
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 18, Issue: 2, Month: April, Year: 2023
Article Number: 5049, https://doi.org/10.15837/ijccc.2023.2.5049

CCC Publications

Directed Search Based on Improved Whale Optimization Algorithm
for Test Case Prioritization

Bin Yang, Huilai Li, Ying Xing, Fuping Zeng∗,
Chengdong Qian, Youzhi Shen, Jiongbo Wang

Bin Yang
China Unicom Research Institute
No. 9 Shouti South Road, Haidian District, Beijing 100048, China,
researcher_yang@outlook.com

Ying Xing, Huilai Li
School of Artificial Intelligence
Beijing University of Posts and Telecommunications, China
No. 10, Xitucheng Road, Haidian District, Beijing 100876, China
xingying@bupt.edu.cn, lihuilai@bupt.edu.cn

Fuping Zeng*
School of Reliability and Systems Engineering
Beijing University of Aeronautics and Astronautics, China
No. 37, Xueyuan Road, Haidian District, Beijing 100191, China
*Corresponding author: zfp@buaa.edu.cn

Chengdong Qian, Youzhi Shen, Jiongbo Wang
Phytium Technology Co., Ltd., China
7th Floor, Quantum Core Block, Zhichun Road, Haidian District, Beijing 100086, China
qianchengdong@phytium.com.cn, shenyouzhi@phytium.com.cn, wangjiongbo@phytium.com.cn

Abstract
With the advent of the information age, the iterative speed of software update is gradually

accelerating which makes software development severely limited by software testing. Test case
prioritization is an effective way to accelerate software testing progress. With the introduction of
heuristic algorithm to this task, the processing efficiency of test cases has been greatly improved.
However, to overcome the shortcomings of slow convergence speed and easy fall into local optimum,
the improved whale optimization algorithm is proposed for test case prioritization. Firstly, a
model called n-dimensional directed search space is established for the swarm intelligence algorithm.
Secondly, the enhanced whale optimization algorithm is applied to test case prioritization while the
backtracking behavior is conducted for individuals when hitting the wall. In addition, a separate
storage space for Pareto second optimization is also designed to filter the optimal solutions of the
multi-objective tasks. Finally, both single-objective and multi-objective optimization experiments
are carried out for open source projects and real-world projects, respectively. The results show
that the improved whale optimization algorithm using n-dimensional directed search space is more
conducive to the decisions of test case prioritization with fast convergence speed.

Keywords: software testing, test case prioritization, swarm intelligence algorithm, whale op-
timization algorithm, directed search space.

https://doi.org/10.15837/ijccc.2023.2.5049 2

1 Introduction
Under the diversified user requirements, the software system is updated iteratively more frequently[1].

To discover new defects after software upgrading, necessary tests must be carried out[2]. However,
every time a software is upgraded, new test cases need to be added to the original test case set, which
leads to a gradual increase in test costs due to its large scale[3, 4]. Especially for large-scale software
regression testing, the process may take a long time. Enterprises often need to set up pretreatment
modules to complete production more efficiently[5, 6]. Wong et al.[7] first proposed research on test
case prioritization (TCP). By handling the test cases and determining the test order according to the
priority, the test cases that can cover more nodes can be executed early so that the internal defects
can be found faster, and the time consumed for software testing can be significantly reduced[8, 9].

Test case prioritization is a pre-decision process for software testing. The test cases that can
achieve faster full coverage of the system will be prioritized first. TCP technology plays a vital role
in reducing the cost of software testing and speeding up the progress of digital testing[10]. Most
of the early studies focused on prioritizing itself. For example, Fan Hui et al.[11] gave methods of
total prioritization algorithm and additional prioritization algorithm according to the definition of
test case prioritization. However, it has been proved that the prioritization of test cases belongs to a
NP-hard problem[12], so the search without information or search with information can hardly meet
this requirement. As we know, the overall prioritization scale of test cases is much larger than the
scale of the test cases themselves, which is the main problem to be faced in TCP.

With the advance of the research on test case prioritization, the solution to this problem has
gradually transited to intelligent algorithms. For example, Dharmveer et al.[13] proposed a fuzzy
inference system, which uses the fault detection rate and program execution time as indicators to
verify its effectiveness[14]. Zhang et al.[15] proposed an intelligent test case prioritization method
based on the genetic algorithm. They designed corresponding coding strategies, crossover operators,
mutation operators, and fitness functions for program coverage, which improved the automation level
of software testing. Xu et al.[16] designed an intelligent test case prioritization algorithm based on the
artificial immune algorithm (IA), which has great global search performance. Among these intelligent
algorithms, the performance of swarm intelligence algorithm is more obvious. The swarm intelligence
algorithm with the advantages of good convergence and comprehensive optimization can effectively
avoid falling into the problem of local optimization.

The so-called swarm intelligence algorithm is an optimal search that simulates the intelligent ac-
tivities of natural creatures. After setting the population and specific rules, it can completes the
search task in the search space [17–20]. It can give consideration to both the purpose and randomness
of the search. At present, more and more researchers the use swarm intelligence algorithms to solve
the TCP problem and have achieved good results. For example, Andreea et al.[21] proposed a test
case prioritization strategy based on the ant colony algorithm (ACO). They tried to find the most
significant fault with the highest severity first according to the number and severity of defects. Xing et
al.[22] used the artificial fish school algorithm (AFSA) to optimize the test case prioritization by using
the swarm behavior, foraging behavior, and tail-chasing behavior and verified its effectiveness through
experiments. Gouda et al.[23] combined the Crow search algorithm and chaotic Drosophila optimiza-
tion algorithm to enhance the optimization results of test case prioritization. Anu and Sangwan[24]
use the bat algorithm to research the TCP problem, and their results are greatly improved compared
to traditional methods. Manar et al.[25] designed an improved Harris Hawk optimization algorithm
to improve prioritizing efficiency in many ways. Bajaj et al.[26] used the discrete cuckoo search
algorithm and introduced the adaptive strategy of asexual reproduction to reasonably improve the
solutions. Through reasonable search principles, the swarm intelligence algorithm can complete the
global search[27]. At the same time, it has improved in solving the problems of falling into the local
optimum (LO) and converging too fast.

However, in the past, when the swarm intelligence algorithm was used to solve the TCP problem,
it often only improved the solution of the optimal agent without establishing a clear search space.
This paper applies a whale optimization algorithm (WOA) further improve the solution to the TCP
problem through reasonable modeling. The whale optimization algorithm is a new method after the
Grey Wolf algorithm which has the advantages of few input parameters, strong independence of the

https://doi.org/10.15837/ijccc.2023.2.5049 3

search mechanism and fast solving speed[28, 29]. However, the initial whale optimization algorithm
converges quickly and sometimes falls into local optimization[30]. Therefore, a whale optimization
algorithm with an enhanced search mechanism is proposed subsequently[31]. In addition, the usual
TCP process based on an intelligent algorithm only partially updates the solution, which is challenging
to solve the problem with enormous complexity. Therefore, this paper establishes an n-dimensional
directed search space and applies reinforced exploration mechanism whale optimization algorithm
(REM-WOA) to optimize test case prioritization decisions. Finally, our experiments show that REM-
WOA can achieve better results in less iterations when dealing with TCP problems.

The main contributions of this paper are as follows:
•For the test case prioritization problem based on swarm intelligence algorithm, a general modeling

method of n-dimensional directed search space is proposed.
•This paper introduces different variants of the whale optimization algorithm. We select the best

one through experiments, and apply it to the solution of the TCP problem.
•The backtracking problem of the swarm intelligence algorithm in directed search space is proposed

to avoid the search limitation caused by individuals hitting the wall.
•The prioritization effects of different heuristic algorithms are compared through experiments, and

the performance is analyzed for single-objective and multi-objective optimization.
•Different heuristic algorithms are applied to the TCP problem of the real-world gateway project.

Their decision effects and convergence rates are compared and analyzed.
The rest of this paper is arranged as follows. The second section introduces the basic technical

background. The third section gives the specific modeling process and algorithm principle. The fourth
section introduces the specific settings of the experiment. In the fifth section, the effectiveness exper-
iment, single-objective experiment and multi-objective experiment are shown, respectively. Section 6
prioritizes the test cases of the real-world project. Section 7 summarizes the full text and points out
the future research direction.

2 Technical background
This section reviews the basic definition of test case prioritization. The whale optimization al-

gorithm, the WOA of population updating, convergence-weighted WOA and REM-WOA are also
introduced.

2.1 Test case prioritization

To better illustrate the problem of test case prioritization, this paper introduces a specific example.
In Table 1, there are 5 test cases and 9 elements to be covered. Assuming that T 1-T 3 is selected, all
elements can be covered as quickly as possible. Obviously, the execution sequence of T 1-T 3-T 2-T 5-T 4
is better than the original sequence of T 1-T 2-T 3-T 4-T 5. The tester can handle the problems in the
program more quickly.

Table 1: Element coverage of test case set
Test
case

Element
f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9

T1 1 1 1 1 1 1
T2 1 1 1 1 1
T3 1 1 1
T4 1 1 1 1 1
T5 1 1 1 1

Test case prioritization is frequently used in software testing, which can significantly improve the
efficiency of regression testing. The test case prioritization problem is defined as[32]: The given test
case set is T, all possible prioritizing sets of test cases in T are Pt, and the mapping from Pt to the
real number set is F. The prioritization problem of test cases is to find T ′ϵP t, so that for any T ′′ϵP t
and T ′ ̸= T ′′, there is |f(T ′) ⩾ f(T ′′)|.

https://doi.org/10.15837/ijccc.2023.2.5049 4

Where, f is a quantitative description of the objectives to measure the effectiveness of the prioriti-
zation. Here, we define that the larger the f, the better the effect. In practical applications, testers set
different test objectives, like the coverage speed of test points and the detection rate of faults[33, 34].

2.2 Selection of test objectives

The swarm intelligence algorithm requires determining the fitness function, that is, the f value
in the above TCP definition. It can be divided into single-objective and multi-objective optimization
according to requirements.

The effective execution time (EET) of the test case sequence represents the time consumed by the
test case when the test case sequence reaches the maximum statement coverage for the first time. In
addition, during single-objective optimization, many optimization objectives for code coverage have
been developed[35]. For the black box testing, if an element is covered for enough time, it will nearly
have no mistakes[36]. Therefore, this paper selects the average percentage of test point coverage
(APTC) as one of the optimization objectives to indicate the coverage speed to test points in the
program.

The specific definitions of EET and APTC are as follows:

EET =
N ′∑
i=1

ETi (1)

APTC = 1 − TT1 + TT2 + . . . + TTM

M · N
+ 1

2 · N
(2)

where N represents the number of test cases, M represents the number of statements of the program,
T i represents the position of the test case in the execution sequence where the test point is detected
for the first time, N’ represents the number of test cases executed when the maximum statement
coverage is reached for the first time, and ET i represents the time consumed by the execution of the
ith test case.

2.3 Whale optimization algorithm and its variants

To solve the problem of test case prioritization, we introduced the algorithms of whale optimization,
including the original WOA, PR-WOA(population redistribution based whale optimization algorithm),
CAW-WOA(convergence adaptive weighting based whale optimization algorithm) and REM-WOA.
These algorithms concern both randomness and certainty, and can obtain better optimization results.

2.3.1 Whale optimization algorithm

WOA is a swarm intelligence algorithm inspired by whales preying. According to the random
agents and best agents in the population, the method simulates the spiral bubble attack when whales
surround prey. It is mainly divided into three search mechanisms:

(1) Surround prey: The information of individuals in the population is shared, which enables each
individual to move towards the position of the prey and continuously reduce the enclosure.

(2) Random search: To improve the global search ability of whales, each agent has a random search
behavior, which slows down the search speed and prevents the results from local optimization.

(3) Spiral search: When a certain probability is reached, the whale will update the spiral position
and spit out bubbles to spiral upward to surround the prey.

The above three strategies are executed according to the probability parameters. The fitness
function of the algorithm is f (xi), and the individual position is determined by the fitness.

2.3.2 WOA of population renewal strategy

Although the WOA strategy has good optimization ability, it often converges searching quickly
and easily falls into local optimization. When updating the individual position of the population in
each iteration, the following three position redistribution strategies need to be combined.

https://doi.org/10.15837/ijccc.2023.2.5049 5

(1) Random substitution method: This population redistribution strategy aims to protect the best
solution while enhancing other stochastic strategies. The strategy points out that the position of the
current agent will be replaced by the position of the best agent.

(2) Small-scale redistribution method: This method aims to enhance the algorithm’s global op-
timization ability and significantly avoid omitting the best value in the process of the whale moving
toward the prey.

(3) Population inverse solution: The main idea is to generate an inverse solution for each individual
in the process of optimization, so as to update the population information and obtain the obest
individuals as the new population position[37]. The essence of this method is to set up a new individual
at a position symmetrical to the current individual’s position.

2.3.3 Convergent adaptive weighted WOA

When the search space is large, the adaptive weighting strategy can refine the search process,
accelerate the convergence speed of the algorithm, and find the best solution faster. When the search
space is large, this strategy can enhance the global search ability and avoid solving the LO problem.
The essence of this method is to adjust the speed at which other individuals approach a certain point.
So it can balance the local search and the global search.

2.3.4 Reinforced exploration mechanism whale optimization algorithm

The REM-WOA introduces the population redistribution strategy and the adaptive weighting
strategy into the whale optimization algorithm, which enhances the global optimization ability and
convergence ability, and it also avoids falling into the local optimization. By changing the individual
moving speed and the updating process of the fitness function, the optimal population of each iteration
is determined, which ensures the quality of the final solutions.

3 Test case prioritization based on WOA
Since the data processed by the whale optimization algorithm are numerical values, the simple

test case information cannot be directly input into the model. Therefore, the corresponding search
space should be designed according to the prioritization requirements. This chapter introduces the
preprocessing process of search space, the whale optimization algorithm, the edge problem, and the
secondary selection of the optimal solution.

3.1 Establishment of search space

After the upper and lower limits of the search space are set, the population can move for searching
tasks. However, if you want to combine the TCP problem with it, you need to manually bind a certain
sequence to a specific location in the search space. Since there may be hundreds of test cases, and
the number of them in the whole set is even more challenging to count, it is necessary to select them
randomly.

Test case 5

Test case 3

Test case 16

Test case 1

Test case 27

Test case 23

Test case 45

Test case 32

……

Test case i

Test case 5

Test case 3

Test case 16

Test case 1

Test case 27

Test case 23

Test case 45

Test case 32

……

Test case i

Each position

represents a

random

arrangement

Search Space

n nn n

……

……
……

Test case 5

Test case 3

Test case 16

Test case 1

Test case 27

Test case 23

Test case 45

Test case 32

……

Test case i

Each position

represents a

random

arrangement

Search Space

n n

……

……
……

Figure 1: Search space establishment.

https://doi.org/10.15837/ijccc.2023.2.5049 6

Assuming that there are two optimization objectives, take the two-dimensional search space as
an example. First, we should extract an appropriate number of test cases and randomly generate n2

possible orders. As shown in Figure 1, each sort is taken as an element, and these elements are arranged
in a square to constitute a global search. All whale individuals can only move in the square array, so
each position can only be taken as an integer. The comprehensiveness of prioritization depends on
the number of test cases extracted and the size of the square array.

3.2 Search space preprocessing

After the search space is determined, the swarm intelligent algorithm can be used to search. But,
no matter what kind of swarm intelligence algorithm is used, its essence is random search. This is
because there is no association between each element in the search space, and there is no mathematical
relationship between the adjacent elements. Therefore, we must preprocess the search globally for a
certain trend relationship between each element. We mainly designed two methods, and the specific
principle is shown in Figure 2.

The first method is based on the maximum value. For the optimization objective 1, the square
array is rearranged according to the maximum value of each row. For optimization objective 2, the
square array is rearranged according to the maximum value or minimum value of each column. If the
local search ability of the algorithm is strong, the method is more likely to obtain the real optimal
solution. But the execution result may be unstable, so multiple experiments are required. The second
method is based on the average value. For the optimization objective 1, the square array is rearranged
according to the average value of each row. For the optimization objective 2, the square array is
rearranged according to the average value of each column. This method may not find the real best,
but the execution result is more stable, and the trend relationship between various elements is more
obvious.

A1 B4 …A1 B4 …
A2… A2…

A3 B2 B5 …A3 B2 B5 …
A4 B3 Bn…A4 B3 Bn…

B1 A5 …B1 A5 …

An …An …

… … … … …… …… … … … …… …

A1 B4 …
A2…

A3 B2 B5 …
A4 B3 Bn…

B1 A5 …

An …

… … … … …… …

A

P

T

C

EET

A1 B4 …
A2…

A3 B2 B5 …
A4 B3 Bn…

B1 A5 …

An …

… … … … …… …

A

P

T

C

EET
Sorted by

max or min

A1 B4 …
A2…

A3 B2 B5 …
A4 B3 Bn…

B1 A5 …

An …

… … … … …… …

A

P

T

C

EET
Sorted by

max or min

……
……
……
……
……

……

… … … … …… …… … … … …… …

A

P

T

C

EET

D1 D2 D3 D4 D5 Dn…D1 D2 D3 D4 D5 Dn…

C1

C2

C3

C4

Cn

C5…

C1

C2

C3

C4

Cn

C5…

Sorted by

mean

…
…
…
…
…

…

… … … … …… …

A

P

T

C

EET

D1 D2 D3 D4 D5 Dn…

C1

C2

C3

C4

Cn

C5…

Sorted by

mean

A1 B4 …
A2…

A3 B2 B5 …
A4 B3 Bn…

B1 A5 …

An …

… … … … …… …

A

P

T

C

EET
Sorted by

max or min

…
…
…
…
…

…

… … … … …… …

A

P

T

C

EET

D1 D2 D3 D4 D5 Dn…

C1

C2

C3

C4

Cn

C5…

Sorted by

mean

Figure 2: Search space preprocessing.

3.3 Whale optimization model

After completing the establishment of the global search and data processing, the population is
redistributed to the search space, so that the swarm intelligence algorithm can be used in it. We take
the REM-WOA as an example to give a complete solution process.

3.3.1 Search strategy

REM-WOA has three optimized search mechanisms: surrounding prey, random search and spiral
search[38]. Each iteration executes one search strategy according to the random variables.

(1) Surrounding prey: When the random variable p is greater than 0.5, and the absolute value of
the random iteration variable A is less than 1, the strategy of surrounding prey is implemented, and
the search agent approaches the best individual. The position update equation is:

B =
∣∣∣C · X⃗best(t) − X⃗local(t)

∣∣∣ (3)

https://doi.org/10.15837/ijccc.2023.2.5049 7

X⃗local(t + 1) = X⃗best(t) − A · B (4)

where X⃗best(t) represents the position of the best individual of the tth iteration in the population and
X⃗local(t) represents the position of one individual in the tth iteration. To adjust its convergence speed,
after adding the convergence weighting strategy, Eq.4 becomes:

X⃗local(t + 1) = v · X⃗best(t) − A · B (5)

v = 2(rand − 0.5)/exp(tan(π · t/tmax)) (6)

where, the size of the weight v changes with the number of iterations, and A and B are coefficient
vectors. Their expression methods are:

h = 2 − 2 · t/tmax (7)

A = 2h · rand − h (8)

C = 2 · rand (9)

where rand represents a random number between 0 and 1. The size of h is related to the current
number of iterations, and It decreases linearly from 2 to 0. And tmax is the maximum number of
iterations.

(2) Random search: When the random variable p is greater than 0.5 and the absolute value of the
random iteration variable A is greater than 1, the random search strategy is executed to make the
agent approach the random individual. The location update equation is:

B = C · X⃗rand(t) − X⃗local(t) (10)

X⃗local(t + 1) = X⃗rand(t) − A · B (11)

where X⃗local(t) is the position of a random agent in the population at the tth iteration. Similar to the
surrounding prey strategy, after the convergence weighting mechanism is added, Eq.11 becomes:

X⃗local(t + 1) = v · X⃗rand(t) − A · B (12)

(3) Spiral search: When the random variable p is less than 0.5, the spiral search strategy is executed.
Here, the position information of the current individual and the prey needs to be determined. Then
a spiral formula to simulate the spiral movement of the whale can be established. The expression is:

X⃗local(t + 1) = X⃗best(t) + Bp · eblcos(2πl) (13)

Bp =
∣∣∣X⃗best(t) − X⃗local(t)

∣∣∣ (14)

where b is a constant used to determine the shape of the helix, and l is a random number between -1
and 1.

3.3.2 Fitness update strategy

The fitness updating process of REM-WOA mainly includes three parts: random substitution,
population inverse solution and small-scale redistribution. Then three times the number of individuals
is generated for further search.

(1) Random substitution: When the following probabilities are met, the solution of the current
individual is replaced by the best individual to accelerate the convergence speed of the algorithm[39].

tan(π · (rand − 0.5)) < (1 − t/tmax) (15)

(2) Population inverse solution: In order to improve the global search ability of WOA, this strategy
can be applied. Assuming that our search space is multidimensional, we know that our existing

https://doi.org/10.15837/ijccc.2023.2.5049 8

population is (x1, x2, . . . , xn), and the upper bound and lower bound of the search space are lb(i) and
ub(i). Then the inverse solution is:

X⃗iop = lb(i) + ub(i) − X⃗i (16)

(3) Small-range redistribution: To improve the global search ability of the model, certain random-
ness should be added to it, so that all individuals can move freely in the maximum range without
crossing. The expression is:

X⃗local(t + 1) = X⃗local(t) + r · rand · sign(rand − 0.5) (17)

r = |ub − lb|
2 · s

(18)

where r is the moving range and s is the number of individuals.

3.4 Backtracking of whale individuals

Since the newly set search space is not a continuous space, the real-world range of a single dimension
of the search space is small. The individuals in the population are very likely to encounter an edge,
resulting in some individuals being unable to move. To solve this problem, it is necessary to trace
back the whale individuals who hit the edge. The specific principle is shown in Figure 3. Assuming
that the side length of the square matrix of the search space is n, the number of backtracking is set to
a random integer between 0 and n/3. After this operation step, the algorithm’s random search ability
is further improved, and the problem of population concentration toward the boundary is avoided.

Backtracking

from corner to

random position

Backtracking

from edge to

random position

n

(0, / 3)rand n

(0, / 3)rand n

Backtracking

from corner to

random position

Backtracking

from edge to

random position

n

(0, / 3)rand n

(0, / 3)rand n

(0
,

/3
)

ra
n
d

nBacktracking

from corner to

random position

Backtracking

from edge to

random position

n

(0, / 3)rand n

(0, / 3)rand n

(0
,

/3
)

ra
n
d

n

Figure 3: Individual whale back-tracing.

3.5 Selection of optimal solution

Although there are certain relations between the adjacent elements, they are not prioritized strictly
according to the objective value. So the best solution obtained in the next iteration may not be better
than the best solution obtained in the previous iteration. To speed up the solution speed and avoid
the waste of the best solution obtained in each iteration, a new set should be created to store all the
best solutions in the iteration process. Finally, the Pareto optimal solution set should be obtained.
The specific principle is shown in Figure 4.

run algorithm

store the optimal solution of each iteration

Pareto

optimality
final solutionrun algorithm

store the optimal solution of each iteration

Pareto

optimality
final solution

Figure 4: Quadratic selection of optimal solution set.

https://doi.org/10.15837/ijccc.2023.2.5049 9

4 Experimental settings
After modeling, specific experimental configurations are required to solve the TCP problem. This

chapter introduces the benchmark functions, tested programs, compared algorithms and experimental
parameters.

4.1 Benchmark functions

Before using REM-WOA to prioritize test cases, we first verify its effectiveness and compare the
performance of different variants of the whale optimization algorithm. Before the experiment, it is
necessary to select a suitable reference function. Because the whale optimization algorithm and its
variants converge so fast, selecting a single peak benchmark function will make the contrast effect
inapparent. Therefore, four multi-peak reference functions are chosen in this paper[40]. More details
are in Table 2.

Table 2: Relevant information of benchmark function
Benchmark Function Formula Range

F1 Rastrigin’s Function f1(x) = ∑D−1
i=1 (x2

i − 10cos(2πxi) + 10) [-100,100]
F2 High Conditioned Elliptic Function f2(x) = ∑D

i=1(106)
i−1

D−1 x2
i [-800,800]

F3 Ackley’s Function f3(x) = −20exp(−0.2
√

1
D

∑D
i=1 x2

i) − exp(1
D

∑D
i=1 cos(2πxi)) [-800,800]

F4 Griewank’s Function f4(x) = ∑D
i=1

x2
i

4000 −
∏D

i=1 cos(xi
i) + 1 [-800,800]

4.2 Tested programs

In this paper, the data set of Siemens open-source test cases are selected for comparative experiments[41].
To ensure the reliability of the test, this paper selects several test suites with the highest utilization
rate. We conduct static software measurements on them respectively to meet the diversity of the
tested programs as much as possible. We find that in the alternative programs, the number of lines of
code is positively related to such indicators as Files, Functions, and code complexity, but not closely
related to Percent Branch Statement and Percent Lines with Comments. Therefore, under the princi-
ple of meeting the diversity of the two indicators of Percent Branch Statement and Percent Lines with
Comments, we selected two groups of tested programs with different scales to avoid the accidental
impact of the tested programs on the experimental results as much as possible. Among them, the
number of code lines for Grep and Flex is large, while the number of code lines for Printtokens and
Schedule is small. Specific software metrics are shown in Table 3.

Table 3: Static metrics of the tested program
Grep Flex Printtokens Schedule

Files 46 51 3 1
Lines 50784 79200 725 412

Statements 13991 23185 366 207
Percent Branch Statement 24.1% 11.9% 26.0% 17.9%

Percent Lines with Comments 27.7% 6.8% 28.8% 20.6%
Functions 192 137 0 7

Average Statements per Function 28.6 36.4 0.0 4.7
Complexity of Most Complex Function 158 220 0 3

Maximum Block Depth 9+ 8 5 5
Average Block Depth 2.30 0.94 1.72 1.48
Average Complexity 12.16 11.44 0.00 1.86

4.3 Compared algorithms

To test the effect of REM-WOA in solving TCP problems clearly, this paper selects two heuristic
algorithms as comparative experiments: the artificial fish school algorithm and immune algorithm.

https://doi.org/10.15837/ijccc.2023.2.5049 10

The specific reasons are as follows:
First of all, the ant colony algorithm does show excellent performance in the test case prioritization

problem, but with more and more intelligent algorithms being applied in software engineering, the
effectiveness of ACO is challenged. After testing, we found that the artificial fish school algorithm
has better convergence characteristics and global search ability[22]. However, the artificial fish school
algorithm has a strong random search ability and is more suitable for the search method based on
n-dimensional directed space. These problems make AFSA effectively avoid falling into local optimal
problems.

Secondly, we found that the performance of the immune algorithm in this field is significantly
better than that of the genetic algorithm[16]. In theory, according to the comparative analysis of the
characteristics of the two, genetic algorithm is dominated by cross operation, and its solving behavior
is unitary and exclusive, while AI is dominated by mutation operation whose global search ability
is stronger[42]. As shown in Figure 5, for the prioritization problem, small range of cross can not
significantly improve the output results, but rearranging all test cases can effectively avoid falling into
the local optimal problem.

original state

cross and

mutation

state 1

rearrange all

state 2.1

state 2.2

state 2.3

Figure 5: Cross mutation and rearrangement.

In addition, there will be different test requirements according to different test scenarios. For
single-objective optimization, the objective can be directly used as the fitness function, which is more
convenient to solve problems. For multi-objective optimization, Pareto optimality should be adopted
when selecting solutions. During data preprocessing, elements in each row are rearranged in ascending
order according to the maximum value of APTC, when elements in each column are rearranged in
descending order according to the maximum value of EET.

4.4 Experimental parameters settings

The parameters used in this paper are the default values because previous studies have shown that
using default parameters is also a reasonable choice[43, 44]. In addition, the parameter adjustment
process of the algorithm is time-consuming and costly, and the results obtained in the TCP problem
may not be better[36]. However, the side length of the square array is particular. Its value is set
to maximize the use of computing memory. The backtracking size of the population was obtained
through trial and error experiments. The specific parameter settings are shown in Table 4. The
number of test cases randomly selected during prioritizing is 50. The experiments are conducted 30
times respectively, and the experimental data are recorded.

5 Analysis of experimental results

5.1 Effectiveness of REM-WOA

Before the formal TCP task study, we first researched the effectiveness of different WOA variants.
The WOA with weighted search strategy is CAW-WOA, the WOA with three search strategies is

https://doi.org/10.15837/ijccc.2023.2.5049 11

Table 4: Experimental parameter settings
REM-WOA AFSA IA

Algorithm
parameters b=1 Visual range=0.8 a=0.6

Visual attenuation=0.98 b=0.4
Congestion threshold=0.66 Variation rate=0.6

Population size 50 -
Number of iteration 100 -

Side length of square array 300 -
Population backtracking 80 -

PR-WOA, and REM-WOA is a combination of the two.
Take the single-objective optimization algorithm as an example and use the four benchmark func-

tions as the fitness. Compare the optimization effects of WOA, PR-WOA, CAW-WOA and REM-
WOA. Draw the changes in the fitness of the four algorithms with the number of iterations.

0 100 200 300
-15

-10

-5

0

5
x 10

8

iteration

fi
tn

es
s

F4

0 100 200 300
-25

-20

-15

-10

-5

0

iteration

fi
tn

es
s

F3

WOA CAW-WOA PR-WOA REM-WOA

0 10 20 30
0

2

4

6

8
x 10

11

iteration

fi
tn

es
s

F2

0 10 20 30
0

2

4

6

8

10
x 10

4

iteration

fi
tn

es
s

F1

Figure 6: Convergence curves of different algorithms.

Figure 6 shows the convergence of four kinds of algorithms for different benchmark functions. It
can be seen from the figure that the convergence speed of the conventional WOA is the slowest, and
the fitness obtained by using the benchmark function F3 falls into the local optimization, which is far
from reaching the optimization effect. PR-WOA is better than WOA and has been able to get rid of
Lo problems. However, it has little impact on improving the convergence speed because the essence
of the algorithm is to increase the population number and redistribute in space without improving
the algorithm itself. The effect of CAW-WOA is obviously better than that of WOA and PR-WOA.
It has not only fast convergence speed but also strong optimization ability. REM-WOA combines the
advantages of PR-WOA and CAW-WOA. Compared with the other three algorithms, REM-WOA
has the fastest convergence speed and will not fall into LO. Therefore, REM-WOA is selected in the
subsequent test case prioritization.

https://doi.org/10.15837/ijccc.2023.2.5049 12

5.2 Test case prioritization based on single objective

We take APTC and EET as the objectives, summarize the results of 30 experiments, and draw
violin figures as shown in Figure 7 and Figure 8. It can be seen that when the improved whale
optimization algorithm is applied to the single-objective test case prioritization, its output results
are more concentrated, and has no abnormal values appear. First, except the median EET of the
immune algorithm is better when executing Flex, the median APTC output by REM-WOA is slightly
higher than the other two algorithms. And the median EET output is slightly lower than the other
two algorithms. Second, there are two abnormal data in the APTC value output by the AFSA after
executing Printtokens. In addition, in most cases, REM-WOA is more concentrated in the box graph,
and there is little difference in the outputs of multiple experiments. This shows that REM-WOA runs
more stably after reasonable modeling, and the final solution is closer to the real optimal solution.

REM-WOA AFSA IA

0.960

0.965

0.970

0.975

0.980

0.985

0.990

A
PT

C

Grep

REM-WOA AFSA IA
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
PT

C

Flex

REM-WOA AFSA IA

0.88

0.90

0.92

0.94

0.96

0.98

A
PT

C

Printtokens

REM-WOA AFSA IA

0.88

0.90

0.92

0.94

0.96

A
PT

C

Schedule

Figure 7: Single-objective comparison diagram of APTC.

We know that REM-WOA has a high efficiency when dealing with a single-objective task. However,
we still need to research the stability of the model and the efficiency of the algorithm. As shown in
Table 5, the performance of Grep is the best within 5 output results in 30 experiments. In the other
3 programs, different results are output. When these programs reaches the best solution, the average
number of iterations varies from 23 to 65. The average value of APTC is similar to the median. In
addition, when seeking the optimal value of EET alone, the output of the Grep program is also the
most concentrated, but the advantage is not obvious compared with other experiments. When the
test case prioritization of these programs reaches the best solution, the average number of iterations
is about 40.

To sum up, REM-WOA sacrifices the algorithm’s complexity, performs well in the single-objective
TCP, and its output is closer to the real optimal solution. In addition, the convergence process of
the model is fast, and the output can reach its steady state without too many iterations. However,
there are some differences in the number of iterations when reaching the best solution for. Table 6
shows the relationship between the number of iterations of REM-WOA and EET. The average value
is about 40, which also shows excellent algorithm stability.

https://doi.org/10.15837/ijccc.2023.2.5049 13

Table 5: Optimal APTC and iteration times
Num Grep Flex Printtokens Schedule

APTC iteration APTC iteration APTC iteration APTC iteration
1 0.9833 45 0.9628 64 0.9357 27 0.9300 57
2 0.9833 96 0.9542 82 0.9500 28 0.9388 76
3 0.9833 28 0.9585 22 0.9242 10 0.9344 16
4 0.9833 29 0.9585 32 0.9471 54 0.9433 51
5 0.9833 79 0.9542 1 0.9585 83 0.9300 32
6 0.9833 2 0.9557 35 0.9442 94 0.9100 1
7 0.9788 23 0.9414 7 0.9157 7 0.9388 72
8 0.9833 4 0.9457 7 0.9442 23 0.9300 45
9 0.9766 1 0.9557 62 0.9242 32 0.9388 65
10 0.9833 20 0.9442 4 0.9414 59 0.9433 91
11 0.9788 1 0.9628 6 0.9185 69 0.9411 67
12 0.9811 3 0.9600 10 0.9585 1 0.9211 1
13 0.9833 14 0.9442 23 0.9157 14 0.9188 50
14 0.9811 44 0.9600 32 0.9328 1 0.9433 1
15 0.9766 68 09428 79 0.9500 6 0.9144 67
16 0.9833 18 0.9514 63 0.9185 34 0.9522 73
17 0.9744 11 0.9471 24 0.9385 92 0.9388 29
18 0.9788 2 0.9685 23 0.9414 27 0.9522 3
19 0.9811 1 0.9614 88 0.9185 16 0.9122 30
20 0.9766 45 0.9385 14 0.9442 89 0.9166 16
21 0.9833 1 0.9571 13 0.9385 14 0.9388 41
22 0.9744 7 0.9614 14 0.9642 1 0.9300 94
23 0.9811 21 0.9628 94 0.9185 84 0.9100 7
24 0.9833 6 0.9481 19 0.9500 88 0.9277 23
25 0.9766 1 0.9557 54 0.9414 95 0.9100 20
26 0.9833 2 0.9657 1 0.9442 49 0.9344 86
27 0.9766 11 0.9628 63 0.9414 90 0.9388 26
28 0.9833 93 0.9457 12 0.9442 15 0.9144 65
29 0.9833 3 0.9600 90 0.9357 10 0.9322 10
30 0.9811 19 0.9414 33 0.9157 1 0.9233 33

mean 0.9807 23 0.9542 35 0.9371 65 0.9302 41

5.3 Test case prioritization based on multi-objective

The artificial fish school algorithm and immune algorithm are also selected for comparison in
multi-objective prioritization. The parameter selection of the three algorithms is the same as that of

REM-WOA AFSA IA

1.0

1.5

2.0

2.5

3.0

EE
T

Grep

REM-WOA AFSA IA

1

2

3

4

5

EE
T

Flex

REM-WOA AFSA IA

5

10

15

20

25

EE
T

Printtokens

REM-WOA AFSA IA

4

6

8

10

12

14

16

18

20

EE
T

Schedule

Figure 8: Single-objective comparison diagram of EET.

https://doi.org/10.15837/ijccc.2023.2.5049 14

Table 6: Optimal EET and iteration times
Num Grep Flex Printtokens Schedule

EET iteration EET iteration EET iteration EET iteration
1 1.5609 12 2.4682 31 14.2876 18 10.4308 64
2 1.8371 8 2.4243 15 11.7309 9 10.6100 37
3 1.8741 51 3.0433 28 7.9485 3 11.4762 25
4 1.4187 94 2.0968 89 15.0273 73 14.1090 1
5 1.6032 68 2.5865 51 13.2166 87 8.5437 87
6 1.7547 64 3.3033 94 12.9345 72 10.3571 31
7 1.7766 44 2.8082 64 7.2060 38 9.4584 44
8 1.8866 36 3.4880 66 13.6794 21 8.3123 25
9 1.8755 50 2.4089 11 11.8613 56 10.4858 41
10 1.3640 20 2,6650 14 8.6725 21 10.4916 85
11 1.2555 1 2.6724 4 9.6084 21 9.2608 82
12 1.6374 38 2.5339 98 8.6374 47 10.9394 52
13 1.7547 9 2.8920 21 12.0604 3 9.9642 46
14 1.9146 94 2.3389 25 11.6528 24 11.4702 40
15 1.7470 73 1.3953 78 5.7971 11 11.9914 76
16 1.5117 7 2.4198 93 13.5992 13 10.4778 41
17 1.6069 82 2.9156 69 7.8503 78 7.0093 19
18 2.0111 12 2.9297 39 12.8290 85 11.9372 61
19 1.6512 62 2.0528 10 14.2332 79 13.2129 33
20 1.6849 37 3.2483 1 12.7407 43 7.2387 7
21 1.8704 89 3.6133 23 12.9655 36 12.5916 72
22 1.5029 30 3.4393 35 13.7013 11 10.2217 29
23 1.7510 11 2.7667 25 16.2932 34 11.0732 12
24 1.3763 57 1.7216 1 12.3183 21 11.8723 69
25 1.9199 47 3.3919 41 11.6285 73 11.2386 25
26 1.8181 42 2.5625 1 6.9967 94 11.9184 60
27 1.8407 42 2.7219 49 11.8222 16 9.3439 48
28 1.4280 14 3.3496 63 11.3882 3 9.3513 6
29 1.7600 21 2.1809 77 11.5110 84 10.9822 11
30 1.8704 48 3.4254 89 7.6206 70 12.5483 82

mean 1.6954 42 2.7287 43 11.3939 41 10.6269 43

single-objective optimization. However, because it is a multi-objective solution, the Pareto optimal
solution should be taken when comparing the fitness of individuals. The final result is not necessarily a
single solution but a series of solution sets. Taking APTC as the abscissa and EET as the ordinate, the
above three algorithms were applied to four programs for some experiments. Record the experimental
data and draw the corresponding scatter chart. The closer the point is inclined to the lower right
corner, the better the effect is.

It can be seen from Figure 9 that REM-WOA performs better than other algorithms in prioritizing
test cases of Flex and Printtokens. While in Grep and Schedule, REM-WOA has obvious advantages
over IA. However, compared with AFSA, REM-WOA has no apparent benefits. The latter is slightly
better than the former in convergence and optimization objective value.

Finally, to further compare REM-WOA and AFSA, we counted the number of iterations when they
reached their best position for the first time, and drew the corresponding three-dimensional scatter
diagram. It can be seen from Figure 10 that the iteration number distribution of REM-WOA when
finding the best solution is more uniform, which shows its advantages of convergence. However, the
number of iterations of AFSA is concentrated in the final stage of the iteration, which indicates that
the stability process is slow.

6 Case study of real-world application
To better evaluate the n-dimensional space search and REM-WOA, we selected the real-world

project for further testing. The project is the code developed by Phytium for the gateway protocol,
which uses C++ to exchange routing information between gateways. In this paper, the immune
algorithm and artificial fish school algorithm are still used to test and analyze single-objective and
multiple-objective tasks, respectively.

https://doi.org/10.15837/ijccc.2023.2.5049 15

0.86 0.88 0.9 0.92 0.94 0.96
0

5

10

15

20

25

30

APTC

E
E

T

Schedule

0.8 0.85 0.9 0.95 1
5

10

15

20

25

30

APTC

E
E

T

Printtokens

0.85 0.9 0.95 1
1

2

3

4

5

6

7

APTC
E

E
T

Grep

0.85 0.9 0.95 1
0

2

4

6

8

10

APTC

E
E

T

Flex

REM-WOA AFSA IA

Figure 9: Two-dimensional scatter diagram of multi-objective optimization.

0.9

0.95

1

0

5

10
0

50

100

APTC

Grep

EET

it
er

at
io

n

0.8

0.9

1

0

5

10
0

50

100

APTC

Flex

EET

it
er

at
io

n

0.8

0.9

1

0

20

40
0

50

100

APTC

Printtokens

EET

it
er

at
io

n

0.8

0.9

1

0

20

40
0

50

100

APTC

Schedule

EET

it
er

at
io

n

REM-WOA AFSA

Figure 10: Three-dimensional scatter plot of multi-objective optimization.

6.1 Test case prioritization based on single objective

Because there are many coverage points in the gateway protocol program, the side length of square
array needs to be reduced appropriately due to the limitation of computing devices. Considering the
memory of the computer, the side length is finally set to 220. The backtracking size of individuals in
the population is set to 60. The other parameters are set unchanged, the experiment are repeated 30
times, and the statistical data are collated to draw a violin chart.

We take APTC and EET as the tested objectives respectively for single-objective optimization.
More details are showed in Figure 11 and Figure 12. First, it can be seen from the figure that
when APTC is used as the fitness function, the median obtained by using REM-WOA is relatively
maximum, and its quartile is also the highest among the three algorithms. However, in terms of
data concentration, AFSA performs best, and the algorithm effect is between REM-WOA and IA.
According to our previous experiments, this is because its iteration takes a long time, and it will not
search for a better solution in time. Next, when compared with the swarm intelligence algorithm,

https://doi.org/10.15837/ijccc.2023.2.5049 16

the immune algorithm has the worst performance, and its performance is far inferior to the former in
terms of data concentration and fitness function.

REM-WOA AFSA IA

0.94

0.95

0.96

0.97

0.98

A
PT

C

Figure 11: Comparison of APTC of real-world project.

REM-WOA AFSA IA

2

4

6

8

10

EE
T

Figure 12: Comparison of EET of real-world project.

When EET is used as the fitness function, the median and quartile obtained by REM-WOA are
the smallest. When comparing the concentration of the data distribution, although AFSA is still the
best, REM-WOA gets some excellent results. Next, the improved whale optimization algorithm has
the best data concentration. In addition, the worst effect is still the immune algorithm, which has the
highest median distribution and the most dispersed data, but this also makes its quartile effect not
the worst.

To sum up, REM-WOA based on n-dimensional directed space search has the best convergence
speed and global search ability when dealing with TCP. AFSA has a weak effectiveness caused by
the complex search mechanism. As for the immune algorithm, its effectiveness is far less than that
of the swarm intelligence algorithm using n-dimensional directed space search. Because IA has no
population and cannot conduct thorough searches. The method based on partial exchange mutation
is difficult to solve the problem of high complexity, and the initial state has a significant impact on
its final results. In addition, it is also true that the data obtained by IA are seriously scattered.

6.2 Test case prioritization based on multi-objective

We prioritize the multi-objective test cases for Phytium’s gateway protocol, and the objectives
functions are still APTC and EET. However, through the analysis of algorithm complexity, it can be
seen that there is a specific correlation between complexity and performance effect. We repeated the
experiment 30 times, and drew a three-dimensional scatter plot as shown in Figure 13.

From the horizontal plane, the REM-WOA distribution is more inclined to on the right, which
means that the prioritization effect is better. Second, the data of AFSA are almost on the right in
the figure, but they are distributed almost on the top. Similarly, when dealing with multi-objective
problems, the immune algorithm has the worst performance and the most decentralized data distri-
bution. In terms of the number of iterations, the improved whale optimization algorithm ranges from
0 to 100, and the immune algorithm has a small number of iterations. However, the final number of

https://doi.org/10.15837/ijccc.2023.2.5049 17

0.9

0.95

1

0

10

20
0

50

100

APTCEET

it
er

at
io

n

AFSA

REM-WOA

IA

Figure 13: Comparison of multi-objective prioritization of real-world project.

iterations of the artificial fish school algorithm is mostly between 90 and 100. In general, the swarm
intelligence algorithm has a high complexity and a relatively high number of iterations, but the effect
is better. For the algorithm without population, the algorithm’s performance is slightly poor, and the
data distribution is not centralized.

7 Conclusion and future work
To reduce the cost of software testing, this paper takes software testing as an example to improve

the decision-making method of prioritization for digital systems. We introduce the improved whale
optimization algorithm and apply it to test case prioritization. Before using this algorithm, we estab-
lished an n-dimensional spatial search model and improved the optimization method by processing the
global data. The experiment shows that the whale algorithm with an enhanced exploration mecha-
nism has more advantages than other variants. To achieve good results in TCP tasks, the optimization
algorithm used should have good global search ability, and it can effectively avoid falling into global
optimization. In addition, the performance of the algorithm has different effects on its efficiency. If
the search mechanism of the algorithm is added to improve the prioritization effect, it may reduce the
efficiency of the model and increase the number of iterations.

In the next stage, we will try other optimization algorithms, integrate the improved whale op-
timization algorithm with the deterministic algorithm, and avoid the potential problems implied by
the fast convergence of the whale optimization algorithm. In addition, in the future, we will further
deal with the search space for test case prioritization, making the optimization process of the swarm
intelligent algorithm more accurate, and further reducing the operating cost of the digital system.

Author contributions

Bin Yang: Investigation, Methodology, Project Administration, Data Pre-processing, WritingRe-
viewing and Editing.

Huilai Li: Conceptualization, Methodology, Experiment, Software, Visualization, WritingOriginal
draft preparation.

Ying Xing: Investigation, Supervision, Methodology, Validation, Resources, Writing- Reviewing
and Editing.

Fuping Zeng: Supervision, Resources, Writing- Reviewing.
Chengdong Qian, Youzhi Shen, Jiongbo Wang: Investigation, Supervision, Dataset provision.

Conflict of interest

The authors declare no conflict of interest.

https://doi.org/10.15837/ijccc.2023.2.5049 18

References
[1] Minimol, A.J. (2021). Automating and optimizing software testing using artificial intelligence

techniques, In International Journal of Advanced Computer Science and Applications, DOI:
http://dx.doi.org/10.14569/IJACSA.2021.0120571, 12(05), 2021.

[2] Chen, Y. (2022). Analysis and application of software automated testing method, In Modern
Industrial Economy and Informatization, 12(01), 167–168+171, 2022.

[3] Mahdieh, M.; Mirian, H.S.H.; Mahdieh, M. (2022). Test case prioritization using test case di-
versification and fault-proneness estimations, In Automated Software Engineering, 29(02), 50,
2022.

[4] Rongcun, W.; Zhengmin, L.; Shujuan, J.; et al (2020). Regression test case prioritization based
on fixed size candidate set ART algorithm, In International Journal of Software Engineering and
Knowledge Engineering, 30(03), 291–320, 2020.

[5] Lee, Y.S. (2022). A study on intermediate code generation for security weakness analysis of smart
contract chaincode, In Journal of Logistics, Informatics and Service Science, 9(1), 53–67, 2022.

[6] Kim, J.A. (2022). A case study of domain engineering in software product line engineering, In
Journal of Logistics, Informatics and Service Science, 9(1), 97–115, 2022.

[7] Wong, W.; Horgan, J.; London, S.; et al (1997). A study of effective regression testing in practice,
In The Eighth International Symposium On Software Reliability Engineering, 264–274, 1997.

[8] Ani, R.; Sabrina, A.; Intan, E.A.J.; et al (2021). A systematic literature review on regression test
case prioritization, In International Journal of Advanced Computer Science and Applications,
12(9), 253–267, 2021.

[9] Geetha, U; Sankar, S.; Sandhya, M. (2021). Acceptance testing based test case prioritization, In
Cogent Engineering, 8(1), 1–22, 2021.

[10] Elbaum, S.; Malishevsky, A. G.; Rothermel, G. (2002). Test case prioritization: A family of
empirical studies, In Transactions on software engineering, 28(2), 159-182, 2002.

[11] Haiyan, Z.; Hui, F.; Qingsong, X.; et al (2008). Research on test case prioritization, In Computer
Engineering and Science, 1(01), 79–81, 2008.

[12] Li, Z.; Harman, M.; Hierons, R. (2007). Search algorithms for regression test case prioritization,
In Transactions on Software Engineering, 33(4), 225-237, 2007.

[13] Dharmveer, K.Y.; Sandip, D. (2021). Test case prioritization based on early fault detection tech-
nique, In Recent Advances in Computer Science and Communications, 14(1), 302–316, 2021.

[14] Stanujkic, D.; Karabasevic, D.; Popovic, G.; et al (2021). Multiple-criteria decision-making based
on the use of single-valued neutrosophic sets and similarity measures, In Economic Computation
And Economic Cybernetics Studies And Research, 55(2), 5–22, 2021.

[15] Weixiang, Z.; Bo, W.; Huisen D. (2015). Test case prioritization method based on genetic algo-
rithm, In Minicomputer System, 36(09), 1998–2002, 2015.

[16] Hongwei, X.; Pengcheng, L.; Zhongxiao C.; et al (2021). Test case prioritization based on artificial
immune algorithm, In Tehnički vjesnik, 28(6) , 1871–1876, 2021.

[17] Xue L.; Yunna, T.; Yuan, T. (2021). A survey of swarm intelligence methods, In Information and
Computer (theoretical version), 33(24), 63–69, 2021.

[18] Tole, K.; Milani, M.; Mwakondo, F. (2021). Particle swarm algorithm for improved handling of
the mirrored traveling tournament problem, In Tehnički vjesnik, 28(5), 1647–1653, 2021.

https://doi.org/10.15837/ijccc.2023.2.5049 19

[19] Liu, L.; Chen, T.; Gao, S.; et al (2021). Optimization of agricultural machinery allocation in hei-
longjiang reclamation area based on particle swarm optimization algorithm, In Tehnički vjesnik,
28(6), 1885–1893, 2021.

[20] Sabonchi, A.K.S.; Akay, B. (2021). Cryptanalysis of polyalphabetic cipher using differential evo-
lution algorithm, In Tehnicki vjesnik-Technical Gazette, 27(4), 1101–1107, 2021.

[21] Vescan, A.; Pintea, C.M.; Pop, P.C. (2022). Test case prioritization-ANT algorithm with faults
severity, In Logic Journal of the IGPL, 30(2), 277–288, 2022.

[22] Ying, X.; Xingde, W.; Shen, Q. (2021). Test case prioritization based on artificial fish school
algorithm, In Computer Communications, 180, 295–302, 2021.

[23] Gouda, R.; Chandraprakash, V. (2022). Multi-objective crow search and fruit fly optimization
for combinatorial test case prioritization, In International Journal of Software Innovation, 9(4),
1–19, 2022.

[24] Anu, B.; Om, P. S. (2021). Test case prioritization using bat algorithm, In Recent Advances in
Computer Science and Communications, 14(2), 593–598, 2021.

[25] Manar, A.H.; Abdelzahir, A.; Souad, L.M.S.; et al (2022). Modified Harris hawks optimization
based test case prioritization for software testing, In Computers, Materials & Continua, 72(1),
1951–1965, 2022.

[26] Bajaj, A.; Sangwan, O.P. (2021). Discrete cuckoo search algorithms for test case prioritization,
In Applied Soft Computing Journal, 110, 1–18, 2021.

[27] Gandomi, A.H.; Yang, X.S. (2011). Benchmark problems in structural optimization, In Compu-
tation Optimization,Methods and Algorithms, 356, 259–281, 2011.

[28] Singh, S.; Bansal, J.C. (2022). Mutation-driven grey wolf optimizer with modified search mecha-
nism, In Expert Systems With Applications, 194, 1–24, 2022.

[29] Chunyao, L.; GuangLin, Z. (2021). A hybrid whale optimization algorithm for global optimization,
In Mathematics, 9(13), 1477, 2021.

[30] Kezhong, L.; Zongmin, M. (2021). A modified whale optimization algorithm for parameter estima-
tion of software reliability growth models, In Journal of Algorithms & Computational Technology,
15, 1–14, 2021.

[31] Jianxun, L.; Jinfei, S.; Fei, H.; et al (2022). A reinforced exploration mechanism whale opti-
mization algorithm for continuous optimization problems, In Mathematics and Computers in
Simulation, 201,23–48, 2022.

[32] Rothermel, G.; Untch, R.H.; Chu. C.; et al (1999). Test Case Prioritization, An Empirical Study,
In International Conference on Software Maintenance, IEEE, 179–188, 1999.

[33] Muhammad, H.; Seung, R.J.; Muhammad, F.P.; et al (2021). An ontology based test case prior-
itization approach in regression testing, In Computers, Materials & Continua, 67(1), 1051–1068,
2021.

[34] MohdShafie, M.L.; WanKadir, W.M.N.; Khatibsyarbini, M.; et al (2020). Model-based test case
prioritization using selective and even-spread count-based methods with scrutinized ordering cri-
terion, In PloS one, 15(2), 1–27, 2020.

[35] Li, Z.; Harman, M.; Hierons, R.M. (2007). Search algorithms for regression test case prioritization,
In Transactions on Software Engineering, 33(4), 225–237, 2007.

[36] Li F.; Zhou, J.; Li, Y.; Hao, d. (2021). AGA: An Accelerated Greedy Additional Algorithm for
Test Case Prioritization, In Transactions on Software Engineering, 48(12), 5102–5119, 2021.

https://doi.org/10.15837/ijccc.2023.2.5049 20

[37] Tizhoosh, H.R. (2005). Opposition-based learning, a new scheme for machine intelligence, In Int.
Conf. Comput. Intell. Model, 1, 695-701, 2005.

[38] Jianxun, L.; Shi, J.; Hao, F.; et al (2022). A novel enhanced global exploration whale optimization
algorithm based on Lévy flights and judgment mechanism for global continuous optimization
problems, In Engineering with Computers, 2022.

[39] Huiling, C.; Chenjun, Y.; Ali, A.H.; et al (2020). An efficient double adaptive random spare
reinforced whale optimization algorithm, In Expert Syst, 154, 113-118, 2020.

[40] Awad, N.H.; Ali, M.Z.; Suganthan P.N.; et al (2016). Problem definitions and evaluation criteria,
In The CEC 2017 Special Session and Competition on single-objective Real-Parameter Numerical
Optimization, 1–34, 2016.

[41] Software-artifact Infrastructure Repository. [Online]. Available, sir.csc.ncsu.edu/content/sir.php.

[42] Hong, G. (2003). Comparison of immune algorithm with genetic algorithm, In Journal of Jinan
University(Natural Science & Medicine Edition), 1(01), 22–25, 2003.

[43] Arcuri, A.; Fraser, G. (2013). Parameter tuning or default values? An empirical investigation in
search-based software engineering, In Empirical Software Engineering, 13(8), 594–623, 2013.

[44] Sayyad, A.S.; Goseva-Popstojanova, K.; Menzies, T. (2013). On parameter tuning in search
based software engineering, A replicated empirical study, In 2013 3rd International Workshop on
Replication in Empirical Software Engineering Research, 84–90, 2013.

[45] Dario, D.N.; Annibale, P.; Andy, Z.; Andrea, D.L. (2020). A Test Case Prioritization Genetic
Algorithm Guided by the Hypervolume Indicator, In Transactions on Software Engineering, 46(6),
674–696, 2020.

Copyright ©2023 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Bin Y., Huilai L., Ying X., Fuping Z., Chengdong Q., Youzhi S., Jiongbo W.. (2023). Directed
Search Based on Improved Whale Optimization Algorithm for Test Case Prioritization, International
Journal of Computers Communications & Control, 18(2), 5049, 2023.

https://doi.org/10.15837/ijccc.2023.2.5049

	Introduction
	Technical background
	Test case prioritization
	Selection of test objectives
	Whale optimization algorithm and its variants
	Whale optimization algorithm
	WOA of population renewal strategy
	Convergent adaptive weighted WOA
	Reinforced exploration mechanism whale optimization algorithm

	Test case prioritization based on WOA
	Establishment of search space
	Search space preprocessing
	Whale optimization model
	Search strategy
	Fitness update strategy

	Backtracking of whale individuals
	Selection of optimal solution

	Experimental settings
	Benchmark functions
	Tested programs
	Compared algorithms
	Experimental parameters settings

	Analysis of experimental results
	Effectiveness of REM-WOA
	Test case prioritization based on single objective
	Test case prioritization based on multi-objective

	Case study of real-world application
	Test case prioritization based on single objective
	Test case prioritization based on multi-objective

	Conclusion and future work

