAGAC performing similarly and MADDPG
performing somewhat worse.

(a) Cover control* (b) Formation Control*

Figure 6: Graph of average global rewards with training episodes when number of agent increase.

In the predator-prey scenario, the reward plot is not as smooth as in the previous environment for
several reasons.1: in the predator-prey scenario, the reward is sparse. In the case of sparse rewards, the
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predator can only get rewards after cooperating to complete the capture of the prey.2: The scenario
is competitive. The same predator’s policy will act differently when dealing with different prey, so the
reward of the scenario is more random, which leads to different performances of the same policy in a
different episode. In contrast, in the cover scenario, the reward gradually increases with the distance
to the target, and the reward changes continuously.

(a) predator-preyl (b) predator-prey*

Figure 7: Graph of average global rewards with training episodes in predator-prey of different number
of agent.

One possible reason for the poor performance of MAAC and MADDPG in the Predator-prey
scenario is that it is difficult to differentiate information about other agents in the evaluation network
of MAAC and MADDPG. The actions taken by prey agents are difficult to be learned by their
centralized review network, which leads to difficulty in converging the critic network.

In the same environment, we expand the number of agents to verify the robustness of our approach
when the number of agents increases. Under the cover task, as shown in the figure5, the advantage of
MAGAC over MAAC and MADDPG becomes more obvious. The learning of MADDPG is relatively
stable, but the effect of MAAC starts to drop sharply after a training period, and the effect eventually
collapses. The reason may be that the attention weights in the attention mechanism in MAAC are
difficult to train when there are too many agents.

We also conducted ablation experiments on the dual critic dynamic decomposition method in cover
control scenario and predator-prey scenario. The experimental results show that the DD method can
show a slight advantage in the original scene, which is more obvious when the number of agents
increase.

5 Conclusion
We propose a graph-based soft actor-critic approach for the curse of dimensionality and influence

of other agents’ strategies in multi-agent reinforcement learning. In MARL, a good grasp of the
environment and the state information of all agents can guide agents to learn cooperative strategy
better. This method uses the agent’s partial observation as the input feature node of the graph and
aggregates other agent information through the graph neural network. After several graph iterations,
the feature encoding of the agent state is obtained, which contains an understanding of the whole
environment from the current agent perspective. This module better extracts the state of an agent
in a multi-agent environment while avoiding the curse of dimensionality when there are too many
agents. Then a combination of soft actor-critic and dynamic decomposition dual evaluation network
methods is used to train the policy. This method trains optimal cooperative strategies while avoiding
the influence of the strategy of other agents.

We have conducted comparison experiments with classical baseline algorithms under MPE, which
show that our algorithm can obtain higher rewards and has a faster learning speed. The advantage
of our approach is more pronounced when the number of agents increases means that we effectively
overcome the curse of dimensionality and the influence of other agents’ strategies associated with the
increasing number of agents.
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