INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL

Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 18, Issue: 4, Month: August, Year: 2023
Article Number: 4874, https://doi.org/10.15837/ijccc.2023.4.4874

communication

AR SR\
[rosaa]

cc PUincationS UNIVERSITY PRESS

computing

Deep Learning TCP for Mitigating NLoS Impairments in 5G
mmWave

R. Poorzare, A. Calveras Augé

Reza Poorzare*

Department of Network Engineering

Universitat Politecnica de Catalunya, Spain

08034 Barcelona, Spain

*Corresponding author: reza.poorzare@Qupc.edu

Data-centric Software Systems (DSS) Research Group at the Institute of Applied Research
Karlsruhe University of Applied Sciences

Karlsruhe, 76133, Germany

reza.poorzare@h-ka.de

Anna Calveras Augé

Department of Network Engineering
Universitat Politecnica de Catalunya, Spain
08034 Barcelona, Spain
anna.calveras@Qupc.edu

1

Abstract

5G and beyond 5G are revolutionizing cellular and ubiquitous networks with new features and
capabilities. The new millimeter-wave frequency band can provide high data rates for the new
generations of mobile networks but suffers from NLoS caused by obstacles, which causes packet
drops that mislead TCP because the protocol interprets all drops as an indication of network
congestion. The principal flaw of TCP in such networks is that the root for packet drops is not
distinguishable for TCP, and the protocol takes it for granted that all losses are due to congestion.
This paper presents a new TCP based on deep learning that can outperform other common TCPs in
terms of throughput, RTT, and congestion window fluctuation. The primary contribution of deep
learning is providing the ability to distinguish various conditions in the network. The simulation
results revealed that the proposed protocol could outperform conventional TCPs such as Cubic,
NewReno, Highspeed, and BBR.

Keywords: Deep learning, 5G, millimeter-wave, TCP.

Introduction

Reliable end-to-end communication that guarantees the delivery of individual packets mostly relies

on TCP (Transmission Control Protocol) [1], which is one of the inseparable parts of the Internet.
TCP employs an acknowledging system to assure that all packets are reliably delivered. Nevertheless,

https://doi.org/10.15837 /ijccc.2023.4.4874 2

deploying mmWave (millimeter-wave) in new cellular generations such as 5G (Fifth Generation) for
dispensing high data rates makes it difficult for TCP to function sufficiently. The reason is that most
materials can act as obstacles between a UE (User Equipment) and a gNB (gNodeB), so reduce the
transmission channel bandwidth. Frequent transitions from LoS (Line-of-Sight) to NLoS (Non-Line
of Sight) states impair the performance of TCP as the protocol cannot distinguish whether drops are
due to congestion or ones forced by NLoS states. The reason for blockage underutilization is that
when the channel bandwidth is degraded during NLoS states, some losses caused by buffer overflows
can be forced [2], [3]. This issue is more severe in urban deployments as numerous obstacles and
mobile users create countless changes in users’ states [4]. As a result, most of the conventional TCPs,
such as HighSpeed [5] , Cubic [6] , BBR (Bottleneck Bandwidth and Round-trip propagation time)
[7] , and NewReno [8], cannot be adapted to the new generations of mobile networks and need some
modification to utilize the full potential of 5G mmWave networks [9].

Among the protocols, HighSpeed can reach high performance due to its aggressive congestion
control mechanism. On the other hand, BBR, a model-based protocol that strives to achieve high
performances through low latencies, is not very successful in fulfilling its aspiration in 5G mmWave
networks as the declined bandwidth due to the blockage can mislead the protocol in estimating the
bottleneck bandwidth. The other two protocols show intense deficiencies, especially NewReno, whose
AIMD (Additive Increase Multiplicative Decrease) has been the based approach in designing other
protocols [10] A thorough analysis of TCP over 5G mmWave networks can be found in [2].

Some new protocols have tried to solve this problem by proposing new congestion control al-
gorithms, such as FB-TCP (Fuzzy-Based TCP) [4], DL-TCP (Deep-Learning TCP) [11], [12] for
disastrous situations, or even a decision tree algorithm to enhance the congestion control on 5G IoT
(Internet of Things) networks [13], and NexGen D-TCP [14]. The first protocol could function ap-
propriately in urban deployments by achieving higher throughput than the other TCPs through low
latencies. DL-TCP could reach high throughput for UAVs (Unmanned Aerial Vehicles) in disastrous
situations; however, it lacks a well-designed evaluation method as the protocol was trained and tested
in the same topology. Furthermore, it has not been compared to HighSpeed, one of the best candidates
for the 5G mmWave networks. The frailty of NexGen D-TCP is similar to DL-TCP as it has not also
been compared to HighSpeed. Moreover, the feasibility of machine learning approaches in predicting
the congestion status in 5G mmWave has been investigated in [15]. The first step was learning the
congestion status by deploying some parameters that are important for the transport layer, such as
delay, then analyzing different machine learning algorithms. The outcomes indicated that unsuper-
vised schemes are powerful tools for detecting congestion in the network. Furthermore, the proposal
of a hybrid deep-learning strategy in [16] for combining LSTM (long short-term memory) and SVM
(Support Vector Machine) could show enhancements in the congestion control mechanism by reaching
an accuracy of more than 93 percent. All these machine-learning techniques and the obtained results
are indicators that intelligent congestion control algorithms can be of assistance in order to hone the
functionality of the 5G mmWave network.

Some other machine learning efforts focused on other layers than the transport layer, like deploying
an intelligent approach for having a well-designed handover mechanism to tackle the blockage issue of
5G mmWave networks, such as [17], which strive to hone the conditional handover.

Furthermore, there have been some efforts to use MPTCP (Multipath TCP) [18] as an enabler in
the exploitation of more than one NIC (Network Interface Card) simultaneously, such as in [19], [20],
which strived to mitigate the mmWave impairments by aggregating the network with LTE; however,
this mechanism also needs some modifications to be adapted to the 5G mmWave network [21], [22].

The most significant reason for TCP’s deficiency is that the protocol is not able to differentiate LoS
and NLoS states from each other. If this feature can be embedded in the congestion control mechanism
of TCP, it can enhance the performance of the protocol in 5G mmWave networks. For filling this gap,
in this paper, we propose a new protocol called DB-TCP (Deep learning-Based TCP) established on
the DNNs (Deep Neural Networks) [23] to enhance the functionality of TCP over 5G networks in
urban deployments. The new congestion control mechanism of DB-TCP is able to determine different
states of the network before changing the sending rate and adjust the cwnd (congestion window) based
on the condition that the network is and novel parameters. To the best of our knowledge, this is the

https://doi.org/10.15837 /ijccc.2023.4.4874 3

first work to create a new protocol for 5G urban deployments based on DNNs. Extensive simulations
revealed that DB-TCP could perform better than conventional TCPs regarding different KPIs (Key
Performance Indicators).

The rest of the paper is as follows. Section II presents the necessary backgrounds for deep learning
and then proposes the DB-TCP. Section III incorporates the simulation results, and finally, section
IV concludes the paper.

2 Deep learning-based TCP

2.1 Introduction to Deep Learning

Deep learning is one of the state-of-the-art techniques employed to solve complicated problems. A
DNN is a network established using neurons as inputs, outputs, and hidden layers, i.e., the neurons
between inputs and outputs. The network mechanism is to solve problems through forward and
backward propagation mechanisms with the help of the neurons and calculations done in these neurons.
DNNs are the evolved and improved version of ANNs (Artificial Neural Networks), so they can employ
more layers to achieve higher accuracy. The neurons in individual layers receive the previous layer’s
output, then, using nonlinear functions, i.e., activation functions, calculate the new values and feed
them to the next layer; this procedure is called forward propagation. Then based on a reversed
approach called backward propagation, the network tries to improve its accuracy and attain a well-
suited network to the problem. Different nonlinear functions such as Sigmoid, Relu, and Tanh can be
deployed based on various factors such as the training set [23].

Hidden Layers (rei)

2B S o R e

= o T

<

Xavier
Initializer

= Drop

5
s’

Figure 1: Deep Neural Network Architecture for DB-TCP

Figure 1 shows a DNN architecture and employed parameters in our training. The details of its
architecture are discussed in the following subsection.

2.2 DB-TCP Architecture

DB-TCP employs a network of five inputs as the features, three hidden layers, and three outputs.
When there is only one hidden layer, the DNN will be capable of handling linear functions and
decision-making problems. As the number increases to two, it can solve mapping problems from
finite inputs to finite outputs. However, including three hidden layers means that the DNN can solve
arbitrary and complicated issues; as a result, we have decided to set the number of hidden layers to
three. Regarding the number of neurons in the hidden layers, we have deployed orders of the features
along with increasing and decreasing numbers so that the activation function can accomplish higher
accuracy. Moreover, Dropout can benefit from this set of numbers.

The employed activation function in the DNN is Relu (Rectified Linear Activation Function), one
of the popular activation functions. Based on its mechanism, this activation is one of the most used
functions. To prevent overfitting, Dropout [24] has been used, and in order to establish the initial

https://doi.org/10.15837 /ijccc.2023.4.4874 4

weights, Xavier Initializer [25] has been chosen. For the calculation of the backward propagation to
improve the model, the Adam optimizer [26] has been exploited to lower the loss function and enhance
the accuracy. Eventually, Softmax was employed at the output layer to classify the network into three
different clusters. The first hidden layer consists of twenty neurons, the second one twenty-five, and
the third one twenty.

Considering the parameters to be fed to the network, the first input is the current RTT (Round
Trip Time), which is the minimum RTT for the current window. The subsequent inputs are CSI
(Congestion Status Indicator), CAD (Cwnd Adjuster), Diff (Difference), and Average. CSI is the
result of dividing basertt (the minimum RTT value for the connection) by minrtt (current minimum
RTT). CSI is calculated by equation (1):

1: CSI = baseRtt/minRit,

CAD can be obtained by dividing targetedcwnd by currentcwnd. The targetedcwnd is the optimal
value for cwnd, and a connection can reach the available throughput by being set to this value; in
other words, it is the minimum size of the congestion window that provides maximum throughput
under the current access link conditions. Equation (2) indicates how targetedcwnd is calculated where
Dthroughput is the desired throughput:

2 : targetedCwnd = Dthroughput/minRTT,

We should notice that Dthroughput can be calculated by multiplication of baseRtt in current cwnd
as shown in equation (3):

3 : Dthroughput = currentCwnd * base Rtt,
By having targetedcwnd, CAD can be estimated by employing equation (4):
4 : CAD = targetedCwnd/currentCwnd,

Finally, Diff is the difference between currentcwnd and targetedcwnd and is calculated by equation

(5):
5: Diff = currentCwnd — targetedCwnd,

Eventually, the last input is the average of the most recent three RTTs, i.e., the sum of the
minimum RTTs over the previous three windows. The reason for choosing these inputs is that they
can provide a clear insight from the network and help the protocol distinguish NLoS from LoS states.
As the blockage can directly impact the RTT, CSI as an indicator factor for baseRtt and minRtt could
assist the training engine to have an insight from the network. Besides RTT, the blockage has the
potential of changing the desired throughput and optimal cwnd; thus, both CAD and Diff are useful
parameters for reflecting the status of the network.

Furthermore, the principal drawback of TCP originated in the fact that it is not capable of detecting
the current state of the network and behaving in different conditions in the same manner. As a result,
By having these five features, DB-TCP can have a prominent view of the network and adjust the
sending rate based on the current condition of the network.

The three outputs of the DNN for specifying the ongoing state of the network are LoS, DNLoS
(Dynamic NLoS), and SNLoS (Static NLoS). LoS is when there are no obstacles between the user and
the antenna. DNLoS and SNLoS refer to the times when some obstacles act as hurdles on the way
to establishing a proper connection. In the former one, the user is moving, but in the latter one, it is
still.

The inputs for training the model have been taken from the simulation results of the training
scenario. In this scenario, five trees and three buildings act as obstacles to impair communication and
create NLoS states.

The detailed information for the obstacles is as follows: the height for trees is ten meters, the
distance between trees 1.5 meters, the distance between the last tree and the first building five meters,
the height of buildings thirty meters, and the width of buildings eight meters. Furthermore, the user’s

https://doi.org/10.15837 /ijccc.2023.4.4874 5

distance from the antenna is 68 meters. The antenna that has a fifteen-meter high is connected with
a delay of 10 ms (one-way propagation delay) to the PGW (Packet Data Network Gateway), and the
PGW is 10 ms away from the application server.

Figure 2 shows the training scenario. The simulation time for collecting data was 70 seconds.
However, we should notice that in the final step for the protocol to be applied in practice, numerous
obstacles should be employed, and the simulation should be run for days in different movement types
to have vast and generalized data.

8Sm
1.5m/s
ﬁ i ;
1.5m .S_m. A
® @ ¢ o 2 : ;
B 10 m 30m
68 m

(¢))\ 15 meters
() PGW 10%iE i’

10 ms
Figure 2: The training topology

DB-TCP can be a starting step for creating novel intelligent TCPs for 5G mmWave, especially
over urban deployments. Researchers can use the provided codes and training sets as guidelines
for designing new protocols. More importantly, the provided architecture in Tensorflow [27] , the
protocol’s code in C++, and the way that weights have been included in the protocol for having a
connection between Python and C++4, are other advantages that researchers can take.

The primary reason for choosing this scenario is that it includes most conditions in urban deploy-
ments so that the protocol can function well in cases with fewer flaws.

During training the model, we have used callbacks to stop the training when the accuracy is above
0.9985; as a result, the training has stopped in 987 epochs, and the corresponding loss was 0.0045.
Both accuracy and loss are close to the optimal values, which are one for the accuracy and zero for
the loss.

Any trained model should be tested in an environment where it has not already seen the data.
Consequently, we designed another scenario with different circumstances to mimic the evaluation
scenario. There are two obstacles in the evaluation scenario located in other places.

The main aim of this procedure is to figure out how the trained engine functions on inputs that it
has not seen before. The result for accuracy and loss was 0.9940 and 0.0367, which are desirable for
a trained model.

After determining the state of the network by the outputs of the DNN, DB-TCP adjusts the cwnd
based on CSI and Diff, where the first one specifies the aggressiveness of the protocol and the second
one is for controlling the steps and preventing the protocol from taking blind paces in inflating the
cwnd in a way that cwnd adjustment can be set according to the congestion status. These parameters
get updated in every acknowledgment to be adapted to the network’s condition in proper time stamps.

Table 1 indicates how DB-TCP adjusts the cwnd in every acknowledgment. The first step in the
adjustment process is detecting the ongoing state of the network, which is provided by deep learning,
and assists in making proper decisions.

The values in Table 1 have been obtained after numerous simulations to be best fitted for urban
deployments. However, the protocol is flexible, and the values are tunable for different situations
and deployment scenarios. In other words, we have tried to select the best values through numerous
simulations, yet there might be conditions that these values can not function properly, as can also
happen to other TCPs.

The rules in this table have been embedded in the congestion avoidance phase of TCP. Most TCPs
have similar functionalities in all phases except the congestion avoidance one. This phase is the heart
of the protocol and is responsible for reacting to different situations and adjusting the sending rate.

https://doi.org/10.15837 /ijccc.2023.4.4874 6

Table 1: HOW DB-TCP ADJUSTS THE SENDING RATE

DB-TCP cwnd adjustment
1. (LoS) and (CSI >= 0.99) and (Diff == 0) cwnd=cwnd + cwnd/10
(LoS) and (CSI >= 0.99) and (Diff > 0) and (Diff | cwnd=cwnd + cwnd/100
<=2)
3. (LoS) and (CSI >= 0.99) and (Diff > 2) cwnd=cwnd + cwnd/1000
4. (LoS) and (CSI < 0.99 and (CSI > 0.8) and (Diff | cwnd=cwnd + cwnd/200
< 2)
5. LoS) and (CSI < 0.99 and (CSI > 0.8) and (Diff | cwnd=cwnd
> 2)
6. (LoS) and (CSI < 0.8) and (Diff < 2) cwnd=cwnd-cwnd /100
7. (LoS) and (CSI < 0.8) and (Diff > 2) cwnd=cwnd-cwnd /50
8. (DNLoS) and (CSI >= 0.7) cwnd=cwnd- cwnd/20
9. (DNLoS) and (CSI < 0.7) and (CSI >= 0.3) cwnd=cwnd - cwnd/10
10. (DNLoS) and (CSI < 0.3) cwnd=cwnd - cwnd/5
11. (SNLoS) and (CSI >= 0.6) cwnd=cwnd - cwnd/5
12. (SNLoS) and (CSI < 0.6) cwnd=cwnd/2

3 Simulation results

In order to evaluate the presented protocol, we have conducted extensive simulations in both
training and evaluation scenarios and compared the results to four common TCPs. We have exploited
the 28 GHz spectrum to satisfy the mmWave requirements, and the carrier frequency was 1 GHz to
fulfill the high carrier frequency of mmWave communication. Moreover, RLC (Radio Link Control)
buffer size has been set to 2.5 MB in order to accommodate the BDP (Bandwidth Delay Product)
value of the network, where the overall propagation RTT is 20 ms and the sending is 1000 Gbps. MSS
(Maximum Segment Size) and MTU (Maximum Transmission Unit) are 1400 bytes and 1500 bytes,
respectively, identical to their default values, and TcpSocket’s maximum transmitting and receiving
buffer size equals 6400 KB. We have set RTO to one second as its default value. Finally, the simulation
time for the training scenario was 70 seconds, and for the evaluation scenario, 15 seconds.

Moreover, the user’s speed is 1.5 m/s, and it stops behind each building in the training scenario
and stops for three seconds in the evaluation scenario to mimic a real urban scenario. Furthermore,
four different BERs (Bit Error Rates), including small (1.25e-10), moderate (1.25e-9), large (1.25¢e-8),
and zero, have been exploited to emulate congestion and random packet drops in a wireless channel.
The training data set and all the codes for the training and simulations can be found in [28]. This
Git repository contains all the requirements to re-implement the scenario by a third party, including
the training and testing data sets, the ns-3 (Network Simulator) mmWave C++ codes for both data
set gathering and evaluation scenarios, the Python code for training the machine learning engine, and
finally the C+4 code for the DB-TCP implementation. Furthermore, one of the most well-known
modules called ns3-mmWave has been employed to obtain the results [29].

) ES——— e
Mode. BER
@ 500 Large BER W _|
5
S 400
=1
(=¥
£ 300
3
£ 200
=
100
0
% Y %
% %s, * % g
9%} g, (o 9,
(QO; (e}

Figure 3: Average throughput comparison for different TCPs in the training scenario

As shown in Figure 3, DB-TCP can operate close to the UDP saturated value, which is 604.99 Mb/s,
and has better functionality than other TCPs, especially when there are random packet drops in the
network. When there are no packet drops, most TCPs can perform well in these ideal environments.

https://doi.org/10.15837 /ijccc.2023.4.4874 7

However, a protocol needs to have a suitable performance when packets drop, especially drops that
originated from different causes, such as congestion, channel quality degradation, or blockage. The
figure shows that the only protocol that could accomplish the aforementioned goal is DB-TCP. The
protocol has stable functionality in all situations, which is desirable for a TCP. The detailed behavior of
the other protocols can be found in our previous works [10]. The reason for the sufficient functionality
of DB-TCP is that after exiting the slow start phase due to a loss or exceeding the slow-start threshold,
TCP remains in the congestion avoidance phase continually, and the proper functionality of the phase
in DB-TCP is critical in achieving high performance.

Based on Table 1, CSI is for controlling the aggressiveness of DB-TCP. When the LoS state is
ongoing, and CSI is close to one, it indicates that the ideal condition exists and the sending rate can
be increased intensely. As CSI starts to decline or Diff gets larger, they are indicators of worsening
situations. As a result, DB-TCP slows down in order to drain the buffers and proactively prevent
buffer overflows and packet drops. This is to avoid the cwnd from exceeding the available upper
bandwidth in the channel. The most important point is that after detecting the current state of the
network with the help of DNN. Cwnd is adjusted through CSI and Diff values,

By switching from LoS to NLoS state, CSI becomes smaller and moves toward zero, as the main
sign of the blockage is increased RTT. This parameter governs the reduction of the cwnd in DLNoS
and SNLoS in order to adapt the sending rate to the available reduced bandwidth because of the

blockage problem.

0.05

BER=0
Small BER s
| Mode. BER B
0.04 Large BER IS

RTT (seconds)

Figure 4: Average RTT comparison for different TCPs in the training scenario

Similar behavior can be drawn from the RTT point of view, as shown in Figure 4. DB-TCP
can reduce the RTT value because of its proactive mechanism. It detects the current state of the
network and, based on its renewed congestion control mechanism, strives to adapt to the available
bandwidth, so the mechanism helps the protocol regulate the in-flight packets in a way that prevents
buffer overflows. The fact that DB-TCP can enhance the throughput without harming the RTT (and
even improving it) is a significant achievement.

After training DB-TCP and having the different protocols compared in the training scenario, it is
time to test the protocol in the evaluation scenario to see how it reacts to the data that it has not
seen before. Figure 5 shows the average throughput for various TCPs in the evaluation scenario.

Intriguingly, DB-TCP shows enhancements to other protocols and is the only one that has stable
functionality. It is somehow immune to packet drops and functions close to the UDP saturated value,
which equals 604.98 Mb/s.

In the lossy environments, which are the adversary environments for TCP, DB-TCP prevents
throughput degradation by relying on its innovative behavior, detecting and differentiating LoS, DN-
LoS, and SNLoS states, and having an adaptable congestion avoidance phase to 5G mmWave networks.

Figure 6 reveals that DB-TCP could also improve the RTT in the evaluation environment and
attain low values compared to other TCPs.

The low RTT for other TCPs in high BERs is because of the low throughput that they achieve.
In this case, the transmitted packets are a small number leading to empty buffers. Coming by high
throughput through low RTT was also repeated in the evaluation scenario, a considerable achievement

https://doi.org/10.15837 /ijccc.2023.4.4874 8

) RS ——— e
Mode. BER
> 500 Large BER W |
5
S 400
=3
="
£ 300
3
£ 200
=
100
0
<,) < < 4,
Qf 83& @’? %f Q”«?
9%} g, (o 9,
5% ©

Figure 5: Average throughput comparison for different TCPs in the evaluation scenario

0.045
BER=0
0.04 - Small BER e —|
Mode. BER
0.035 Large BER M —|
0.03
0.025
0.02
0.015
0.01
0.005

0

RTT (seconds)

Figure 6: Average RTT comparison for different TCPs in the evaluation scenario

for the protocol. How these protocols behave differently is the question that is going to be answered
in the following.

DB-TCP relies on its intelligent congestion control mechanism and detects the network states.
Afterwards, it adjusts the sending rate based on CSI and Diff. This mechanism helps the protocol to
have stable functionality, respond quickly and accurately to different circumstances, and detect NLoS
<-> LoS states.

HighSpeed has an aggressive approach for increasing its cwnd and can recover faster from losses.
This mechanism assists the protocol somehow to utilize the high potential of 5G mmWave networks.
However, it suffers from two main flaws: 1) by increased packet drop probability, especially non-
congested ones, the protocol gets confused in adjusting its sending rate. 2) it blindly increases the
cwnd and can exhaust the sender’s transmitting buffer based on its congestion avoidance phase rules.

The average cwnd size for DB-TCP when there are no random packet drops in the network equals
1800, however, this value is 27091 for HighSpeed. It is clear that there is a huge gap between these
two numbers, and DB-TCP efficiently controls the in-flight packets. The values for other BERs are
as follows:

e In the small BER, DB-TCP’s cwnd is around 1629, and this value for HighSpeed is 27819, which
also is a significant gap.

e In the moderate BER, because of occurring more random packet drops, HighSpeed reduces its
sending rate and can function around 14378, in the case that DB-TCP archives 1481.:

e Finally, in the large BERs, HighSpeed backs off dramatically because of the high number of
packet drops, and the average cwnd can be 303, which is the main reason behind the protocol’s
impaired performance. In contrast, DB-TCP adapts the cwnd to the existing conditions by
attaining an 1195 average cwnd.

https://doi.org/10.15837 /ijccc.2023.4.4874 9

BBR, based on its bandwidth estimation, can have stable functionality, however, misled by de-
graded bandwidth in blockage states, it cannot function close to the UDP saturated value. The reason
is that the degraded bandwidth by blockages misleads BBR in estimating the bottleneck bandwidth
accurately. Moreover, in high lossy environments, BBR also gets confused.

The cubic function of CUBIC, which aids the protocol to regulate the cwnd modification based on
the time elapsed before the last drop, is the fundamental characteristic of the protocol in moving fast
toward the targeted cwnd, i.e., the cwnd size before the last drop. In this case, when the protocol is
far from the targetted cwnd, it moves at fast paces. In contrast, it decelerates the cwnd increment
speed when converging to its goal. This approach also loses efficiency by appearing congested and
non-congested packet drops because by having frequent drops, the elapsed time between losses gets
shortened and leads to the CUBIC deficiency.

NewReno, due to its AIMD congestion control mechanism, is the weakest TCP as it cannot adapt
itself to high-speed, lossy- environments. The cause is rooted in the congestion control mechanism,
which is not for networks that have drops except congested ones.

To sum up, in both scenarios, DB-TCP has better functionality than other TCPs. This superiority
is because of its vision of the network’s conditions and precisely adjusting the cwnd, as shown in
Figure 7. The figure shows that DB-TCP sufficiently reacts to blockage, and when the network enters
a blocked situation, the protocol reduces the cwnd. In contrast, after finishing the blocked situation,
DB-TCP increases cwnd immediately to the desired value, which is the one accommodated to the
bandwidth. Besides this elaborate regulating, the figure reveals that packet drops cannot affect the
functionality of DB-TCP in controlling the sending rate, as the protocol shows similar cwnd adjustment
in all BERs. Furthermore, the figure indicates that DB-TCP can estimate the lower and upper bound
for cwnd and functions between them based on the feedback.

As a result, the most critical tool that DB-TCP employs in controlling the network’s status is cwnd
and the way it adjusts the sending rate based on the feedback it gets from the network. DB-TCP
strives to accommodate the sending rate to the available bandwidth by preventing blind increment or
decrement of cwnd, so the average cwnd size achieved in DB-TCP is lower than in other protocols.

3500

T
BER=0 —— /

Small BER

Mode. BER —/

3000 - Large BER —/— -

2500

2000

A

500

|

-

cwnd (number of segments)

0

Time (seconds)

Figure 7: DB-TCP cwnd adjustment in the training scenario

The small average cwnd size has some advantages, such as preventing buffer overflows, avoiding
sender buffer exhaustion, functioning around low RTTs, and preventing functionality fluctuations.

For more clarity, to have a detailed look at the instantaneous results, the comparison of the DB-
TCP and HighSpeed as the best representative of the other TCPs, has been brought in the following
for the training scenario in terms of throughput and RTT.

Figure 8 indicates the throughput comparison for DB-TCP and Highspeed when BER is zero.
The figure shows that the cwnd initialization for HighSpeed due to blockage is more than DB-TCP
as it encounters no cwnd initialization. This is the main leverage for DB-TCP for attaining higher
throughput. It can adjust the sending rate during the blocked state in a way that prevents buffer
overflow in the network.

By having a clear vision from the blocked side, DB-TCP can also achieve lower RTT, as denoted
in Figure 9. Both protocols have the same functionality in LoS conditions, however, when NLoS is the

https://doi.org/10.15837 /ijccc.2023.4.4874

10

Throughput (Mb/s)

1400
1200
1000
800
600
400
200

|
DB-TCP

HighSpeed

Time (seconds)

Figure 8: Throughput comparison for DB-TCP and HighSpeed, BER=0

0.25

0.2

0.1

0.05 -

T
DB-TCP
HighSpeed

30

40

50

60

70

Figure 9: RTT comparison for DB-TCP and HighSpeed, BER=0

Throughput (Mb/s)

1400
1200
1000
800
600
400
200

T
DB-TCP

HighSpeed

Time (seconds)

30

40

5

0 60

70

Figure 10: Throughput comparison for DB-TCP and HighSpeed, small BER

https://doi.org/10.15837 /ijccc.2023.4.4874 11

0.25 T T
DB-TCP
HighSpeed

0.2 b

0.15 - b

0.1 - } “ | 4

0.05 -

o
=
o
N
o
w
o
o
o
u
(=}
[op}
o

70

Figure 11: RTT comparison for DB-TCP and HighSpeed, small BER

ongoing condition, DB-TCP can keep the RT'T low by sending the appropriate number of transmitted
packets into the network. The obtained results for the zero BER were repeated for the small one by
a slight difference, as can be seen in Figure 10 and Figure 11

Both figures showed that DB-TCP could keep its superiority compared to HighSpeed when a small
number of packet drops exists.

|
DB-TCP
HighSpeed

[

N

o

(=]
I

Throughput (Mb/s)

Time (seconds)

Figure 12: Throughput comparison for DB-TCP and HighSpeed, moderate BER

0.25 T T
DB-TCP
HighSpeed

02

0.15 -

0.1

0.05 -

Figure 13: RTT comparison for DB-TCP and HighSpeed, moderate BER

When the BER was increased to its moderate value, HighSpeed could be affected intensely due
to its loss-sensitive congestion avoidance phase. In terms of throughput, DB-TCP could outperform
HighSpeed most of the time, leaning its clear view from the network’s current condition, as seen in
Figure 12. The figure shows that both packet drops and blockage mislead HighSpeed so it is tough
for the protocol to recover to the highest available performance. In terms of RTT, the value could be

https://doi.org/10.15837 /ijccc.2023.4.4874 12

1400 ADB—TCP
= 1200 [HighSpeed ——— _|
<2
< 1000 - N
g
5 800
=
S 600
3
2 400
= L)

200 1,

0

Time (seconds)

Figure 14: Throughput comparison for DB-TCP and HighSpeed, large BER

reduced for HighSpeed as the number of sent packets declined. Nonetheless, DB-TCP could keep its
advantage as the previous BERs, seen in Figure 13.

Finally, when BER was increased to a high value, HighSpeed lost its functionality and could not
achieve higher throughput as the high number of losses can mislead the protocol.

As shown in Figure 14, HighSpeed’s throughput is always lower than DB-TCP. The high number
of packet drops could mislead the DB-TCP performance too, however, it is not very intense.

0.2 T T
DB-TCP
0.18 - HighSpeed

0.16 - b

004 n LW ” Muhm !

0.1
0 | | I |

0.08
0 10 20 30 40 50 60 70

0.06

Figure 15: RTT comparison for DB-TCP and HighSpeed, large BER

AS the number of sent packets declined for HighSpeed dramatically, it could be concluded that
RTT would also be reduced, as shown in Figure 15. Nevertheless, this low RT'T is not an achievement
for the protocol considering its accomplished throughput.

To sum up, looking at the instantaneous throughput and RTT of DB-TCP and HighSpeed revealed
the supremacy of the latter protocol. DB-TCP owes this attainment to the intelligent view that the

protocol has from the network, and leveraging this feature, it is able to distinguish LoS states from
NLoS ones.

4 FB-TCP or DB-TCP, which one is the best choice

In this paper, we have introduced DB-TCP, which is necessary to be compared to our previous
protocol called FB-TCP [4]. Now it is time to get to the conclusion of which of the protocols has
superiorities compared to the other one. For this, we have deployed FB-TCP in both training and
evaluation scenarios of DB-TCP, i.e., scenario one and scenario two, respectively.

As it is shown in Figure 16, both protocols have close functionalities, especially when BER is
increasing. Looking at the low BERs reveals that DB-TCP has a better performance compared to
FB-TCP. This is because this protocol can understand the network well based on its deep learning
approach and reacts to different situations precisely.

https://doi.org/10.15837 /ijccc.2023.4.4874 13

600 Small BER Hem |

Mode. BER
Large BER W |

500 -
400
300

200

Throughput (Mb/s)

100

Figure 16: Average throughputs for DB-TCP and FB-TCP in scenario one

0.045
BER= 0

0.04 — Small BER . —
Mode. BER
0.035 + Large BER M |

0.03 -
0.025 -
0.02 -
0.015 -
0.01 -
0.005 -

0

RTT (seconds)

Figure 17: Average RTTs for DB-TCP and FB-TCP in scenario one

This superiority can also be gained in terms of RTT, as seen in Figure 17. Except for the lossy
environment, in which FB-TCP has a better RTT, DB-TCP can have negligible improvements in other
circumstances. However, in the case of RTT, both protocols can function close to each other.

3500

3000 [~

2500 -

2000

1500

cwnd (number of segments)

1000

500

0 L L L L

Time (seconds)

Figure 18: cwnd adjustment comparison of DB-TCP and FB-TCP, BER=0

Comparing cwnd adjustment for both protocols can give us a clear understanding of how they
react to various situations. As a result, we have analyzed their behavior in all BERs. Figure 18 shows
the cwnd adjustment for both protocols with no random packet drop in the network.

In this case, FB-TCP can have stable functionality all the time; however, DB-TCP reacts properly
and recovers quickly from adverse situations, which is its principal superiority. These quick reactions
can be seen when NLoS states are finished. Each NLoS state happens when the UE is behind an
obstacle. These states are more clear when the UE is behind a big obstacle like a building, as we have

https://doi.org/10.15837 /ijccc.2023.4.4874 14

three of them in the figure causing degradation on the performance of the protocols. The impacts of
the trees can be seen at the beginning of the figure too.

3000

2500 -

2000

1500

cwnd (number of segments)

1000

500

I I I I
0 10 20 30 40 50 60 70

Time (seconds)

Figure 19: cwnd adjustment comparison of DB-TCP and FB-TCP, small BER

2500 T
DB-TCP ——
FB-TCP ——

2000 -

1500

8

’
I
M

| | M | W

1000

|

cwnd (number of segments)

500

. . I I I I
0 10 20 30 40 50 60 70
Time (seconds)

Figure 20: cwnd adjustment comparison of DB-TCP and FB-TCP, moderate BER

Looking at Figure 19 and Figure 20 indicate that small and moderate BERs cannot affect the
functionality of protocols because of their non-loss-based nature. However, by having moderate random
packet drops, cwnd adjustments are affected minorly, and because of that, both protocols experience a
paltry reduction in their performances. Figure 21 justifies this claim and shows that even large BERs
cannot mislead these protocols in adjusting the cwnd in contrast to conventional TCPs.

T
DB-TCP ——
2000 - FB-TCP —

”“MHH

1500

8

g

1000

cwnd (number of segments)

500

I
0 10 20 30 40 50 60 70

‘Time (seconds)

Figure 21: cwnd adjustment comparison of DB-TCP and FB-TCP, large BER

Long NLoS states can affect the functionality of the protocols severely. However, DB-TCP and
FB-TCP can distinguish different situations more clearly and reveal the adverse impacts. The reason

https://doi.org/10.15837 /ijccc.2023.4.4874 15

Table 2: DB-TCP_ AVERAGE CWND SIZE COMPARED TO FB-TCP
BER DB-TCP

FB-TCP
Zero 1800 1401
Small 1629 1264
Moderate 1481 1144
High 1195 1061

Table 3: AVERAGE RTTS FOR DB-TCP AND FB-TCP IN SECONDS

BER DB-TCP FB-TCP
ZEro 0.032422 0.033753
Small 0.032685 0.032342
Moderate 0.033330 0.033807
High 0.033607 0.031941

behind this superiority is that these protocols rely on their intelligent congestion control mechanism
and try to avoid blind decisions that unwanted situations may force.

For more clarity, we can compare average cwnd sizes for these protocols as seen in Table 2. Both
protocols can achieve high performances through low values, which is a significant upside in preventing
buffer exhaustion. DB-TCP can attain higher averages cwnd, which is its key capability in having
larger throughputs than FB-TCP.

From the RTT point of view, both protocols have the same functionality with some slight changes
in various situations, as seen in Table 3.

After comparing the protocols in the first scenario, i.e., training, we have employed FB-TCP in
the second scenario, i.e., evaluation, to have in-depth information from both protocols’ functionalities.
Table 4 summarizes the obtained results for the most important KPIs. In all BERs, DB-TCP has
higher throughputs than FB-TCP. However, FB-TCP, because of its reduced throughputs compared
to DB-TCP, can achieve lower RTTs. Furthermore, both protocols can function around small average
cwnd sizes, which is a positive feature.

To sum up, both DB-TCP and FB-TCP can function adequately in urban deployments by having
a clear view of the network’s different conditions, such as LoS, NLoS, or random packet drops. Both
can achieve high throughputs; however, DB-TCP always has the higher ones. In terms of RT'T, the
protocols can achieve acceptable RTTs; nonetheless, the lower RTTs for FB-TCP in some cases can be
compensated for higher throughputs of DB-TCP. Finally, Both protocols can perform by attaining a
small average cwnd size, which can prevent bufferbloating. In a nutshell, it is true that both protocols
are excellent choices, but DB-TCP is the most suitable protocol for urban deployments that can
satisfy all the expected features of a well-performed protocol. The planned future work is to extend
the prototype by collecting more data to have a generally trained engine that can be implemented in
real scenarios over urban deployments to ease the way on the path of practical usage of the protocol.

To sum up, As the conventional congestion control mechanisms have no clue about the network’s
current condition, they cannot make decisions that are suitable for different situations. The most
misleading factor in the 5G mmWave network is the transitions between LoS and NLoS states that

Table 4: DB-TCP AND FB-TCP AVERAGE VALUES COMPARISON IN THE SECOND SCE-
NARIO

BER DB-TCP FB-TCP

Z€ero Throughput: 512/76 Mb/s Throughput: 450/67 Mb/s
RTT: 0.032340 s RTT: 0.028273 s
cwnd: 1466 cwnd: 1150

Small Throughput: 512/76 Mb/s Throughput: 450/67 Mb/s
RTT: 0.032340 s RTT: 0.028273 s
cwnd: 1466 cwnd: 1150

Moderate Throughput: 473.10 Mb/s Throughput:444/13 Mb/s
RTT: 0.033321 s RTT: 0.028788 s
cwnd: 1481 cwnd: 1133

High Throughput: 439.76 Mb/s Throughput: 402/25 Mb/s
RTT: 0.029359 s RTT: 0.027870
cwnd: 1136 cwnd: 993

https://doi.org/10.15837 /ijccc.2023.4.4874 16

impair the protocols’ functionality dramatically as they are not able to distinguish packet losses rooted
in other issues such as congestion or fading from those caused by NLoS conditions.

The main leverage for DB-TCP is that by deploying a trained machine-learning engine capable
of differentiating LoS states from NLoS ones, it can control the sending rate more intelligently. This
mechanism helps the protocol make decisions based on the current status of the network and solves
the blind decision-making procedure of its predecessors.

5 Conclusion

A new 5G mmWave protocol called DB-TCP was proposed in this paper to overcome flaws caused
by NLoS states in urban deployments. The novel protocol relies on deep learning to have a manifest
insight from the network’s states and adjust the sending rate accurately. As a result, it can achieve
higher performance than other TCP variants in terms of throughput, RTT, and c¢wnd fluctuation. In
non-lossy environments, the throughput enhancement can be negligible. However, in lossy ones, it can
reach large orders. The main reason for this superiority is that DB-TCP has a tangible view of the
network and can react quickly to different states.

Funding

This research was funded in part by the Spanish MCIN/AEI/ 10.13039/501100011033 through
project PID2019-106808RA-I00", and by Secretaria d’Universitats i Recerca del departament d’Empresa
i Coneixement de la Generalitat de Catalunya with the grant number 2021 SGR 00330.

Acknowledgement

The paper reflects several results obtained in a Ph.D. study carried out at the Universitat Politec-
nica de Catalunya. Departament d’Enginyeria Telematica and contains parts of the doctoral thesis
entitled "Contribution to reliable end-to-end communication over 5G networks using advanced tech-
niques" posted on the website of the university (https://upcommons.upc.edu/handle/2117/373401).

Author contributions

The authors contributed equally to this work.

Conflict of interest

The authors declare no Conflicts of interests/Competing interests.

References

[1] Postel, J (1981); Transmission Control Protocol RFC 793, Updated by: RFC 1122, RFC 3168,
RFC 6093, RFC 6528 [Online]. Available: https://tools.ietf.org/html/rfc793

[2] Poorzare, R; Calveras Augé, A (2020); Challenges on the Way of Implementing TCP Over 5G
Networks, IEEE Access, 8, 176393 - 176415, 2020.

[3] Zhang, M; et al (2019); Will TCP Work in mmWave 5G Cellular Networks?, IEEE Communica-
tions Magazine, 57(1), 65-71, 2019.

[4] Poorzare, R; Calveras Augé, A (2021); FB-TCP: A 5G mmWave Friendly TCP for Urban De-
ployments, IEEFE Access, 9, 82812-82832, 2021.

[5] Floyd, S (2003); HighSpeed TCP for Large Congestion Windows RFC 3649, [Online].
https://tools.ietf.org/html/rfc3649

https://doi.org/10.15837 /ijccc.2023.4.4874 17

[6]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

Ha, S; Rhee, I; Xu, L (2008); CUBIC: a new TCP-friendly high-speed TCP variant, SIGOPS
Operating Systems Review, 42(5), 64-74, 2008.

Cardwell, N; Cheng, Y; Gunn, C. S; Yeganeh, S. H; Jacobson, V (2016); BBR: Congestion-Based
Congestion Control, Queue, 14(5), 20-53, 2016.

Henderson, T; Floyd, S; Gurtov, A; Nishida, Y (2012); The NewReno Modification to TCP’s Fast
Recovery Algorithm, RFC 6582, [Online]. https://tools.ietf.org/html/rfc6582.

Hindawi, B; Abbas, A. S (2021); Congestion Control Techniques in 5G mm Wave Networks:
A review, 2021 1st Babylon International Conference on Information Technology and Science
(BICITS), Babil, Irag, 305-310, 2021.

Poorzare, R; Calveras Augé, A (2021); How Sufficient is TCP When Deployed in 5G mmWave
Networks Over the Urban Deployment?, IEEE Access, 9, 36342-36355, 2021.

Na, W; Bae, B; Cho, s; Kim, N (2019); DL-TCP: Deep Learning-Based Transmission Control
Protocol for Disaster 5G mmWave Networks, IEEE Access, 7, 145134-145144, 2019.

Kuppusamy, S.P; Subramaniam, M; Gunasekar, T (2023); Deep learning-based TCP congestion
control algorithm for disaster 5G environment, Preprint, 2023.

Najm, I.A; Hamoud, A.K; Lloret, J. S; Bosch, I (2019); Machine learning prediction approach to
enhance congestion control in 5G IoT environment, Electronics, 8(6), 607, 2019.

Kanagarathinam, M.R; et al. (2020); NexGen D-TCP: Next Generation Dynamic TCP Congestion
Control Algorithm, IEEE Access, 8, 164482-164496, 2020.

Diez, L; Fernandez, A; Khan, M; Zaki, Y; Agiiero, R (2020); Can We Exploit Machine Learning
to Predict Congestion over mmWave 5G Channels?, Applied Sciences, 10(18), 6164, 2020.

Khan, S; Hussain, A; Nazir, S; Khan, F; Oad, A; Alshehri, M.D (2022); Efficient and reliable
hybrid deep learning-enabled model for congestion control in 5G/6G networks, Computer Com-
munications, 182, 31-40, 2022.

Lee, C; Cho, H; Song, S; Chung, J-M (2020); Prediction-Based Conditional Handover for 5G
mm-Wave Networks: A Deep-Learning Approach, IEEE Vehicular Technology Magazine, 15(1),
54-62, 2020.

Ford, A; Raiciu, C; Handley, M; Bonaventure, O; Paasch,C (2020); TCP Ex-
tensions for Multipath Operation with Multiple Addresse RFC 8684, [Online].
https://datatracker.ietf.org/doc/html/rfc8684.

Polese, P; Jana, R; Zorzi, M (2017); TCP and MP-TCP in 5G mmWave Networks, AIEEFE
Internet Computing, 21(5), 12-19, 2017.

Polese, P; Jana, R; Zorzi, M (2017); TCP in 5G mmWave networks: Link level retransmissions
and MP-TCP, in Proc. IEEE Conf. Comput. Com- mun. Workshops (INFOCOM WKSHPS),
Atlanta, GA, USA, 343-348, 2017.

Poorzare, R; Waldhorst, O.P (2023); Toward the Implementation of MPTCP Over mmWave 5G
and Beyond: Analysis, Challenges, and Solutions, IEEE Access, 11, 19534-19566, 2023.

Mahmud, I; Lubna, T; Cho, Y-Z (2022); Performance Evaluation of MPTCP on Simultaneous
Use of 5G and 4G Networks, Sensors, 22(19), 856-858, 2022.

Schmidhuber, J (2015); Deep learning in neural networks: An overview, Neural Networks, 61,
85-117,, 2015

https://doi.org/10.15837 /ijccc.2023.4.4874 18

[24] Srivastava, I; Hinton, G; Krizhevsky, A; Sutskever, I; Salakhutdinov, R (2014); Dropout: A simple
way to prevent neural networks from overfitting, Journal of Machine Learning Research, 15(1),
1929-1958, 2014.

[25] Glorot, X; Bengio, Y (2010); Understanding the difficulty of training deep feedforward neural net-

works, in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics,
9, 249-256, 2010.

[26] Kingma, D.P; Ba, J (2014); UAdam: A method for stochastic optimization, International Con-
ference on Learning Representations (ICLR), 1412-6980, 2014.

[27] Google; Google. TensorFlow, Accessed: May. 2021. [Online]. Available:
https://www.tensorflow.org

[28] Poorzare, R; DB-TCP’s Source Codes, Accessed: Apr. 2021. [Online]. Available:
https://github.com/rezapoorzarel /DB-TCP /tree/main.

[29] Mezzavilla, M; et al. (2018); End-to-End Simulation of 5G mmWave Networks, IEEE Communi-
cations Surveys and Tutorials, 20(3), 2237-2263, 2018..

Copyright ©2023 by the authors. Licensee Agora University, Oradea, Romania.

This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.

Journal’s webpage: http://univagora.ro/jour/index.php/ijecc/

C/OP|E

Member since 2012
JM08090

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).
https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Poorzare, R.; Calveras Augé, A. (2023). Deep Learning TCP for Mitigating NLoS Impairments in
5G mmWave, International Journal of Computers Communications & Control, 18(4), 4874, 2023.
https://doi.org/10.15837 /ijccc.2023.4.4874

	Introduction
	Deep learning-based TCP
	Introduction to Deep Learning
	DB-TCP Architecture

	Simulation results
	FB-TCP or DB-TCP, which one is the best choice
	Conclusion

