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Abstract

Because of the advantage of the gray theory for forecasting small sample time data, gray al-
gorithm theory has definitely been extensively utilized since it has been proposed and is currently
being widely developed for predicting frames particularly in small sample problems. This arti-
cle presented a viewpoint called gray algorithm by neuron- based ordinary-differential equation
(NODE), called NODGM (neuron-based ordinary-differential gray-mode). In this type, we learn
prediction methods through a training process that includes whiting equations. Compared with
other models, the structure and time series via the regularity of real-samples are required in ad-
vance, so this NODGM design can have a better feasibility of applications and also study the origins
of data according to different samples. The purpose is obtaining a better design with high forecast
effectiveness, this study uses NODGM to train the model, while Runge-Kutta method is used to
have the forecast set and solve numerical framwork. This algorithmic design creates a favorable
theoretical basis for the installation of new process and distributes the numerical dimensions of
completely mechanically elastic vehicle wheels (MEVW) in practical simulations.

Keywords: fuzzy AI, evolved based controller, Grey DGM (2,1) and algorithm, MEVW, Non-
linear neural network gray.
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1 Introduction
Today, energy and resource have become an irreplaceable factor in the economic development of

various countries, and all human productive activities require them. Even if there is no urgent need
to produce new ones, when used blindly it will consume some of the existing energy. Therefore,
for developing a useful academic method that has a magnificent impact on a country’s financial
development, supplying and production is a direction for the goal.

Currently, there are many prediction methods that use multiple samples, such as fuzzy theory [1-4],
neural system [2-6], and graphics systems sciences [7-8]. By better understanding data patterns, Gray
control modelling can decrease the sources of un-certainty in small quantity for samples to somehow for
making the prediction of small samples more efficient. That implies gray control modeling method was
presented by [9] to overcome simulations involving uncertainty. The fundamental design is the name
GM algorithmic model (1.1). The reason of gray theory is effective, fast and cheap, it was externally
utilized by researchers for many decades to publish journal papers in different fields, including civil
engineering and computer science [4-9]. Because of additional modeling studies (1, 1), all kinds of
theorems were emerged [8-9]. These existing foundlings corrected the foundation of such GM(1,1)
models , which usually gives us higher accuracy.

When searching for grayscale patterns, many studies will have the similar type of structures,
combining it by the viewpoiints of simple patterns, using discrete grayscale patterns to obtain the (1,
1) pattern [10-12] These models produce poor results when the sample data is homogeneous . Based
on [10-14] proposed an ND combined GM model that was extended to experimental data [15]. Actual
sample documents generally would not achieve uniformity because the GM(1,1) approximation is close
to the cube model , which significantly limits its feasibility. NGM(1, 1, k) method [16-18] was presented
to address these drawbacks. But, this design illustrates several new methods. The instance by the gray
design is actually less powerful than the GM(1,1) model in terms of predicting instantaneous series,
although it can achieve higher accuracy in samples with non-uniform exponential properties. Finally,
[19-22] provided the ON combined GM design to overcome the simulation in applications. [23-25]
integrated different parameters with the fuzzy neural type and alleged a grayscale forecast prototype
in point function quoted by [26-27]. Since the kernel method is effective and feasible in different kinds
of simulations and experiments, many scholars are glad to adopt the viewpoints of features to propose
the modified version of algorithm on the kernel method [28-32]. This method can effectively predict
nonlinear series based on these criteria.

The gray differential Eq is a new neural system developed by [32] was proposed in advanced
test. A passage is performed successively between modeling neurons of the remaining network [33-37];
Therefore, the whole frameworks are continuous and adaptive using original gray equations. It was
attracted by scholars with the earnest and efforts paying attention for a new application and practical
tests even a new field of NNs. Therefore, it is commonly adopted in many mechanisms and advanced
studies [38-40].

In this article, we found variables were estimated using algorithmic methods such as least squares
based on the fading theory. By identifying the DE, the expected process must calculate a good level.
However, without proper knowledge there is no guarantee that the defined model terminology and
configuration are consistent with the actual material properties. Second, although the gray model is
suitable for predicting different sample sizes, its test is reducing empirical least squares variables, that
tells forecast is according to larger samples. That is, when using the least squares method under small
sample conditions, obesity is more likely to occur. To solve these problems, this paper collaborates
with NODE and proposes a novel gray forecast design by defining NODE’s fading Eq. Moreover,
there is no need to propose obvious configurations and jargons since the optimal model is obtained by
a AI process which could be solved using the Runge-Kurth method . We believe that the NODGM
model can be used for information with differentials. Since the design is trained according to the slope
function, which controls the loss threshold, NODE can be trained to decrease the errors and upgrade
the results.

In the rest sections, we give the organization of the article . Section 2 presents the main components
of the GM method (1.1). We introduce the theory of NOD combined GM and NO combined DE in
Section 3. Section provides one practical simulation in test of fuzzy and neural gray algorithm. Finally,
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Section 4 summarizes the research and concludes the findings.

2 Gray model
The innovative models of fundamental genetic modification methods are available (1,1). Currently,

this article will introduce the series approximating method and variable estimation method (GM(1,1)
method) of this basic model, as shown in Equation (1)(

x1(1), x1(2), x1(3), . . . , x1(n)
)

(1)

The sequence is a generated order of stacked queues.

Fig. 1. Transformation differences between residual networks and ODE networks.

(
x0(1), x0(2), x0(3), . . . , x0(n)

)
(2)

x0(1) + αz1(t) = b (3)

and x1(k) = ∑k
t=1 x0(t), z1(k) = 1

2
(
x1(k − 1) + x1(k)

)
When (4) is applied:

z1 =
(
z1(2), z1(3), z1(4), . . . , z1(n)

)
(4)

It is a set of values differential equation

dx1(t)
dt

= −ax1(t) + b (5)

GM(1,1) is
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X =
[
x0(2), x0(3), . . . , x0(n)

]T
, C =


−z1(2) 1
−z1(3) 1

...
...

−z1(n) 1

 , Y = [a, b]T

These vectors of the form (3) can be defined

X = CY (6)

If we remove parameter values and numerical coefficients from the equation, then

Y = CT
(
CT C

)−1
X (7)

Put e the numerical coefficient in equation (5) and we solved it to get this solution as below.

x̂1(t) = b

a
+

(
x0(1) − b

a

)
e−a(t−1) (8)

These predictions from source data are captured with x̂0(t):

x̂(t) = −x̂(t − 1) + x̂(t), t = 2, 3, . . . , n (9)

3 Methodology of NODGM
Before presenting the method, neuron-based ordinary differential equations are described in Sec-

tion 3.1 below.

3.1 A N.O.D.E. (Neural-based ordinary-differential equation)

The neural constant differential equation is characterized by a unique NN. This is shown in Figure
1 , where the rest of each layer of the network has its own transformation function f (h(t), θ(t));
Therefore, the whole network expresses the neural network. A range of different driveway layouts .
However, curve h(t) represents a harmonic curve, as shown in the last row of Figure 1, showing that
the NN could use equations with original differentials (ODE).

For such continuous neural networks, this study uses a general NN approximating method to gain
differential inclusions. First solve the ordinary differential equation. For each t the value of the value
h(t) can be calculated.

NODE c can in fact be regarded as a specific residual concept of network. The framework is the
row of remaining diagrams, showing in Fig. 2 . Regarding the NN criterion, each block in the ODE NN
has the same transformation function f. In Fig. 2 this describes the remaining block, which represents
the input h(t) and the output h(t+1), and obtain:

h(t + 1) = h(t) + f (h(t), θt) (10)

h(t + 1) = h(t) + kf(h(t), θ, t) (11)
dh(t)

dt
= f(θ, t, h(t)) (12)

Among them, k is step size and k have the given number 1. When the variable t is 0, Eq (12)
becomes equation (10). Eq (12) means solution is unique and balanced, because there is one real
solution .
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The state of the NODE represents all the data that can be generated. Like simple neural systems,
NODE training must follow the necessary backscatter transmission. Recently, several advanced mod-
eling has been made available to solve ODEs. For example, the Runge-Kutta approximation [41-47] is
a general ODE solution and its accuracy is higher than the Euler approximation. For the description
in the ODE method

y (x0) = y0, y′ = f(x, y), x ∈ [x0, xf ] (13)

We have
yn+1 = yn + s

6 (K1 + 2K2 + 2K3 + K4) (14)

Fig. 2. The process of generation of computation

Eq. (14) is the iteration height value and has a fixed step size, making it more complicated than
the adjustable size-step method [48-55].

Therefore, this study can describe ODEsolver as the redirector;

h(t) = h (t0) +
∫ t

t0
f(h(t), θ, t)dt

= ODESolver (h(t), h (t0) , t, f((h(t), θ, t), θ))
(15)

L = (ODESolver (h (t0) , θ, t, t0) − S)2 (16)
da(t)

dt
= −a(t)T ∂f(h(t)θ, t)

∂h
(17)

ODESolver obtains the response based on the initial values θ,h (0), the initial value t0 and the
final t with ODE response in Eq (1). When using ODESsolver, the equation (11) would be obtained.
Pass equations on nodes. (15), we can obtain h(t). Thus, according to f((h(t), θ, t)), we could easily
obtain the f that is related to the computational range of the h. By telling ODESolver to calculate
(h(t0, t0, θ, t), the final position a(tn) = ∂L can be calculated directly. Then the ODE solver can solve
equation (17) and count all end state a(tn).

a(t) = ODESolver

(
a (tn) , t,

∂f(( h(t), θ, t)
∂h

)
(18)

To a(t) obtain the score, the parameter ∂L
∂θ must be determined.

dL

dθ
=

∫ t0

t1
a(t)T ∂f(t, θ, h(t))

∂θ
dt (19)

Finally, we can have this slope for setting variables and perform the recovery process.
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3.2 ODGM neural reasoning

In this part, the algorithm proposes a new gray design. Considering the conditions f(t) and x1(t),
the θ is in the NODGM model. Then

f
(
x1(t), t, θ

)
= θ1g1

(
x1(t), t

)
+ θ2g2

(
x1(t), t

)
+ · · · + θngn

(
x1(t), t

)
(20)

where is f
(
x1(t), t, θ

)
t which x1(t) is a series of analogous transformations. A DNN was thought

of as a replaces between its inputs. Given an input, estimate x1(t) the function from which the DNN
can be obtained f . In view of this, h(t) = x1(t) the fading rules of the NODGM numerical approach
can be obtained as numerical periods;

f( h(t), θ, t) = dh(t)
dt

(21)

is defined θ and f is the value of the weight. When we f fit a NN to obtain a number (t), the
model can have different modes, for example: Uneven Uniform, non-linear or Linear. Given the sum
of tspan the initial value terms θ ODESsolver can then be h(0) used to obtain the prediction method H.

H = ODESolver(h(t), t, f( h(t), θ, t), h(0), spant , θ) = [h(0), ĥ(0 + 1), . . . , ĥ(0 + n − 1)] (22)

We assume capabilities to manage digital NODs Optimization parameter θ.

L =
∥∥∥H − X0

∥∥∥2

2
=

n∑
(ĥ(t) − h(t))2 (23)

Thus, the design is according to parameterized slopes instead of the least squares method. Since
this fading function is obtained from NN, the above data is recorded in the raster method at the same
time, which greatly decreases the time consumption to use ODE.

If there exists a both positive and definite symmetric matrix P (x), the control gain Ki(y) ∈ Rm×q

and a scalar γ > 0 satisfy the following inequalities

δx = Aµ(x)x(t) + Bµ(x)z(t)u(t) = C1µ(x)x(t) + Dµ(x)u(t)y(t) = C2µx(t) (24)

Then the discrete-fuzzy closed-loop system (2.6) can be stabilized and satisfied with the static
output feedback controller ∥H(s)∥∞< γ.

For the comprehensive analysis of the static output feedback controller, we use Lyapunov’s theo-
rem to analyze its stability, where the Lyapunov function V (x) is expressed as the following form

V(x) = xT(t)x(t)P−1(x) (25)

Now 0 > ∆V(x) − γ2ωTω + zTz, where ∆V(x) = V(x(td + 1)) − V(x(td)), while V(x(td + 1)) =
xT(td + 1)P−1 (

x+)
x(td + 1), x+ means x(td + 1) , then

0 > ∆V(x)−γ2ωTω +zTz

= xT(t + 1)P−1 (
x+)

x(t + 1) − xT(t)P−1(x)x(t) − γ2ωTω + zTZ

=
[

x
ω
T

]T
 AT

µµµ(x, y)P−1 (
x+)

⋆ −P−1(x) + CT
µµµ(x, y)Cµµµ(x, y)

−
BT

∞µ(x)P−1 (
x+)

Aµµµ(x, y) + DT
∞µ(x)Cµµµ(x, y)

AT
µµµ(x, y)P −1 (

x+)
B∞µ(x) + CT

µµµ(x, y)D∞µ(x)
BT

∞µ(x)P −1 (
x+)

B∞µ(x) + DT
∞µ(x)D∞µ(x) − γ2I

] [
x

ω

] (26)

which AT
µµµ(x, y)P−1 (

x+)
⋆ means AT

µµµ(x, y)P−1 (
x+)

Aµµµ(x, y) that the above formula means
equation −(G(x) − P (x))T P −1(x)(G(x) − P (x)) ≤ 0, P (x) > 0 after expanding the transposition, we
get −GT(x)P−1(x)G(x) ≤ −G(x) − GT(x) + P(x).

Therefore can be rewritten as the following formula
0 >

∑r
i=1

∑r
j=1

∑r
k=1 µiµjµkχijk(x, y)
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4 Case study
The gray mode (2.1) will assure that practical simulations are coherent and adaptive. The design

unit utilize to the Oracle gray signal and has an adaptive power control that can observe the movement
with an advanced control design, which is very suitable for stabilizing the response of MEVW.

To verify the control scheme, the appropriate first step is DGM (2.1). Using the a practical exam-
ple to demonstrate a motion digital control design, the assumed condition would be from and to within
seconds, thus a Simulink phase was designed to approximate the real cases of vibrations (pulse: and
phase) to capture the performance of demonstration by analysis. This demonstration, acting MEVW,
represents a fixed delay corresponding to the state, velocity and rhythm of acceleration by the vehicle.
The certain simulator factors are summarized in Table 1.

This experiment of demonstration can be seen in Figure 3 depicting the predictions of the GDM
(2.1) design and the accurate input is very small, especially when the evolution is relatively less. It
is still suitable for engineering demonstrations. Therefore, reliable properties can also be specified in
DGM (2.1). The matrix weights in the group layer and feedbacks are represented by and once trained
with the Back Propagation network, this weighting values can be recorded. There are comparisons
and approximation in Eq. (24).

v1
r = W 1

1rx(k) + W 1
2rx(k − 1) + W 1

3ru(k),
v2

1 = W 2
11T

(
v1

1
)

+ W 2
21T

(
v1

2
)

+ W 2
31T

(
v1

3
)

, x(1 + k) = T
(
v2

1
)

x(1 + k) =
(
h2

11(k)g1 + h2
12(k)g2

)
v2

1 =
2∑

i=1
h2

1i(k)giv
2
1 (27)

Moreover, the NN design is according to the matrix number in the lunear differtial inclusion com-
mand, as shown below.

x(k + 1) =
16∑

i=1
hi(k) {Biu(k) + Aix(k)} (28)

and

A1 = A2 = · · · = A9 =
[

0 0
1 0

]
, A10 =

[
−0.0598 −0.2443

1 0

]
,

A11 =
[

0.0148 −0.0214
1 0

]
, B12 =

[
−0.0120

0

]
− A14 =

[
0.0668 −0.2482

1 0

]

A12 =
[

0.1266 −0.0039
1 0

]
, A13 =

[
−0.0451 −0.2657

1 0

]
,

A15 =
[

0.1414 −0.0252
1 0

]
, A16 =

[
0.0816 −1.2695

1 0

]
,

B1 = B2 = · · · = B9 =
[

0
0

]
, B10 =

[
−0.1172

0

]
, B11 =

[
0.0266

0

]
,

B13 =
[

−0.0906
0

]
, B14 =

[
−0.1292

0

]
, B15 =

[
0.0147

0

]
, B16 =

[
−0.1025

0

]
.

(29)

The height curve is shown in Fig. 4(a). Observing 0.9 second, the amplitude of the next signal step
is 0.11 m, so the height of this path is assumed to be fixed. In the observation, a suspension design of
the active matrix in MEVW would be applied. Thus, Figure 4(b) shows a visualization of the input
of objects during a one-second towing time. The optimal steering control of the actuators is 11,460 N,
while the steering force of the rear suspension drops to 13,690 N in 0.4 seconds after 25 minutes. The
vehicle stabilizes for some time without steering intervention. Figures 4(c) and 4(d) show the up and
down states including displacements and movements takeoff. Overtaking with or without a gray signal
may: Cause intentional but uncontrolled case (> 3.5 seconds). This may make the car more stable
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(e.g. <2.5 seconds). Although adaptive power control by proposed forecast is better than traditional
habit prediction, the amount of up and down movement is bounded by as much as 7.64%, and the
upward movement is also suppressed. About 18% and 7.5%. When grayscale signal prediction is used,
the error is expected more than when grayscale signal forecast is not used.

Table 1: some measurable design algorithmic factors.
characteristics variables Unites tests varaibles Unites
19,630 A021 N*m1 728 M kg
1 A022 N*m2 1232 Iy kg*m2
1 A023 N*m3 42 m1 kg
1296 B021 N*s*m1 42 m2 kg
1 B022 N*s2*m2 9.81 g m*s2
1 B023 N*s3*m3 1.21 a m
0.001 d M 1.8 b m
3000 Csky01 N*s*m1 10 v m*s1
3000 Csky02 N*s*m1 176,220 A011 N*m1

Fig. 3. Comparison of random numerical data and predictions of the DGM(2,1) model.

Figures 4(e) and 4(f) show the vertical movement of all wheels by fuzzy neural control with gray
algorithm. As shown in the figure, the maximum limitation of front wheel movement without steering
is 0.23 meters, while in normal mode, the maximum limitation of front wheel movement per revolu-
tion is 0.17 meters. 0.13 m, and the up and down vibration of the back was reduced by 0.037 m;
the opposite conditioned stimuli happens in proposed test. The wheel allows for smooth adjustment,
which stabilizes the body and ensures stable driving of the car. Overall this demonstration is believed
suitable when the data is projected in grayscale.
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(a) test profile in progress (b) Sign inspection

(c)Movement of vibrationV from the vertical car(d) Movement of vibrationV from the car to the track

(e) Vibration V moves vertically from the front wheel. (f) V-vibration motion of the rear wheel
Fig. 4. Comparisons with delay consideration in vibration response with controller.

Fig. 5 is the whole computer simulation process for observation in trajectory diagram. Firstly,
the nonlinear term sin(x1) in the global interval ∈ [−∞, ∞]x1 is fuzzified by fuzzy technique , and
a polynomial model is established to facilitate subsequent numerical simulations and finally solve the
gain to design controller.

Fig.5. time-domain trajectory diagram

This paper proposed the novel algorithm was adaptive in a practical engineering application. It
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integrates a linear differential NN design with Lyapunov method for systems. Based on this knowl-
edge, we will demonstrate it in this paper using the proposed criteria-based H∞verification method.
To check its practical usefulness, a practical simulated suspension model was adopted for demonstra-
tion. The result indicates that the linear differential gray neural network scheme enhanced with linear
Lyapunov have successful control outcomes.

5 Conclusions
This study is based on model NODE, which offers a new gray model. Compared to gray models

that manually define concepts and structures, the NODGM model introduces many features and flex-
ible models related to learning different paradigms, which means that NODGM will be widely used.
At the same time, these gradients are quite complex compared to least squares, but they cope with
iterative losses and prevent obesity. Therefore, NODGM provides a higher generalization result than
model of the least squares. These simulation experiments demonstrate that the model NODGM can
effectively predict real short-term control conditions of nonlinear systems. Thus, our model could be
utilized to predict all applications in practical and is also considered robust in processes of decision-
making and engineering systems. However, this model in study still has extra two problems. Firstly,
lower initial network weights may result in reduced localization during training and therefore lower
model performance. Secondly, some shape changes could be made for reducing the weight and thus
increase the model strength. In our current work, the authors plan to improve this proposed model.
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