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Abstract

The Z-number is a more adequate construct for describing real-life information. While consider-
ing the uncertainty of the information, it also models the partial reliability of the information. It is
a combination of probabilistric restriction and possibilistric restriction. In this paper, we modified
the uncertainty measurement of the discrete Z-number and proposed the uncertainty measurement
of the continuous Z-number. Some numerical examples are used to illustrate the calculation pro-
cesses and advantages of the proposed method. An application of journey vehicle selection shows
the effectiveness of the proposed uncertainty measurement in determining the weights of criteria.

Keywords: Uncertainty, discrete Z-numbers, continuous Z-numbers, fuzzy numbers, decision-
making.
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1 Instruction
Crisp numbers often cannot describe real-life information, it is insufficient. As the information

is often uncertain, there are many mathematical models to handle such uncertain information, prob-
ability theory [18], fuzzy sets theory [29], Dempster-Shafer evidence theory [11, 22] and other soft
constraints. However, the information also is partially reliable. In the above soft constraints, they
default the handled information is completely reliable. Unfortunately, the information in practice is
not so.

The Z-number, as a more sufficient formal construct for describing real-life information, models
the uncertainty and partial reliability of the information together. A Z-number is an ordered pair of
fuzzy numbers, Z = (A,B), where A is a fuzzy constrict on the values of the variable, X, can take, B
is also a fuzzy constrict on the reliability value of A. The reliability value is a probability of the event
’X is A’. Thus, a Z-number combines the possibilistic restriction and the probabilistric restriction.

Since the thought of Z-numbers was put forward in 2011 to now, the mathematical system and
application of Z-numbers have become more and more complete. In applications of Z-number, The
most widespread application areas are decision-making, such as selection problems [2, 10], fault diag-
nosis [13], pattern recognition [25], risk assessment [1]. The Z-number has been especially useful for
describing calculations in natural language. For instance, Ref. [20] analyzed features and challenges of
the Z-number approach to Computing With Words (CWW). In Ref. [9], Z-number is used as a tool for
CWW and consequently subjective natural language understanding. In the mathematical system of
Z-number, the basic computations were summarized in Ref. [8], including addition, subtraction, mul-
tiplication, division, square, square root, absolute value, ranking and distance of Z-numbers. On this
basis, more advanced arithmetic is proposed, including Z-numbers based Linear Program (Z-LP) [4],
Z-numbers function [6], Approximate Reasoning [7], the parametric form [21], the negation operator
[17], total utility [14], Z-Differential equations [19], multidimensional Z-numbers [23], Z-number if-
then rules [5], soft likelihood function [24], Z-mixture-numbers [27]. Ref. [3, 26] defined the concepts
of specificity and horizontal membership functions of Z-numbers. Besides, Li et. al. proposed an
uncertainty measure of discrete Z-number [16]. However, we find there is an unintuitive point in this
uncertainty measurement. When the second fuzzy number of the Z-number becomes sharper, the
reliability value of the first fuzzy number is more certain, the uncertainty of the Z-number should
reduce. However, in the method of Li et. al. [16], the uncertainty increases slowly. In addition, there
is no approach to measure the uncertainty of continuous Z-number.

In this paper, we modified the uncertainty measure of the discrete Z-number. The proposed
measurement conforms to three intuitions about the uncertainty of Z-numbers:

(1) When the first fuzzy number becomes shaper, the value of the variable is more accurate, the
uncertainty of Z-number should be smaller.

(2) When the second fuzzy number becomes sharper, the reliability value of the first fuzzy number
is more certain, the uncertainty of Z-number should be smaller.

(3) When the first fuzzy number is more reliable, the uncertainty of Z-number should be smaller.

We also proposed an analytical solution of the uncertainty of continuous Z-number. If the analytical
solution is difficult to obtain, we provided an appropriate method and set the precision to control the
calculation consumption and accuracy of the result.

This paper is structured as follows. Section 2 lists the concepts of Z-numbers and other related
backgrounds. In section 3, we amend the measuring the uncertainty of discrete Z-numbers. And the
uncertainty measurement of continuous Z-numbers is proposed. Some numerical examples are used to
demonstrate the advantages of the proposed methodology in Section 4. In Section 5, an application of
journey vehicle selection shows the usefulness of the proposed uncertainty measurement in determining
the weights of criteria. Finally, this paper is concluded in Section 5.
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2 Preliminaries
In this section, some preliminaries about definitions of possibilistric restriction, probabilistric re-

striction, Z-numbers and Z-restriction are discussed.

Definition 1. A restriction Rprob(X) on real-valued uncertain variable X is a probabilistric restriction
if

Rprob(X) : X is P, (1)

if X is a continuous variable, P is called the probability density function of X,

Prob(u ≤ X ≤ u+ du) =
∫
P (u)du. (2)

If X is a discrete variable, P is called the probability distribution of X.

Prob(X = u) = P (X = u). (3)

Definition 2. A possibilistric restriction R)poss(X) on variable X is denoted as

Rposs(X) : X is A, (4)

where A is a fuzzy number in universe U with membership function µA : U → [0, 1]. The membership
degree of a base value u ∈ U can be seen as the possibility value of ’X = u’. More explicitly,

Rposs(X) : Poss(X = u) = µA(u) (5)

Definition 3. A Z-number is an ordered pair of fuzzy numbers, Z = (A,B). Where A is a possibilistric
restriction on values of variable X can take with membership function µA(u) : X → [0, 1], B is another
possibilistric restriction on reliability of A with membership function µB(v) : [0, 1]→ [0, 1] [28]. v is a
base value of B and can be seen as the reliability value.

Definition 4. A Z-restriction combine a possibilistric restriction and a series of probabilistric restric-
tions [28],

RZ(X) : X is Z → Prob(X is A) is B, (6)

where Prob(X is A) is the probability of the event ’X is A’ occur and can be expressed as:

Prob(X is A) =
∫
R
µA(u)pX(u)du. (7)

where pX is the underlying probability distribution of X and is unknown. If A and pX are matching,
then the centroids of µA is same with the expected value of pX ,∫

upX(u)du =
∫
uµA(u)du∫
µA(u)du (8)

3 Uncertainty measure of Z-numbers
In this section, we propose a novel uncertainty measure of discrete and continuous Z-numbers.

We try to find the underlying probability distribution for reliability value, and then combine the
underlying probability distributions with their corresponding possibilities.

3.1 Uncertainty measure of discrete Z-numbers

For a discrete Z-number Z = (A,B), A =< u, µA(u) >, B =< v, µB(v) >, the underlying
probability distribution P vX(u) of reliability v satisfy the following three conditions:

(1) ∑n
i=1 P

v
X(ui) = 1,
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(2) ∑n
i=1 P

v
X(ui)µA(ui) = v,

(3) ∑n
i=1 uiP

v
X(ui) =

∑n

i=1 uiµA(ui)∑n

i=1 µA(ui)
,

where {u1, u2, · · · , un} is the base values of fuzzy number A, v ∈ {v1, v2, · · · , vm} is a base value of
fuzzy number B.

Most of time, we may obtain more than one underlying probability distribution according to three
conditions. The maximum entropy method [12] is used to select one with the maximum Shannon
entropy. Then the calculation of underlying probability distribution is an optimization problem:

max : H(P vX) = −
n∑
k=1

P vX log(P vX), (9)

subject to:
n∑
i=1

P vX(ui) = 1,

n∑
i=1

P vX(ui)µA(ui) = v,

n∑
i=1

uiP
v
X(ui) =

∑n
i=1 uiµA(ui)∑n
i=1 µA(ui)

We obtained all underlying probability distributions of reliabilities {v1, v2, · · · , vm}, the uncertainty
of Z is calculated by

HZ(Z) =
m∑
i=1

H(P vi
X )µB(vi) (10)

3.2 Uncertainty measure of continuous Z-numbers

For a continuous Z-number Z = (A,B), A =< u, µA(u) >, B =< v, µB(v) >, we assume the
underlying probability density function is a normal distribution:

P vX(u) = N(α, β2) = 1√
2πσ2

exp(−(u− α)2

2β2 ), (11)

subject to: ∫
P vX(u)du = 1,∫

P vX(u)µA(u)du = v,∫
uP vX(u)du = α =

∫
uµA(u)du∫
µA(u)du

According to Equation (11), the obtained underlying probability is a function about variable u and
v. More precisely, its β is a function about variable v. Then calculate the uncertainty of this normal
probability density function by:

H(P vX(u)) = −
∫
P vX(u)log(P vX(u))du

= 1
2(log(2πβ2) + 1)

(12)

where β is a function about variable v.
The uncertainty of Z is

HZ(Z) =
∫
H(P vX(u))µB(v)dv

=
∫ 1

2(log(2πβ2) + 1)µB(v)dv
(13)
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4 Numerical example
In this section, some numerical examples are used to show the calculation process and the advan-

tages of the proposed method. In which, Example 1 and Example 2 show the uncertainty calculation
processes of discrete Z-numbers and continuous Z-numbers in detail. Example 3, Example 4 and
Example 5 verify the proposed measurement satisfies the three intuitions and compare the proposed
method and the measurement in [16].

Example 1. Given a discrete Z-number Z = (A,B), the membership functions of A and B are

A = µA
u

= 0
1 + 0.3

2 + 0.5
3 + 0.7

4 + 1
5 + 0.7

6 + 0.5
7 + 0.3

8 + 0
9 ,

B = µB
v

= 0
0.1 + 0.3

0.2 + 0.5
0.3 + 0.7

0.4 + 1
0.5 + 0.7

0.6 + 0.5
0.7 + 0.3

0.8 + 0
0.9 .

Probability distributions corresponding to different reliability value for Z and their entropy are list as
Table 1. The uncertainty of Z is

v
pX(u)

u1 = 1 u2 = 2 u3 = 3 u4 = 4 u5 = 5 u6 = 6 u7 = 7 u8 = 8 u9 = 9 Entropy

v1 = 0.1 0.3724 0.0838 0.0310 0.0115 0.0026 0.0115 0.0310 0.0838 0.3724 1.4849
v2 = 0.2 0.2759 0.1156 0.0647 0.0362 0.0152 0.0362 0.0647 0.1156 0.2759 1.8678
v3 = 0.3 0.1978 0.1240 0.0908 0.0665 0.0417 0.0665 0.0908 0.1240 0.1978 2.0875
v4 = 0.4 0.1348 0.1175 0.1072 0.0978 0.0853 0.0978 0.1072 0.1175 0.1348 2.1871
v5 = 0.5 0.0851 0.1008 0.1129 0.1264 0.1497 0.1264 0.1129 0.1008 0.0851 2.1815
v6 = 0.6 0.0478 0.0776 0.1071 0.1478 0.2395 0.1478 0.1071 0.0776 0.0478 2.0733
v7 = 0.7 0.0223 0.0514 0.0896 0.1564 0.3605 0.1564 0.0896 0.0514 0.0223 1.8552
v8 = 0.8 0.0073 0.0263 0.0617 0.1447 0.5199 0.1447 0.0617 0.0263 0.0073 1.5067
v9 = 0.9 0.0010 0.0073 0.0271 0.1011 0.7270 0.1011 0.0271 0.0073 0.0010 0.9765

Table 1: Probability distributions corresponding to different reliability value for Z.

HZ(Z) = 1.4849× 0 + 1.8678× 0.3 + 2.0875× 0.5 + 2.1871× 0.7 + 2.1815× 1
+ 2.0733× 0.7 + 1.8552× 0.5 + 1.5067× 0.3 + 0.9765× 0
= 8.1475

Example 2. Given a continuous Z-number A = (A,B), where A and B are two triangular fuzzy
number A = (2, 5, 8), B = (0.2, 0.5, 0.8). The membership functions of A and B are:

µA(u) =



u− 2
3 2 < u ≤ 5,

8− u
3 5 < u ≤ 8,

0, otherwise.

µB(v) =



10u− 2
3 0.2 < u ≤ 0.5,

8− 10u
3 0.5 < u ≤ 0.8,

0, otherwise.

According to Equation (11), The analytical solutions of underlying probability density functions is
very hard to obtain in practice. Thus, we use the approximate method. First set a precision pre ∈
[0.0001, 0.1], we assume the underlying probability density function is same in interval [v, v + pre].
Then calculate the underlying probability density functions at points · · · , v, v + pre, v + 2pre, · · ·. The
results as shown in Table 2. The precision is pre = 0.1. The uncertainty of Z is
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v1 = 0.2 v2 = 0.3 v3 = 0.4 v4 = 0.5 v5 = 0.6 v6 = 0.7 v7 = 0.8
β 3.0079 2.6319 2.2559 1.8799 1.5039 1.1279 0.7519

H(pX) 2.5201 2.3866 2.2324 2.0501 1.8270 1.5392 1.1337

Table 2: The value of β and entropy under different reliability.

HZ(Z) =
m−1∑
i=1

∫ vi+pre

vi

H(pvi
X) +H(pvi+pre

X )
2 µB(v)dv

= 0.0408 + 0.1154 + 0.1784 + 0.1615 + 0.0842 + 0.0223
= 0.6026

Example 3. The first intuition is: when the membership function of A is sharper, the uncertainty of
Z should be smaller. In Example 1, when the membership degrees of u2 and u8 reduce to 0, and then
the membership degrees of u3 and u7 reduce to 0, and then the membership degrees of u4 and u6 reduce
to 0. The graphical representations of changes are shown in Figure 1. The changes of the uncertainty
of Z computed by the proposed approach and the measurement in [16] are shown in Figure 2.

1 2 3 4 5 6 7 8 9

u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
e
m

b
e
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u
n
c
ti
o
n
 o

f 
A

Figure 1: The change of membership function of fuzzy number A.

As shown in Figure 2, the results of the two methods are consistent with our intuition.

Example 4. The second intuition is: when the membership function of B is sharper, the uncertainty
of Z should be smaller. In Example 1, when the membership degrees of v2 and v8 reduce to 0, and then
the membership degrees of v3 and v7 reduce to 0, and then the membership degrees of v4 and v6 reduce
to 0. The graphical representations of changes are shown in Figure 3. The changes of the uncertainty
of Z computed by the proposed approach and the measurement in [16] are shown in Figure 4.

As shown in Figure 4, the uncertainty calculated by method in [16] increases slowly as the second
fuzzy number becomes sharper. The uncertainty calculated by the proposed measurement reduce sharply.
it is consistent with our intuition.

Example 5. When the first fuzzy number is more reliable, the uncertainty of the Z-number is smaller.
Given a discrete Z-number Z1 = (A1, B1), where A1 = A, the membership function B1 is

B1 = µB
v

= 0
0.2 + 0.3

0.3 + 0.5
0.4 + 0.7

0.5 + 1
0.6 + 0.7

0.7 + 0.5
0.8 + 0.3

0.9 + 0
1 .

HZ(Z1) = 7.6651 < HZ(Z).
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u2,u8=0.2 u2,u8=0 u3,u7=0.3 u3,u7=0.1 u4,u6=0.6 u4,u6=0.4 u4,u6=0.2 u4,u6=0
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The proposed method

The method of Li et.al. [16]

Figure 2: The change of uncertainty of Z as A changes.

1 2 3 4 5 6 7 8 9

v

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
e
m

b
e
rs

h
ip

 f
u
n
c
ti
o
n
 o

f 
B

Figure 3: The change of membership function of fuzzy number B.

5 Application
In this section, the weights of criteria in a decision-making problem are determined by the proposed

uncertainty measurement.
There are three different options of vehicle for journey, car (a1), taxi (a2) and train (a3). The

set of alternatives is denoted as A = {a1, a2, a3}. Three criteria, expense (c1), time consumption
(c2) and comfort (c3) are took into account. The set of criteria is denoted as C = {c1, c2, c3}. The
Z-information decision matrix is shown Table 3.

The uncertainty of Z-numbers in decision matrix are displayed in Table 4 (the precision is 0.01).
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Figure 4: The change of uncertainty of Z as B changes.

c1 c2 c3
a1 ((8, 10, 12), (0.83, 1, 1)) ((70, 100, 120), (0, 0.17, 0.33)) ((3, 5, 7), (0.33, 0.5, 0.67))
a2 ((20, 24, 25), (0, 0, 0.17)) ((40, 70, 100), ((0.33, 0.5, 0.67)) ((5, 8, 11), (0.67, 0.83, 1))
a3 ((14, 15, 16), (0.83, 1, 1)) ((60, 80, 100), (0.67, 0.83, 1)) ((1, 4, 7), (0.67, 0.83, 1))

Table 3: The decision matrix with Z-information.

The sum of uncertainty of criteria ’Price’ is

Hsum(c1) = 0.1378 + 0.2491− 0.1967 = −0.0854.

The sum of the uncertainty of criteria ’Journey time’ is

Hsum(c2) = 0.7719 + 0.7408 + 0.4514 = 1.9641.

The sum of the uncertainty of criteria ’Comfort’ is

Hsum(c3) = 0.2788 + 0.1389 + 0.1389 = 0.5566.

AS there are negative numbers, we add a constant:

Hnor(cj) = Hsum(c1) + 0.5, j = 1, 2, 3.

Then the weight of criteria ’Price’ is

wc1 = 1/(−0.0854 + 0.5)
1/(−0.0854 + 0.5) + 1/(1.9641 + 0.5) + 1/(0.5566 + 0.5) = 0.6408.

c1 c2 c3
a1 −0.1378 0.7719 0.2788
a2 0.2491 0.7408 0.1389
a3 −0.1967 0.4514 0.1389

Table 4: The uncertainty of Z-numbers.
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c1 c2 c3
a1 ((0.6667, 0.8, 1), (0.83, 1, 1)) ((0.3333, 0.4, 0.5714), (0, 0.17, 0.33)) ((0.2727, 0.4545, 0.6363), (0.33, 0.5, 0.67))
a2 ((0.32, 0.3333, 0.4), (0, 0, 0.17)) ((0.4, 0.5714, 1), ((0.33, 0.5, 0.67)) ((0.4545, 0.7272, 1), (0.67, 0.83, 1))
a3 ((0.5, 0.5333, 0.5714), (0.83, 1, 1)) ((0.4, 0.5, 0.6666), (0.67, 0.83, 1)) ((0.0909, 0.3636, 0.6363), (0.67, 0.83, 1))

Table 5: The normalized decision matrix.

c1 c2 c3
a1 0.7985 0.1775 0.3214
a2 0.0835 0.4646 0.5311
a3 0.5195 0.4767 0.2655

Table 6: The crisp numbers of Z-numbers in decision matrix.

The weight of criteria ’Journey time’ is

wc1 = 1/(1.9641 + 0.5)
1/(−0.0854 + 0.5) + 1/(1.9641 + 0.5) + 1/(0.5566 + 0.5) = 0.1078.

The weight of criteria ’Comfort’ is

wc1 = 1/(0.5566 + 0.5)
1/(−0.0854 + 0.5) + 1/(1.9641 + 0.5) + 1/(0.5566 + 0.5) = 0.2514.

The scales of criteria are different. In order to compare these Z-numbers, the first fuzzy numbers must
be normolized. The results are summarized in Table 5.

Then we used the converting methods to converse the Z-numbers to crisp numbers [15], the decision
matrix with crisp numbers is shown in Table 6. The evalution value of alternative a1 is:

<(a1) = 0.7985 ∗ 0.6408 + 0.1775 ∗ 0.1078 + 0.3214 ∗ 0.2514 = 0.6116.

The evalution value of alternative a2 is:

<(a2) = 0.0835 ∗ 0.6408 + 0.4646 ∗ 0.1078 + 0.5311 ∗ 0.2514 = 0.2371.

And the evalution value of alternative a2 is:

<(a3) = 0.5195 ∗ 0.6408 + 0.4767 ∗ 0.1078 + 0.2655 ∗ 0.2514 = 0.4510.

The ranking of alternatives is a1 > a3 > a2. The best option of journey is a1, car.

6 Conclusion
Z-number is a new framework to address uncertain and partial reliable information. This paper

modifies the uncertainty measure of discrete and continuous Z-numbers, overcomes the shortcoming
of the previous method. The proposed measurement satisfies all intuitions about the uncertainty
of Z-numbers. Finally, some numerical examples and an application illustrate the advantages and
effectiveness of the proposed method.
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