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Abstract

Most of the network and transport layer protocols had been designed with consideration for
future extensions. As a result, variable-length sections had been devised in order to expand the
fixed-size headers and allow the annotation of packets with metadata, known as protocol options.
Although numerous enhancements such as MultiPath-TCP are based on these mechanisms, their
support in the Internet is still generally considered to be opaque.

In this paper we introduce an extendable packet annotation tool for IP, TCP and UDP options,
based on NetfilterQueue. Using this tool in conjunction with our testing framework that can
incorporate multiple regions, we conducted a series of experiments to determine the acceptance
rate of each type of option and whether new extensions will be readily supported in the Internet.
Additionally, we discuss particularities of cloud provider infrastructures in dealing with certain
options.

Keywords: Networking, Measurements, Middleboxes, Protocol extensions, Testing infrastruc-
ture.

As the Internet evolves, so do the expectations for new network protocols. Whether said proto-
cols pertain to traffic encryption, packet source authentication or routing optimization, all are faced
with the same initial hurdle: the uncertainty of their compliance with the myriad filtering policies
employed by virtually just as many middleboxes. This incertitude has only been exacerbated by the
continual ossification of the foundational internet protocols. An immediately apparent indicator of
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this suggested entrenchment is the maladroit adoption of new standards and acceptance of implemen-
tations conforming to well-established specifications. We draw attention to RFC 7126 [10], offering
recommendations on filtering packets with IPv4 options due to widespread misuse. Its necessity after
upwards of thirty years since this IP extension mechanism was provisioned in RFC 791 [16] is epitomic
of the issue at hand.

Regardless of the underlying causes that lead to this predicament, the objective is not necessarily
to remedy but to circumvent the obstacle that it poses. As things stand, the research questions that
need to be addressed are as follow.
RQ1: Is the current state of affairs in the wider Internet adequate for already standard-
ized protocol options? Extant protocols had been designed under the assumption that the existing
fixed-length headers would at some point become insufficient for encapsulating the information needed
by supplementary mechanisms. Consequently, most of them included a variable-length options feature
allowing their incorporation as the need arises. The benefits are most evident when observing how
TCP is reinforced by the Window Scaling option (increases the maximum window size from 64Kb
to 1Gb) or the Selective Acknowledgement option (allows specifying a finite range of lost packets).
In their absence, TCP would cease to be viable in high-latency, high-bandwidth environments such
as WANs. While options were initially overlooked in lieu of redefining existing fields to better fit
specific purposes of certain users, the approach has been thoroughly discouraged by the open stan-
dards organizations and the community at large. Despite the growing demand for extending current
protocols, Autonomous Systems (AS) proved resistant to this change. Although some options have
been standardized, their acceptance remains highly dependant on middlebox manufacturers.
RQ2: Can new protocol options be attached to a packet without compromising its con-
formity to the filtering schemes? When the aforementioned protocol extension systems were first
defined, a number of option identifiers (i.e.: codepoints, kinds) were designated to features immedi-
ately necessary at the time (e.g.: the IP Security option or the UDP Authentication and Encryption
option). In order to properly administer the growing number of independent projects and prevent the
unauthorized usage of unassigned codepoints from becoming praxis, IANA had reserved certain ranges
for this purpose [7]. This, in turn, lead to the introduction of experimental IDs [18] as a method of
sharing the yet limited assigned ranges, when testing in common environments. Nonetheless, there
have been known cases of unpermitted use of certain codepoints, some overlapping with established
options (e.g.: TCP User Timeout). Seeing how these unregistered and experimental options are prac-
tically unknown to most middleboxes, an understandable concern is whether they will be accepted
without any further verification or simply dropped.
RQ3: Does the annotation scheme under consideration interfere with the base function-
ality of any protocol or application? Assuming that a modified packet is able to traverse the
network unthwarted, the need to ensure normal operation of applications whose traffic falls within the
purview of the scheme under test is paramount. Ideally, the packet alteration is handled outside the
scope of the application itself, either in kernel (e.g.: DCCP’s Explicit Congestion Notification) or by
deference to another userspace process (e.g.: tcpcrypt’s packet manipulation using NetfilterQueue).
However, this is not always the case. Employing kernel bypasses can be rightfully motivated by prac-
tical limitations, such as IRQ storms during DDoS attacks (most CPU time is used to receive packets,
not process them). During such attacks, iptables reaches a state of saturation at approximately 1M
packets per second (pps). While solutions based on eBPF are known to be able to drop up to 15Mpps
and quickly recover from a state of FIFO tail dropping, the technology is still new and imposes strin-
gent constraints on the developer. Meanwhile, solutions based on frameworks such as Intel DPDK
or PF_RING are more likely to be incompatible with any new annotation scheme. Consequently, a
large-scale testing environment is required to validate any new addition to well-established protocols.

We claim the following contributions:

• We offer a tool1 capable of intercepting specific packets and annotating them with user specified,
per-protocol option types. The options are generated in their entirety by a decoder that allows
for easy integration of new option types, as well as protocols.

1https://github.com/RaduMantu/ops-inject



https://doi.org/10.15837/ijccc.2024.2.4906 3

• We propose a framework for assessing an annotation system’s compliance with firewall policies
and provide configuration scripts and templates for cloud experimentation under the primary
available providers (i.e.: Google Cloud, AWS, Microsoft Azure, Digital Ocean).

• We evaluate current layer 3 and layer 4 protocol extension mechanisms and deliberate their
suitability as a basis for developing new extensions.

We discuss the architecture of our system in Section 1. Then, in Section 2 we present our obser-
vations and offer recommendations based on empirical results. In Section 3 we discuss related work.
Finally, we present our conclusions in Section 4.

1 Architecture

1.1 Background on related technologies

NetfilterQueue is an extension to the packet filtering mechanism built into the Linux kernel.
This extension takes the form of a non-standard iptables target: NFQUEUE. By making use of the
nfnetlink_queue subsystem (and superseding ip_queue), NetfilterQueue allows judgement with re-
gard to the acceptance of a packet to be deferred to a userpsace process (see Fig. 1).
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Figure 1: Packet data path when matching an iptables rule with a NFQUEUE target

Specifically, once a packet reaches a Netfilter hook that corresponds to one of the main five chains
(i.e.: PREROUTING, INPUT, etc.) and satisfies the match criteria of a specific iptables rule, the
packet is enqueued, pending further analysis. After a userspace process subscribes to the very same
queue, the packet is copied to its virtual address space, starting with its layer 3 header, via a Unix
Domain Socket. The process is allowed to inspect the packet, and even to further buffer it while
requesting subsequent matches for out-of-order processing. Eventually, a verdict must be reached and
communicated to the kernel as one of the standard terminal targets in iptables (e.g.: ACCEPT,
DROP, etc.)

The reason this extension is useful to us is not necessarily the filtration aspect, but the fact that
once the verdict has been established, the process can supply a modified version of the packet. This
new packet will overwrite the one initially captured by the Netfilter hook. Given a positive verdict,
the modified packet will be reinserted into the network stack, following the intended data path and
reaching its endpoint. Note, however, that the userspace process can additionally specify another queue
to be used for reinsertion. If this is indeed the case, the potentially modified packet will be stalled
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once again for analysis. The process performing the second inspection (i.e.: the process subscribed to
the second queue) does not necessarily need to be the same process as before.

1.2 Annotation tool

In testing different features of layer 3 and layer 4 protocols, a usual approach consists of generating
synthetic traffic and bypassing the network stack of the originating host. We decided to forgo this
method in favor of a more practical alternative: modifying real traffic. The primary advantage of
the latter scheme over the former is the ability to verify not only that the annotated packets can be
successfully transmitted over the network, but also that their alteration does not impact higher level
protocols in the OSI stack. Additionally, the flexibility in assessing compliance with stateful firewalls
alleviates the effort that would have otherwise been required to simulate sufficiently credible sessions.

These aspects gave impetus to the development of a method to insert multiple protocol specific
options in outgoing traffic. One of the essential characteristics of the resulting tool is the capacity to
easily implement new options for existing protocols or to register new protocols altogether. Limited
by the extent of our needs for this experiment, session tracking falls outside its purview. As a result,
options such as MultiPath TCP are not available for testing. Instead, all options should either be static
in nature (e.g.: NOP) or depend entirely on the information available in a single packet’s header and
payload (e.g.: alternative checksums). Otherwise, its use may be limited to determining only whether
the initial packet was able to traverse the network (e.g.: TCP timestamps).

Next, we present a summary overview of the tool’s operation. Initially, the user adds one or more
iptables rules with an NFQUEUE target. All packets that match one of these rules are redirected into
userspace for our tool to evaluate and modify as it sees fit. During the initial invocation of the tool, the
user may specify a sequence of bytes that represent option codepoints. For each packet, the codepoints
will be expanded to actual TLV entries and inserted into a (potentially new) options section. The
NetfilterQueue callback that fulfils this purpose takes three steps towards successful annotation:
Options Decoding: having access to the packet, as provided by the Netfilter kernel hook, the first
step is generating the contents of the options section for a pre-established protocol (i.e.: IP, TCP,
UDP). Using the user-specified sequence of option-type octets, specific decoder functions are called
upon to expand them, thus populating the options buffer. This expansion phase is by and large an
arbitrary process. For example, an IP Timestamp Option (0x44) will be translated to a 12 octet buffer
containing a single timestamp associated to the source IP address. The generated flags will denote
pre-specified address fields as to discourage addition of new timestamps from compliant middleboxes.
This inhibition of user agency is a conscious decision intended to simplify the tool’s usage. Nonetheless,
the decoder functions can be easily modified on a case-by-case basis to accept more information and
conform to finer-grained requirements. Note that the options will appear in the order in which they
were initially specified by the user. However, the order in which they are generated may vary. For
example, a UDP Options Checksum (0x02) is supposed to be placed as close to the beginning of the
section as possible, while at the same time requiring all other options to have already been calculated.
Consequently, it’s decoding is delayed based on a discretionary option priority assignment.
Packet Reassembly: This step modifies the initial packet in order to include the newly generated
options. Any related fields (e.g.: IP.total_length) with the exception of the checksum are adjusted
to account for the payload offset. Based on user preference, existing options can either be completely
replaced, or preserved. In our tests, we employed the former approach in order to exert full control
over the content of the options section. Alternatively, existing options would take precedence. In turn,
this could lead to overflowing user-specified options to be discarded due to space constraints.
Checksum Recalculation: The reason why this step is separate from the previous is that changes
made to a header corresponding to a lower layer can impact the checksum of a higher layer protocol.
For example, while IP options are intended to extend only the IP header, the total packet length
increases nonetheless. As a result, TCP’s or UDP’s pseudo-header changes and the layer 4 checksum
does so along with it.

An advantage of relying on the Netfilter framework is that it integrates well with ip-xfrm (kernel-
side module that implements the IPsec protocol suite). Usually, VPN implementations are split
across both userspace and kernelspace. The former carries out the negotiation required as per the
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IKE protocol, which establishes up to four Security Associations (SA) and creates a Security Policy
(SP). The latter utilizes the SAs for packet encapsulation and encryption but more importantly, it
uses the SP to determine which packets are to be passed to the IPsec stack. This decision is taken
by consulting an SP database after the packet has traversed the OUTPUT and POSTROUTING chains. If
appropriate, the packet is modified and reinserted prior to entering the OUTPUT chain. The iptables
rule that identifies the packets which require annotations must be well-defined. Otherwise, the user
risks modifying a packet that is protected by the ESP protocol. We consider this approach preferable to
excluding packets containing ESP headers. Due to the potential usage of NAT-traversal encapsulation,
it would be inefficient to identify the presence of the ESP header. Moreover, allowing UDP packets
with destination port 4500 to pass may exempt IKE configuration packets from annotation, contrary
to the user’s intention.

1.3 Testing framework

Irrespective of the type of protocol that may benefit from these extensions, they will in all likelihood
be required to interact with cloud-hosted solutions [3]. As a result, we focus our efforts on verifying if
and how cloud providers allow the passage of annotated packets through their networks. To this end,
we perform a series of inter-regional tests. The structure of the testing environment can be seen in
Fig. 2. Initially, the management instance (i.e.: localhost) will install the annotation tool, as well as
any traffic generation tools under test on each virtual machine. Additionally it will also start tcpdump
processes and insert specific iptables rules with the purpose capturing relevant traffic for annotation
and later analysis. When testing a certain instance (e.g.: the one in me-south-1 region in AWS),
a server will be started (1) by issuing a command over a ssh channel. Immediately after, all other
instances will be issued similar commands, to start a client (2) and send requests to the server. The
resulting traffic will be annotated in both directions. After all communication (3) will have ceased,
another instance will be selected as the server. Finally, all tcpdump processes will be killed and the
generated packet captures as well as any logs will be downloaded for analysis.

gcloud
aws

eu-west2
instance-1

us-east1
instance-1

asia-southeast1
instance-1

me-south-1

instance-1

Management
Instance

client start over ssh (2)

annotated traffic (3) 

logs (4)

logs (5) server start
over ssh (1)

Figure 2: Architecture of the cloud testing framework.

The framework is comprised mostly of bash scripts using each provider’s CLI management tool. A
minimal setup is required: configuring default projects and public keys, enabling billing, and relaxing
the firewall rules of their private networks to the extent that they are permitted. The scripts can be
classified as management scripts, experiment scripts or analysis scripts, depending on their purpose.
Management scripts allow the automatic creation or deletion of VM instances in accordance with a
pre-specified list of regions. This list can be freely modified in accordance with the available selection of
each cloud provider. Additionally, they administer the configuration of VPNs or that of the annotation
tool. Experiment scripts install missing dependencies and generate traffic between any two instances.
The commands executed on remote machines are issued over a secure SSH channel. All relevant
inbound and outbound traffic is recorded on each instance and eventually imported on the managing
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Table 1: Percentage of annotated traffic received from any other host and by any other host. Grouped
by option type and averaged per provider. Data collected from multiple types of experiments (expts).

Protocol
(expts) Option

Acceptance Rate (%)
Received by Received from

gcloud aws azure docean personal gcloud aws azure docean personal

IP (8)

4x NOP 0 3.00 0 5.50 4.37 1.50 1.75 1.00 4.25 4.37
Record Route 0 3.25 0 6.00 5.00 1.37 1.75 2.00 4.25 4.37
Timestamp 0 3.08 0 5.91 4.37 2.00 1.75 1.00 4.25 4.37

Experimental 0 2.75 0 5.75 0 1.50 1.50 0.87 3.75 4.37
Unassigned 0 2.75 0 4.87 0 1.50 1.50 0 3.75 4.37

TCP (4)

4x NOP 100 100 100 100 100 100 100 100 100 100
Echo 100 100 100 100 100 100 100 100 100 100

Echo-Reply 100 100 100 100 100 100 100 100 100 100
Timestamp 100 100 100 100 100 100 100 100 100 100

Experimental 100 100 100 100 100 100 100 100 100 100
Reserved 100 100 100 100 100 100 100 100 100 100

UDP (3)

4x NOP 0 68.00 75.00 75.00 73.33 0 74.83 72.00 71.33 72.50
4x NOP & CCO 0 68.50 75.00 74.83 73.33 0 74.66 72.50 71.33 72.50

Timestamp 0 72.50 74.83 74.66 74.16 0 75.00 74.50 72.33 75.00
Timestamp & CCO 0 72.16 74.66 72.33 75.00 0 74.16 73.66 71.50 74.16

Experimental 0 72.50 75.00 75.00 75.00 0 75.00 74.50 73.00 75.00
Experimental & CCO 0 72.50 75.00 75.00 75.00 0 75.00 74.50 73.00 75.00

Unassigned 0 72.50 75.00 75.00 75.00 0 75.00 74.50 73.00 75.00
Unassigned & CCO 0 72.50 75.50 75.00 74.16 0 75.00 74.50 72.16 75.00

host. Any analysis of packet reception and option removal or alteration can be done offline. To this
end, we offer a subset of the analysis scripts that we employed in interpreting the network captures,
along with samples of said captures. We include only general-purpose scripts that, for example, report
overall instance reachability or retrieve AS numbers and names of recorded IP addresses.

Note that this framework is not specifically aimed at evaluating cloud providers. Their preponder-
ance in our tests was meant to verify the compliance to the protocol extension standards in the wider
Internet. Given that the credentials are correctly configured on all machines, the experiments can be
executed with either a statically defined set of public and private IPs, or via a user-provided means
of dynamically generating said set.

2 Evaluation
Our experimental setup consisted of twenty virtual machines, spawned in five different regions

per each tested cloud provider. The principal criterion that influenced our choice of regions was
geographical diversity, both within the same provider’s selection and across all instances. As a result,
regions that were uniquely available from a certain provider (e.g.: Middle East) took priority over the
more common ones (e.g.: Europe). Each instance ran the default Ubuntu 18.04 image offered by its
corresponding provider and was allocated 1-2vCPUs, 1-4GB RAM (depending on the available flavors)
and a public IP address. In addition to these, we also included a Ubuntu 20.04 VM instance running
on our personal server, over VMware vSphere 7 and behind a Palo Alto 5540 Firewall. During our
tests, we established over 50k connections over a period of approximately three weeks. Due to the
resulting overall cost of US$150, we consider that our framework usable in repeated testing.

The experiments themselves consisted of sequentially selecting an instance from the available pool
and transmitting annotated traffic from all other sources. For IP options, the protocols that we tested
were ICMP (Echo Request), DNS and NTP over UDP, FTP, HTTP and TCP-FastOpen over TCP,
as well as raw data on arbitrarily chosen free ephemeral ports (using both UDP and TCP). UDP and
TCP options were similarly tested over their respective subgroups from the previously stated selection.
A complete account of all tested options can be found in Table 1, as well as their respective acceptance
rating, grouped by cloud provider. The "Received by" section, for example, represents the amount
of unaltered, annotated traffic that reached instances belonging to a certain provider. This includes
experiments initiated from different regions of the same provider. For instance, an IP Record Route
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value of 3.25% for AWS is relative to five instances per cloud provider, twenty sets of experiments
initiated by other hosts per instance, and 8 experiments testing different higher layer protocols per
set. We note that in some cases (e.g.: IP Timestamp option) we conducted more than twenty sets of
experiments per instance, in order to obtain sufficient data for other forms of analysis. Consequently,
the results are averaged across these batches of experiments. Note that each experiment focuses on a
single option at a time; due to limited resources, we do not test combinations of options.

For all protocols, we included a test consisting of four consecutive NOPs (No Options). Normally
this option is used as padding in solving alignment issues. However, no more than three NOPs would
be required if this was indeed the case. Four or more NOPs could either indicate that options had
been purposefully removed during the network traversal by middleboxes, or they could be construed
as a relatively weak DoS attack meant to exhaust CPU cycles by means of processing inconsequential
options. Due to this ambiguity, we surmised that firewall manufacturers may prove less lenient towards
such occurrences. Nonetheless, our tests revealed that the 4xNOP case did not impede communication
in instances where other options lead to successful network traversals, regardless of protocol.

As one of our leading goals, we resolved to verify not only the acceptance of well-established
options, but also that of unassigned or reserved ones. Similarly to the four NOP case, an undefined
option can also be evaluated as malicious. While the former could be motivated by the arbitrary
removal of interspersed options by routers, the latter could be considered a less ambiguous attempt at
a DoS by certain firewalls [19]. Consequently we implemented two variations of an undefined option.
The first option utilizes an unassigned or a IANA-reserved codepoint for each protocol (IP: 0x5d,
TCP: 0x47, UDP: 0x7d) which fills the data field with consecutively-valued data bytes until the next
32-bit boundary in the options section. The second option is implemented almost identically. The
only difference is that it follows the recommendation on shared use of 16-bit experimental IDs and
uses the 0xfe codepoint for both the TCP and UDP instantiation.

In the following subsections we discuss each IP, TCP and UDP option that we tested, identifying
practical applications and deciding their suitability for large scale deployment.

2.1 Analysis of IP options

After testing multiple IP options in combination with different transport layer protocols, we con-
cluded that with the exception of ICMP messages, all packets are consistently dropped. For this
reason, our following analysis will focus primarily on the idiosyncratic behaviour of certain providers
towards each of the examined options.

Timestamp option. Consists of a 4-byte header, followed by a data segment of arbitrary length.
The header fields are as follow: Option Type and Option Length (adhering to the TLV encoding of
most options), succeeded by a one-byte Pointer field denoting the offset into the option where a host
may add a new timestamp, and two nibble-sized Overflow and Flag fields. The Overflow field is set
initially to zero and is incremented by each host that is willing but unable to add a timestamp. The
Flag field defines multiple modes of operation: the hosts are either required to append only 32-bit
timestamps, or to add the IP of the corresponding interface as well. In case of the latter, multiple IPs
can be pre-specified so that only select hosts may add their timestamps. Initially, we crafted packets
such that they contained only the originating host’s IP and timestamp, while no middleboxes would
be allowed to append their own. The reason for this was to easily verify if the contents of the option
could be modified in transit, given that the packets ever reached their destination. Later, we relaxed
this constraint and allowed middleboxes to add their own timestamps, which did not give rise to any
new impediments.

Although this option shares the functionality of Record Route, the 40-byte limit of the IP options
section is too constricting for it to have the same practical utility. The inclusion of the Overflow
field, however, can be leveraged to approximately determine the number of hosts knowledgeable of
IP options along a certain route. This can be particularly useful when their number significantly
exceeds the capacity of the Record Route option (over half of the working routes in our experiments).
Nonetheless, there are still certain challenges when trying to accurately approximate the number of
hosts. For example, a Tp-link router running a Linux 2.6 kernel may choose not to try and add a
timestamp when forwarding an ICMP packet to another host. However, when the router itself is the
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destination, it will readily attempt to append its timestamp. Previous work [15] shows that different
router families can add between 0 and 4 timestamps on each interface. Another distinct behaviour
can be gleaned in how Windows and Linux hosts respond to ICMP Echo Requests. A Linux host
will append it’s timestamp twice (both on ingress and on egress). This behaviour appears to be
consistent across multiple kernels that we tested (up to 5.4.0). A Windows host however, will only
add its timestamp once. This detail must be taken into account when not having access to both
endpoints of the analyzed route and depending on the ICMP Echo Reply to carry over the data
collected from the Echo Request, in addition to its own. In Figure 3 we illustrate the variability of
recorded timestamps and reported overflow at the ICMP Echo Request destination. Contrary to our
initial belief, correlating the overflow with the TTL difference is not trivial. It is also important to
note that the overflow can not always be considered an underestimation of the TTL.
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Figure 3: Variability of IP Timestamp records and overflow in comparison with TTL distance.

Table 2 illustrates the average route length based on the Overflow field, calculated over three
separate trials, on different instances. The highlighted values signify that the annotated packets
were not dropped during any test. Based on this data, we can draw a few observations. While
DigitalOcean appears capable of both receiving and transmitting annotated packages, AWS performs
consistently well only in the Mumbai and Manama regions. On the other hand, Google Cloud and
Microsoft Azure always block the packets on ingress. On egress, we notice that Azure was able to
emit annotated packets from its Seoul and Toronto-based regions once and twice during the three
experiments, respectively. Finally, Google Cloud presents two distinctive traits. First, though wholly
inconsistent, all regions were able to successfully send annotated packets, as confirmed from the vantage
point of any instance verified to receive annotated traffic from other sources. This indicates that the
issue may lie with middleboxes outside their own network. Second, both AWS and DigitalOcean seem
to reset the contents of the Timestamp option (IP, timestamp pairs, as well as Overflow value) when
entering their network, but only when the packet originated from a Google Cloud instance. This
operation takes place regardless of the region of origin, or that of destination. A similar behaviour can
be seen with the Route Record option, where the only registered IPs correspond to their Autonomous
Systems and to a IANA-reserved shared address space. A possible explanation is that outgoing traffic
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Table 2: Average number of attempted IP timestamp additions along the route between any two
cloud instances or our personal (p) server. Highlighted values indicate option acceptance across all
experiments. Missing values signify that no annotated packet was able to traverse the network.
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is encapsulated upon leaving the Google AS for well-known destinations. Unfortunately, we are unable
to verify this theory due to access limitations.

Record Route option. This option was designed in order to facilitate route recording by affixing
the output interface IP of each router to a pre-allocated space in the options area. Being comprised of
a 3-byte header and a variable-length data section, its functionality is similar to that of the Timestamp
option. The Option Type, Option Length and Pointer field all have the same significance, with one
remark: on detecting an incongruity in the remaining available space as calculated based on the Length
and Pointer fields, the route is obligated to drop the packet outright. In the absence of timestamps,
the maximum number of IPs that can be recorded is nine. This option may constitute a viable
alternative to existing network path discovery tools (e.g. traceroute) that may be expressly thwarted
for instance, by disabled ICMP Time Exceeded replies. Although this method proved functional, the
longest path a packet followed in our experiments was 24 hops, considerably exceeding the available
capacity for recorded IPs.

Although the limited space availability is a natural concern when employing this mechanism in the
open Internet, recent work [11] has shown that approximately half of all advertised BGP prefixes at the
time were within the recording distance limit from their originating hosts. During our experiments,
we determined that any two instances fell within the same limit 54.88% of the time, predicated on the
fact that the packets were able to successfully traverse the network (see Table 1). Out of a total of 669
addresses recorded along 82 viable routes between the 21 instances, their distribution was as follows.
IANA-reserved private addresses [17]: 120, with 82 belonging to A-block (10/8 prefix), 11 belonging
to B-block (172.16/12 prefix) and 27 belonging to C-block (192.168/16 prefix). IANA-reserved shared
addresses [20]: 88, used to connect end devices to Carrier Grade NAT equipment on Service Provider
networks (100.64/10 prefix). Amazon Technologies Inc.: 132. Digital Ocean Inc.: 170. Microsoft
Corporation: 18. RoEduNet: 38. The remaining 103 recorded addresses belong to organizations such
as GÉANT, the European research and education network, and various other carriers (e.g.: Telia,
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Tata Communications, etc.) As previously mentioned, the absence of Google Inc. from this account is
motivated by an anomalous behaviour where the route record prior to entering AWS or DigitalOcean
networks is erased (or rather missing) without the packet being dropped, as long as it originated in
the Google Cloud network.

Unassigned and Experimental options. Similarly to the Timestamp options, these as well
are generally accepted in every tested DigitalOcean region, as well as Mumbai and Manama for
AWS. Google Cloud remains an unreliable sender, its annotated traffic sometimes reaching these
hosts but more often not. While in previous experiments Google’s firewall simply dropped incoming
IP annotated traffic, we noticed a small number instances on the west European server when options
would be removed and the packet allowed to pass. Unfortunately, we encountered only three such
cases (one for FTP and two for HTTP) and cannot draw any definitive conclusion. Neither of these
anomalies were accounted for in the statistics presented in Table 1. As for Microsoft Azure, the Korean
server was able to consistently send Experimental IP options, but not Unassigned options. Aside from
this singular exception, all annotated traffic was dropped at some point. Finally, our personal server
was capable of sending but not receiving packets with Unassigned or Experimental IP options. After
running tests in our local network, we concluded that the Palo Alto firewall was responsible, and not
the vSphere hypervisor.

2.2 Analysis of TCP options

Timestamp option. The acceptance of TCP options increased remarkably during the past
decade. Admittedly, our study was not intended to verify the correctness of session specific options.
Neither is the tool that we developed capable of tracking connection states and take appropriate action
in the option content generation stage. Our primary goal was simply to establish whether annotated
packets can traverse the network. As a result, experiments involving this option would not extend
past the initial SYN, SYN-ACK exchange. Normally, a misconfiguration of the Echo Reply value
would cause the initial sender to terminate the connection with a RST after receiving the incorrect
SYN-ACK. We confirm that replying with an incorrect TSecr or using a non-monotonically increasing
function for TSval would lead to immediate termination. This, however, would not impede annotated
RST segments from traversing the network.

Echo and Echo-Reply options. According to the IANA registry, ten TCP option codepoints
have been obsoleted to this day. We attempted to determine if obsoleted options can be blocked by
middleboxes. And if not, whether the option kinds can be reused with other implementations. As
such, we analysed the two aforementioned options, as precursors of the Timestamp option. Where
the initiator would send an Echo option with a 4-byte payload (TSval) that would usually represent a
timestamp, the receiver would reply with an Echo-Reply option containing the former’s value (TSecr).
We concluded that both options still function normally and that replacing their contents with that
generated for unassigned options does not cause the packets to be dropped. Moreover, issuing Echo-
Replies without having received a prior Echo-annotated packet does not impede the former’s network
traversal in any way.

Reserved and Experimental options. At the moment there are numerous reserved codepoints
that are known to be employed without proper IANA authorization. As such, we purposely chose the
0x47 kind in order to avoid matching potential firewall ACCEPT rules for particular implementations
in certain networks, unlikely as it may be. According to our experiments, both the Reserved and
Experimental options always reached their destination unmodified.

2.3 Analysis of UDP options

Checksum Compensation Option. UDP options are a relatively new addition [19]. Although
initially lacking support for any type of extension, a redundancy between the IP.total_length and
the UDP.length fields allowed the insertion of an extra section after the UDP payload. Due to this
unconventional development, their acceptance by middleboxes is still largely unknown. One of the
main causes for their rejection [22] was addressed with the introduction of the Checksum Compensation
Option (CCO) [6]. This option accounts for network equipment that equates the IP payload length
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Table 3: Percentage of successful UDP option network traversals between any two cloud instances or
our personal (p) server.
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to the UDP length, thus calculating the checksum in a manner that will lead to the packet being
discarded. For each UDP option that we tested, we performed an additional experiment involving the
CCO. Following these alternative tests, we did not observe any significant improvement in the option
accepting rating, as can be seen in Table 1. These leads us to believe that the previously identified
pathologies do not necessarily apply in our tested networks.

Timestamp option. This option was modeled after its TCP equivalent. Although bearing many
similarities such as the incorporation of both TSval and TSecr fields in the same option, or the use of
a monotonic non-decreasing function for TSval, in contrast to the TCP Timestamp, TSecr is allowed
to be returned with null value. Because this action represents the express intent of the application, it
would not lead to the early interruption of it session. Consequently, since its application in this form
does not require session tracking, we were able to annotate all segments with this option.

Unassigned and Experimental options. As a pendant to the TCP Experimental option, it
also shares the same codepoint and even the Experimental ID system. For this reason, we decided to
reutilize the TCP implementations here. Eventually, we concluded that there was no statistical differ-
ence between the acceptance of an Unassigned or Experimental option and already defined Timestamp
option.

A more detailed representation of route-specific acceptance rates can be found in Table 3. As it
can be readily observed, Google is consistent in blocking UDP options both on ingress and egress,
possibly based on the inconsistency between IP.total_length and UDP.length. Conversely, with
few exceptions, all other providers have exceedingly high acceptance rates. We note that we did not
encounter any cases in which UDP options were stripped or modified while also allowing the base
packet to pass.

3 Related Work
At this time, there are numerous studies dating back to the 1990s that evaluate the state of IP and

TCP options at distinct moments in time. On the other hand, due to their recent introduction, UDP
options have not yet garnered the same credibility as their aforementioned counterparts. Additionally,
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in spite of the large body of work that substantiates (or repudiates) their applicability in modern
contexts, TCP and IP options have been evaluated for different purposes. While TCP options needed
to be extendable and incorporate new implementations, IP options have been tested mostly as probing
mechanisms. Our work differs from the rest in two aspects. Firstly, we provide a more extensive
analysis, incorporating multiple protocols as to determine the situations where each can be most
suitably employed. Secondly, we evaluate not only the acceptance of existing implementations, but
also that of potential extensions for each protocol.

Fonseca et al. [8] offered one of the first relevant investigations into the suitability of IP options
at a time when extensions that were considered for wide-spread adoption vied for the allocation of
dedicated fields in the IP header. By using PlanetLab [2], a global service deployment test network
that operated between 2002 and 2020, the authors concluded that while over half of the tested routes
proved adverse to IP options, the vast majority (approx. 90%) of packets were dropped in edge
ASes. Additionally, they were able to identify a small subset of ASes responsible for compromising an
exceedingly large number of routes.

Honda et al. [12] proposed a middlebox evaluation methodology based on TCPExposure, a mea-
surement tool of their own design that was employed by multiple contributors, totaling 142 venues
across 24 countries. Their goal was to decide whether Multipath TCP [21] and TcpCrypt [1] were
ready for deployment in the wider Internet. Their investigation yielded a number of insights into the
behaviour of middleboxes that implement transport layer functionality.

In their 2012 work, De Donato, Marchetta and Pescapé [4] deliberated on the dependability of IP
timestamp options for active network measurements. By probing over 1.7M public IPs with multiple
transport layer protocols while carrying the aforementioned option, they identified increased utility
for ICMP and exceedingly low tolerance for TCP when discarding responses that were not RFC-
compliant. In total, they identified over 40k target hosts that provided such replies and six types of
anomalies that are representative of erroneous implementations. The most prominent anomalies they
encountered were pre-specified timestamp IP address overwrite and pointer field inconsistency.

Kühlewind et al. [13] published a study of Explicit Congestion Notification (ECN) and other
congestion-related TCP options (i.e.: SACK, Timestamp, Window Scaling). In spite of the fact that
ECN was over a decade old at the time and implemented in virtually every operating system, it can
now be considered a timely and ideal example of protocol ossification. Proof of this is the fact that
most operating systems that did implement ECN had it disabled by default in order to circumvent
impermissive firewall implementations. After performing two sets of measurements four months apart,
the authors concluded that although 90% of servers negotiated ECN usage, ECN feedback could
become a more contentious issue because of the utilization of reserved bits in the TCP header.

Tracebox [5] is an extension to traceroute that is capable of identifying the exact middlebox that
either alters or outright drops packets bearing protocol extensions. Sequentially incrementing the TTL
field and keeping note of each emitted packet, tracebox is able to detect the changes brought by each
middlebox on the path via a direct comparison to the quoted packet that is encapsulated in the ICMP
Time Exceeded Message. Nonetheless, this approach carries certain risks, including the possibility that
certain middleboxes block ICMP error messages, or that the aforementioned quoted packet is limited
to the IP header and the first 64 bits of the payload (when middleboxes do not implement support
for multi-part ICMP messages). While lacking the diagnostic capabilities of tracebox, our tool is
focused on data collection for real-life applications with prolonged sessions and not just connection
establishment.

PATHspider [14] is a differential protocol testing tool based on customizable A/B testing. Similarly
to our tool, PATHspider deals in problems of transport layer protocol ossification. It determines
whether protocol extensions are correctly implemented by creating two connections: one with a default
socket configuration to serve as baseline, and one implementing the desired extension (not limited to
protocol options). The two main differences between this tool and ours are as follows: first, while
PATHspider crafts synthetic traffic, we modify packets that are organically generated by existing tools.
This reduces the effort necessary to set up new experiments. The second difference consists in how
we evaluate the success of the experiment. PATHspider monitors the network traffic and performs
real-time user-defined checks to asses the correctness of the protocol implementation. In contrast, we
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prefer to create packet captures (preferably at both endpoints) and carry out offline tests via bash
scripts. The motivation for this design choice stems form a desire to modularize our system and is
further justified by the need to perform new tests without re-running the experiments.

In 2017, Marchetta et al. [15] presented several new network measurement techniques based
on variations of the Record Route and Timestamp IP options. First, they propose an alternative
traceroute technique based not Time Exceeded messages, but on ICMP Parameter Problem, caused
by malformed IP options. Additionally, they present middlebox and path length detection techniques,
as well as a new method for router alias resolution and fingerprinting.

Goodchild et al. [11] studied the effects of the "flattening Internet" [9] by testing the IP Record
Route option against all advertised BGP prefixes. They discovered that two thirds of all responders
to ICMP Echo Requests carrying this option were within nine hops from at least one PlanetLab or
Measurement-Lab vantage point. Moreover, the responders comprised a significant majority (75%) of
all tested hosts.

In a recent study, Zullo, Jones and Fairhurst [22] identified a series of path pathologies, resulted
mainly from protocol ossification, that negatively impact the acceptance of UDP options. They
discovered that most packet rejections are due to incorrect UDP checksum calculations that stem
from the usage of the IP Total Length field, in favor of the UDP Data Offset field. Due to it’s
poor dependability in certain networks, in lieu of utilizing the zero-checksum that indicates that no
checksum verification is required for UDP, they developed a new Checksum Correction option that is
supposed to overflow the incorrect 16-bit sum in such a way so that the final checksum is equivalent
to the correct checksum.

4 Conclusion
This paper explores the acceptance of well-established IP, TCP and UDP options, as well as the

possibility to develop new options. To this end, we created a packet annotation tool of approx. 2000
LoC that is meant to append user-specified options of any type to packets matching specific iptables
rules. Additionally, we constructed a script-based framework to manage a cloud-based infrastructure
including four of the largest providers (i.e.: Google Cloud, AWS, Microsoft Azure, DigitalOcean) along
with our personal cloud. Both tools can be easily extended by adding new protocols, implementing
new options, and selecting new regions for future experiments.

Our evaluation consists of reachability tests for 19 options or combination of options corresponding
to the three previously enumerated protocols. For each option, we performed a series of experiments
involving higher layer protocols (e.g.: http, ntp, dns, etc.) as well as raw data passed to arbitrary
ephemeral ports. One of our goals was to provide a consistent assessment for protocol extension
mechanism that have historically been evaluated independently, in separate environments and with
different purposes. In addition to route-specific acceptance statistics, we offer a number of observations
made during our measurements, among which:

• While extraneous sequences of options (e.g.: 4x NOP) were never considered malicious, certain
Palo Alto firewalls may explicitly drop Experimental/Unassigned IP options but not their TCP
and UDP counterparts.

• IP options seem to function properly only in conjunction with ICMP, at least in our experiments.

• The overflow of the IP Timestamp option is not necessarily a good indicator of path length.
AWS and DigitalOcean reset the contents of the option on entering their network, but only for
packets originating in Google Cloud.

• Network traversal reliability for UDP options is almost as good as for TCP. The only provider
that actively blocks all UDP options is Google Cloud. Because the Checksum Compensation
Option was not effective in this scenario, we surmise that checksum calculation errors are not
responsible.
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We conclude that the current state of TCP and UDP options is favorable enough for developing new
extensions. Any acceptance problems involving the latter are isolated to specific cloud providers, and
not ISPs. IP options remain a contentious issue. Because their dependability when used in conjunction
with protocols other than ICMP is fairly low, they are not well suited as protocol enhancements in
the same way TCP options are to TCP. However, we believe that there is still potential for developing
new network measurement techniques based on the existing IP options.
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