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Abstract

Multi-area and multi-faceted remote sensing (SAR) datasets are widely used due to the increas-
ing demand for accurate and up-to-date information on resources and the environment for regional
and global monitoring. In general, the processing of RS data involves a complex multi-step pro-
cessing sequence that includes several independent processing steps depending on the type of RS
application. The processing of RS data for regional disaster and environmental monitoring is recog-
nized as computationally and data demanding.Recently, by combining cloud computing and HPC
technology, we propose a method to efficiently solve these problems by searching for a large-scale
RS data processing system suitable for various applications. Real-time on-demand service. The
ubiquitous, elastic, and high-level transparency of the cloud computing model makes it possible to
run massive RS data management and data processing monitoring dynamic environments in any
cloud. via the web interface. Hilbert-based data indexing methods are used to optimally query
and access RS images, RS data products, and intermediate data. The core of the cloud service
provides a parallel file system of large RS data and an interface for accessing RS data from time
to time to improve localization of the data. It collects data and optimizes I/O performance. Our
experimental analysis demonstrated the effectiveness of our method platform

Keywords: Remote Sensing , Data integration , Cloud Computing , Big Data ;

1 Introduction

With the remarkable advances in high-resolution Earth Observation (EO), we are witness-
ing an explosive growth in the volume and also velocity of Remote Sensing (RS) data. The
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latest-generation space-borne sensors are capable of generating continuous streams of observa-
tion data at a growingrate of several gigabytes per second ([1]) almost every hour, every day,
every year. The global archived observation data probably exceed one exabyte according to
the statistics of an OGC report ([2]). The volume of RS data acquired by a regular satellite
data center is dramatically increasing by several terabytes per day, especially for the high-
resolution missions ([3]), while, the high-resolution satellites, namely indicating higher spatial,
higher spectral and higher temporal resolution of data, which would inevitably give rise to
the higher dimensionality nature of pixels. Coupled with the diversity in the present and up-
coming sensors, RS data are commonly regarded as "Big RS Data'or "Big Earth Observation
Data", not merely in data volume, but also in terms of the complexity of data.

The proliferation of "RS Big Data' is revolutionizing the way RS data are processed, analyzed
and interpreted as knowledge ([4]). In large-scale RS applications, regional or even global cov-
ered multi-spectral and multi-temporal RS datasets are exploited for processing, so as to meet
the rising demands for more accurate and up-to-date information. A continent-scale forest map-
ping normally involves processing terabytes of multi-dimensional RS datasets for available forest
information ([5]). Moreover, large-scale applications are also exploiting multi-source RS datasets
for processing so as to compensate for the limitation of a single sensor. Accordingly, not only
the significant data volume, but the increasing complexity of data has also become the vital
issue. Particularly, many time-critical RS applications even demand real-time or near real-time
processing capacities ([6][7]). Some relevant examples are large debris flow investigation ([8],
flood hazard management ([9]) and large ocean oil spills surveillance ([10][11])). Generally,
these large-scale data processing problems in RS applications ([12][13][14]) with high QoS re-
quirements are typically regarded as both compute-intensive and data-intensive. Likewise, the
innovative analyses and high QoS (Quality of Service) requirements are driving the renewal of
traditional RS data processing systems. The timely processing of tremendous multi-dimensional
RS data has introduced unprecedented computational requirements, which is far beyond the
capability that conventional instruments could satisfy. Employing a cluster-based HPC (High-
Performance Computing) paradigm in RS applications turns out to be the most widespread yet
effective approach ([14][15][16][17][18]). Both NASA’s NEX system ([14] for global processing
and InforTerra’s "Pixel Factory" ([19]) for massive imagery auto-processing adopt cluster-based
platforms for QoS optimization.

Cloud computing ([20]) provides scientists with a revolutionary paradigm of utilizing com-
puting infrastructure and applications. By virtue of virtualization, the computing resources and
various algorithms could be accommodated and delivered as ubiquitous services on-demand ac-
cording to the application requirements. The Cloud paradigm has also been widely adopted in
largescale RS applications, such as the Matsu project ([21]) for cloud-based flood assessment.
Currently, Clouds are rapidly joining HPC systems like clusters as variable scientific platforms
([22]). Scientists could easily customize their HPC environment and access huge computing
infrastructures in the Cloud. However, compared to conventional HPC systems or even su-
percomputers, the Clouds are not QoS-optimized large-scale platforms. Moreover, differing from
the traditional Cloud, these Datacenter Clouds deployed with data-intensive RS applications
should facilitate massive RS data processing and intensive data 1/0.

To efficiently address the aforementioned issues, we propose pipsCloud, a cloud-enabled High
Performance RS data processing system for large-scale RS applications. The main contribution
of it is that it incorporates a Cloud computing paradigm with cluster-based HPC systems in
an attempt to address the issues from a system architecture point of view. Firstly, by adopt-
ing application-aware data layout optimized data management and Hilbert R+ tree based data
indexing, the RS big data including imageries, interim data and products could be efficiently
managed and accessed by users. By means of virtualization and bare-metal (BM) provisioning
([23]), not only virtual machines, but also bare-metal machines with less performance penalty
are deployed on-demand for easy scale up and out. Moreover, the generic parallel programing
skeletons are also employed for easy programming of efficient MPI-enabled RS applications.
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Following this way, the cloud-enabled virtual HPC environment for RS big data processing is
also dynamically encapsulated and delivered as on-line services. Meanwhile, benefiting from a
dynamic scientific workflow technique, pipsCloud offers the ability to easily customize collabo-
rative processing workflows for large-scale RS applications.

The rest is organized as follows. Section 2 reviews some related works and discuss the chal-
lenges lying in the building and enabling a high performance cloud system for data-intensive
RS data processing. Section 3 demonstrates the design and implementation of the pipsCloud
from the system level point view. Then Section 4 discusses the experimental validation and
analysis of the pipsCloud. Finally Section 5 concludes this paper.

2 High Performance Computing for RS Big Data: State of the
Art

Each solution has its pros and cons. In this section, we comparatively review current
dominant system architectures regularly adopted in the context of RS data processing, both
cluster-based HPC platforms and Clouds. Firstly, in Section 2, we go deep into the incorpo-
ration of multi-core cluster HPC structure with RS data processing systems and applications.
Then, in Section 2.2, we introduce some new attempt to enable large-scale RS applications by
taking advantage of a Cloud computing paradigm. As increasing numbers of improved sensor
instruments are incorporated with satellites for Earth Observation, we have been encounter-
ing an era of "RS Big Data." Meanwhile, the urgent demands for large-scale remote sensing
problems with boosted computation requirements ([14]) have also fostered the widespread ap-
plying of multi-core clusters. The first shot goes to the NEX system ([14]) for global RS
applications built by NASA on a cluster platform with 16 computer in the middle of 1990s.
The '"Pixel Factory" system ([19]) of InforTerra employed a cluster-based HPC platform for
massive RS data auto-processing, especially Ortho-rectification. These HPC platforms are also
employed in the acceleration of hyperspectral imagery analysis ([24]). It is worth noting that
the 10,240-CPU Columbia supercomputer equipped with InfiniBand network has been exploited
for remote sensing applications by NASA.

Several traditional parallel paradigms are commonly accepted for these multi-level hierarchy
featured cluster systems. OpenMPparadigm is designed for shared-memory, MPI is adopted
within or across nodes, and the MPI4+OpenMP hybrid paradigm ([25]) is employed for ex-
ploiting multilevels of parallelism. Recently, great efforts have been made in the incorporation
of an MPI-enabled paradigm with remote sensing data processing in the large scale scenarios.
Some related works with Plaza et al. presented parallel processing algorithms for hyperspec-
tral imageries ([26]), Zhao et al. ([27]) implemented soil moisture estimation in parallel on a
PC cluster, as well as MPI-enabled implementing of image mosaicking ([28], fusion ([29]) and
band registration ([30]). Obviously, benefiting from the efforts and developments conducted in
HPC platforms, plenty of RS applications have enhanced their computational performance in
a significant way ([14]).

However, in spite of the elegant performance acceleration has achieved, it is still anything but
easy for non-experts to employ the cluster-based HPC paradigm. Firstly, the programming, de-
ploying as well as implementing of parallel RS algorithms on an MPI-enabled cluster are rather
difficult and errorprone ([31]). Secondly, HPC systems are not optimized for data-intensive
computing especially. The loading, managing and communication of massive multi-dimensional
RS data on the distributed multilevel memory hierarchy of an HPC system would be rather
challenging. Some emerging PGAS ([32]) typed approaches offer global but partitioned memory
address spaces across nodes, like UPC ([33], Chapel ([34]) and X10 ([35]). The on-going DASH
project is developing Hierarchical Arrays (HA) for hierarchical locality. Thirdly, the relatively
limited resources in HPC systems could not be easily scaled to meet the on-demand resource
needs of diverse RS applications. For affordable large-scale computing resources, substantial up-
front investment and sustaining scaling up would be inevitable but also rather expensive. In
addition, cluster-base HPC systems lack an easy and convenient way of utilizing high perfor-
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mance data processing resources and applications, not to mention the on-demand customizing
of computing resources and processing workflows.

The Cloud has emerged as a promising new approach for ad-hoc parallel processing, in the
Big Data era[l15]. It is capable of accommodating variable large-scale platforms for different
research disciplines with elastic system scaling. Benefiting from virtualization, not only comput-
ing resources, but also software could be dynamically provisioned as ubiquitous services best
suited to the needs of the given applications. Compared to the MPI-enabled cluster systems,
the cloud paradigm provides computing resources in a more easy-to-use and convenient way
a service-oriented way.

The advent of the Cloud has also empowered remote sensing and relevant applications. Matsu
([21], the on-going research project of NASA for on-demand flood prediction and assessment
with RS data adopts an Eucalyptus-based[37]) distributed cloud infrastructure with over 300
cores. GENESI-DEC , a project of the Ground European Network for Earth Science Interop-
erations Digital Earth Communities. It employs a large and distributed cloud infrastructure
to allow worldwide data access, produce and share services seamlessly. With the virtual orga-
nization approach, the Digital Earth Communities could lay their joint effort for addressing
global challenges, such as biodiversity, climate change and pollution.The ESA (European Space
Agency) G-POD, a project to offer on-demand processing for Earth observation data was ini-
tially constructed with GRID. Subsequently, the Terradue cloud infrastructure was selected to
enhance G-POD for resources provisioning ([24]).

Great efforts have been made in the employing of cloud computing in the context of remote
sensing data processing, both in terms of programming models and resource provisioning.

Several optional distributed programming models[36] are prevalently employed for processing
large data sets in the cloud environment, like MapReduce ([38]) and Dryad, where, MapRe-
duce is the most widely accepted model for distributed computing in Cloud environment. By
using "Map" and "Reduce" operations, some applications could be easily implemented in paral-
lel without concerning data splitting and any other system related details. With the growing
interest in Cloud computing, it has been greatly employed in RS data processing scenarios. Lin
et al. ([36]) proposed a service integration model for GIS implemented with MapReduce, B.
Li et al. ([38]) employed MapReduce for parallel ISODATA clustering. Based on the Hadoop
MapReduce framework, Almeer ([37]) built an experimental 112-core high-performance cloud
system at the University of Qatar for parallel RS data analysis.

Essentially, on-demand resource managing and provisioning are foremost in the cloud com-
puting environment. Several choices of open-source cloud solutions are available to accommo-
date computing infrastructure as a service for viable computing. Among several solutions, such
as OpenStack ( OpenCloud, Eucalyptus ([37]) and OpenNebula ([38], OpenStack is the most
widely accepted and promising one. Basically, in recent Clouds, on-demand resource alloca-
tion and flexible management are built on the basis of virtualization. Many available choices
of hypervisors for Server virtualization in current open cloud platforms are Xen hypervisor,
Kernel-based Virtual Machine (KVM) as well as VMWare . By management of Provisioning
of Virtual Machines(VMs), hypervisors could easily scale up and down to provide a large-scale
platform with a great number of VMs. Likewise, the network virtualization concept has also
emerged. Yi-Man proposed Virt-IB for InfiniBand virtualization on KVM for higher band-
width and lower latency.

The virtualization approaches normally deploy multiple VMs instances on a single physical
machine (PM) for better resource utilization. However, virtualization and hypervisor middle-
ware would inevitably introduce an extra performance penalty. Recently, Varrette et. al. has
demonstrated the substantial performance impact and even a poor power efficiency when facing
HPC-type applications, especially large-scale RS applications. As a result, whether the VMs
in the Cloud suit as a desirable HPC environment is still unclear.

The Cloud computing paradigm has empowered RS data processing and makes it more pos-
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sible than ever . Unlike conventional ways of processing that are done by standalone server
or software, the cloud-based RS data processing is enabled with a revolutionary promise of
unlimited computing resources.

3 pipsCloud: High Performance Remote Sensing Clouds

To properly address the above issues, we propose pipsCloud, a highperformance RS data
processing system for large-scale RS applications in the cloud platform. It provides a more
efficient and easy-to-use approach to serve high-performance RS data processing capacity on-
demand, and also QoS optimization for the data-intensive issues.

3.1 The system architecture of pipsCloud

As illustrated in Figure 1, pipsCloud adopts a multi-level system architecture. From bot-
tom to top it is respectively physical resources, cloud framework, VE-RS, VS-RS, data man-
agement and cloud portal. The cloud framework manages physical resources to offer Ilaas
(Infrastructure as a Service ) by virtue of OpenStack. Based on the cloud framework, the
VE-RS offers a virtual HPC cluster environment as a service and VS-RS provides a cloud-
enabled virtual RS big data processing system for on-line large-scale RS data processing, while
the management, indexing and sharing of RS big data are also served as Daas (Data as a
service).

Cloud Framework employs the most popular but successful open source project OpenStack
to form the basic cloud architecture. However, OpenStack mostly only offers virtual machines
(VMs) through virtualization technologies. These VMs are run and managed by hypervisors,
such as KVM or Xen. Despite the excellent scalability, the performance penalty of virtualiza-
tion is inevitable. To support the HPC cluster environment in the Cloud, pipsCloud adopts a
bare-metal machine provisioning approach which extends OpenStack with a bare-metal hypervi-
sor named xCAT. Following this way, both VMs and bare-metal machines could be scheduled
by nova-scheduler and accommodated to users subject to application needs.

VE-RS, namely an RS-specific cluster environment with data-intensive optimization, which also
provided as a VE-RS service based on the OpenStack enabled cloud framework. By means of
auto-configuration tools like AppScale, VE-RS could build a virtual HPC cluster with Torque
task scheduler and Ganglia for monitoring on top of the cloud framework. Then varieties
of RS softwares could be customized and automatically deployed on this virtual cluster with
SlatStack. Moreover, a generic parallel skeleton together with a distributed RS data structure
with fine-designed data layout control are offered for easy but productive programming of
large-scale RS applications on an MPI-enabled cluster.

VS-RS, a virtual processing system that is built on top of VE-RS is served as an on-line
service especially for large-scale RS data processing. A VS-RS not only provides RS data
products processing services, but also offers a VS-RS processing system as a service to pro-
vide processing workflow customization. By virtue of the Kepler scientific workflow engine,
VS-RS could offer dynamic workflow processing and also on-demand workflow customization.
The thing that is worth noting is that enabled by Kelper, the complex workflow could also be
built among clouds or different data centers with web services. Moreover, the RS algorithm
depository together with the RS workflow depository are employed in VS-RS for workflow
customization, interpreting and implementing. Besides, order management as well as system
monitoring and management are also equipped in VS-RS to enable on-line processing and
management.

RS Data Management is a novel and efficient way of managing and sharing RS big data
on top of the cloud framework. It adopts unbounded cloud storage enabled by Swift to store
these varieties of data and serve them in a RS data as a service manner. HPGFS the dis-
tributed file system for an RS data object is used for managing enormous unstructured RS
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Figure 1: The system architecture of pipsCloud.

data, like RS imageries, RS data products and interim data, while the structured RS meta-
data are managed by a NoSQL database HBase[129]. For quick retrieval from varieties of
massive RS data, a Hilbert R+ tree together with an in-memory hot data cache policy are
used for indexing acceleration. Last but not least, the thesis-based data subscription with vir-
tual data catalog and thesis-based data push are also put forward as a novel means of data
sharing (Figure 5).

Cloud Management and Portal manages the whole pipsCloud platform, including system mon-
itoring, user authentication, multi-tenancy management as well as statistics and accounting.
While in the web portal of pipsCloud, the RS data management, RS data processing capabil-
ities as well as on-demand RS workflow processing are all encapsulated as OGS web services
interface standards, such as WPS (Web Proccessing Service), WCS (Web Coverage Service)
and WMS (Web Map Service).

3.2 RS data management and sharing

Efficient RS data management and sharing are paramount especially in the context of
large-scale RS data processing. The managing of RS big data is not only limited to un-
structured multi-source RS imageries, but also varieties of RS data products, interim data
generated during processing, as well as structured metadata. As is mentioned above, HPGFS
with application-aware data layout optimization is adopted for managing unstructured RS data,
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while the RS metadata are stored in HBase for query. These unstructured RS data are orga-
nized in a GeoSOT global subdivision grid, and each data block inside these data are arranged
in Hilbert order and encoded with a synthetic GeoSOT-Hilbert code combining GeoSOT code
with Hilbert value. The GeoSOT-Hilbert together with the info of data blocks are stored in
the column family of the metadata in HBase for indexing. For a quick retrieval from varieties
of massive RS data, a Hilbert R+ tree with GeoSOT10 [51] global subdivision is employed for
indexing optimization. For further indexing acceleration, a hot-data cache policy is adopted to
cache “hot" RS imageries and metadata into the Redis[52][53] in-memory database and offer
hash table indexing. The most important thing that is worth mention is the easy but novel
means of RS data sharing thesis-based RS data subscription and data push through virtual
data catalog mounting as local.

The runtime implementing of RS data management and sharing is demonstrated in Figure 2.
First, pipsCloud interprets the data requests, and checks the user authentication. Second, it
conducts a quick search in the “hot" data cache on the Redis in-memory database with the
hash table index; if the cache hits then it returns data. Third, it searches the required data in
the Hilbert R+ tree for the unique Hilbert-GeoSOT code. Fourth, it uses the Hilbert-GeoSOT
code of the found data to locate the metadata entry in HBase, or locate the physical URL
of the data for accessing. Fifth, for a subscription request, it re-organizes these data entries
to form a virtual mirror and mount it to user’s local mount point. Sixth, if an acquisition
of data or metadata is needed, then it invokes GridFTP for downloading. Finally, Accounting
is used for charging if the data is not free.
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Figure 2: The runtime implementing of data management and sharing.

However, when the requested data products are not available then an RS data product
processing could be requested to VS-RS. The interim RS data and final RS data products
generated during processing would be stored to the interim and products repository based on
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HPGFS, while the relevant metadata will be abstracted and inserted into the metadata repos-
itory based on HBase. Meanwhile, the Hilbert R+ tree should also be updated for further
indexing, and the access RS data or metadata entry would automatically cache into Redis as
"hot" data.
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Figure 3: The application-aware data layout and data copies.

As is depicted in Figure 3, application-aware data layouts and data copy policies consistent

with expected RS data access patterns are adopted for optimal data layout and exploiting
data locality. It is worth noting that multiple redundant data copies with different application-
aware data layouts are all simultaneously pre-created for each individual RS data. Instead of
the data striping method with fixed or variable stripe size, RS data are sliced into data
bricks, which are also multi-dimensional non-contiguous data. By awareness of the expected
I/O patterns of RS applications, the 3-D data bricks in each copy of data are mapping
and organized using a Space-filling Curve that best fits some certain data access patterns.
Data copy organized in the Z-order curve is provided for the consecutive-lines/column access
pattern, diagonal curve is for diagonal irregular data access pattern, while Hilbert curve is
used for the rectangular-block access pattern. With the knowledge of the I/O patterns, the
requested RS data region distributed across different datasets or even data centers can be
organized and accessed locally in one single logical I/0.
As is showed in Figure 3, the hot data bricks would be dynamically copied and scheduled
across I/O nodes to adhere to the statistics of actual data accessing. During the idle time
of the I/O nodes, the data bricks together with the list of the target I/O nodes would be
packaged as a 'brick copy task"'. Then, the data brick in the copy task would be copied and
transferred to the target 1/O nodes using a tree-based copying mechanism as in Figure 3 to
form dynamical copies of data bricks.

Quick and efficient data retrieval among enormous distributed RS data has always been
a considerably challenging issue. Historically, indexing data structures like R-tree or B-tree
are normally used to improve the speed of global RS data retrieval and sharing. Actually,
the performance of the indexing tree greatly depends on the algorithms used to cluster the
minimum bounding rectangles (MBRs) of the RS data on a node. Hilbert R-+tree employs a
Hilbert space-filling curve to arrange the data rectangles in a linear order and also group the
neighboring rectangles together. To meet the requirements of realtime RS data updating, a
dynamic Hilbert R+tree is normally more desirable. But compared to a static tree, it is also
relatively more time-consuming and complicated.
Normally, RS data products are subdivided into standard scenes according to some global
subdivision grid model. A data scene may span several degrees of longitude in lat-long geo-
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graphical coordination, like 50 for Modis data. Under this consideration, pipsCloud adopts a
hybrid solution, which the combines the Hilbert R-+tree with a GeoSOT global subdivision
grid model. As is showed in Figure 4, the global RS data are first grouped through a deferred
quad-subdivision of GeoSOT global subdivision grid model. Normally, through several levels of
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Figure 4: Optimal RS data indexing with Hilbert R+tree and global subdivision grid.
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quad-subdivision (like 5 levels) a quad-tree could be constructed, while if the a RS dataset
covers a really big region that much larger than the GeoSOT grid, then this dataset would
be logically further divided into data blocks. Then the RS datasets or data blocks inside
the geographical region of each leaf node of the quad-tree would be re-arranged according the
Hilbert value of the center of the rectangles (i.e., MBR of the RS data or blocks). Following
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Figure 5: Data subscription and virtual catalog mirror.

this method, each RS dataset or data block would be encoded with a unique GeoSOT-Hilbert
code which consists of both the GeoSOT code and Hilbert value. Given the Hilbert ordering,
we generate new tree nodes and assign rectangles of RS data to these tree nodes sequentially.
The non-leaf node contains LHVs (Largest Hilbert Value) and also the geographical region of
the rectangles. Then by recursively sorting these new nodes by the Hilbert value of its rectan-
gle and creating new nodes with a higher level, a dynamic R+tree could be generated. The
leaf node of this hybrid Hilbert R+tree is a data entry node, which contains the informa-
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tion (URL) of a temporal serial of RS data that is inside the rectangle of node. With the
unique GeoSOT-Hilbert code, the Hilbert R+tree and the RS metadata repository could be
easily connected. For each RS dataset indexed in the leaf node of the Hilbert R+tree, the
GeoSOT-Hilbert code as well as MBR of the data itself and the data blocks inside this data
would all be stored together with metadata in HBase. Accordingly, the searching of a given
data region would be started from the root, descend the quad-tree of the GeoSOT global grid
model, and then visit the nodes in the Hilbert R+tree that intersect the desired rectangle
to get the GeoSOT-Hilbert code of the data so as to access metadata in HBase and acquire
imageries with the URL.

3.3 VE-RS: RS-specific HPC environment as a service

(Figure 6) VE-RS offers an RS-specific cluster environment as a service on top of the

OpenStack enabled cloud framework. Based on the VMs or BMs provided by the cloud frame-
work, VE-RS could build a virtual HPC cluster through automatic deployment of cluster
auto-configuration tools like AppScale. By means of SlatStack, VE-RS allows customized de-
ployment of RS software such as ENVI, GDAL and ERDAS, together with HPC tools like
MPI, MapReduce, Torque and Ganglia on VMs or PMs in the virtual cluster. Furthermore,
pipsCloud also provides easy-to-use interfaces for auto-deployment of an RS-specific HPC clus-
ter with the APIs of ApppScale and SlatStack.
For efficient managing of RS big data, VE-RS adopts a parallel file system named HPGFS
especially for RS imageries. To solve the poor 1/O performance introduced by intensive irreg-
ular I/O patterns, HPGFS adopts application aware data layout policy so as to exploit data
locality and reduce data movements. Moreover, for easy but productive programming, VE-RS
provides RS-GPPS, generic parallel skeletons for large-scale RS data processing applications
on the MPIl-enabled cluster environment. It also adopts a distributed RS data structure with
fine-designed data layout control across distributed memories for efficient loading and commu-
nicating of RS big data. In addition, VE-RS adopts Torque scheduler as a local resource
manager and scheduler in the virtual cluster, and ganglia for system monitoring.

In this study, we adopt xCAT to extend the dominant OpenStack platform for supporting
bare-metal provisioning, and use the KVM hypervisor for VMs provisioning. OpenStack consists
of a collection of software components, including Nova for computing resource (VMs/BMs)
management, Glance for image management and Swift for building cloud storage. Normally,
OpenStack basically offers virtual machines and the resource visualization is enabled by some
hypervisors like Xen or KVM. As is shown in Figure 7, we use the KVM hypervisor for
the creation and management of VMs from the pool of physical machines. When a virtual
machine is requested, Nova-compute component of OpenStack will invoke the API of KVM
for the creation and deployment of VMs, while, the virtualization and deployment of network
resources is conducted by nova-network.

Actually, bare-metal provisioning is not directly supported in OpenStack. Hypervisor xCAT
as a scalable distributed resource-provisioning tool, provides unified interfaces for discovery
and software deployment of physical machines. However, to enable bare-metal machines in
OpenStack through xCAT, a bare-metal driver for xCAT should be integrated in the Nova-
compute component ([23]). Normally, Nova-compute uses the libvirt library to manage different
hypervisors for diverse virtualization approaches. In this context, the bare-metal driver for
xCAT is needed as an alternative to the libvirt driver. On one hand, the xCAT driver deals
with the bare-metal (BM) machine requests from Nova-compute, and on the other hand it
communicates with xCAT to complete resource provisioning.

As is shown in Figure 7, when an HPC cluster environment for RS data processing with bare-
metal machine is requested by a user, the nova scheduler will choose a nova-compute node
and pass the request to the Libvert driver of it. Then, the Libvert driver would invoke the
so implemented bare-metal driver of xCAT and transfer the request to xCAT. Consequently,
the xCAT will take charge of everything. It gets the information of bare-metal machines
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Figure 6: The generation and auto-deployment of VE-RS.

from BM/VMs database, and downloads the system images with OS and software needed for
building the HPC cluster for RS. Then, xCAT activates the boot loader of the physical
machine using PXE (Preboot Execute Environment), and power on the machine with power
management driver IMPI. After that, xCAT boots the physical machine from the network
and deploys it with the specified system image (OS and software). Finally, it registers the
information of the bare-metal machine into the BM/VMs database. In case the baremetal
machine is running, the xCAT is also responsible for managing and monitoring its status.
Following this process, not only VMs but also BMs could be accommodated for on-demand
needs of variable HPC cluster platform for RS applications, so as to decrease the performance
penalty.

Cluster-based HPC platforms are characterized by extreme scale and a multilevel hierar-
chical organization. Efficient and productive programming for these systems are a challenge,
especially in the context of data-intensive RS data processing applications.

To properly solve the aforementioned problems, we propose RS-GPPS, Generic Parallel Pro-
gramming Skeletons for massive remote sensing data processing applications enabled by a tem-
plate class mechanism, and working on top of MPI. Generic parallel algorithms are abstract
and recurring patterns lifting from many concrete parallel programs and concealing parallel
details as skeletons. This approach relies on type genericity to resolve polymorphism at com-
pile time, so as to reduce the runtime overhead while providing readability of a high-level.
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We focus on so-called class templates, which are parameterized computations patterns used
to implement algorithm skeletons (Figure 8). The main contribution of RS-GPPS is that it
provides both generic distributed RS data structure and generic parallel skeletons for RS al-
gorithms.

3.4 VS-RS: Cloud-enabled RS data processing system

VS-RS offers on-demand workflow customization and dynamic processing for various large-
scale RS applications in the Cloud as on-line services on top of a cloud-enabled HPC cluster
environment VE-RS. It consists of order manager, resource scheduler, runtime for collaborative
workflow processing, and data or algorithm repositories. The order manager is responsible for
parsing the requested RS data processing orders into abstract collaborative workflows according
to the workflow repositories. While the resource scheduler adopts an optimal scheduling strat-
egy to conduct an optimized resource mapping for the abstract workflow to form a concrete
one, including data, algorithm and computing resources. Actually, these concrete workflows are
constructed dynamically through dynamic optimal resource allocation during runtime according
to the monitored status of resources and system. Meanwhile, the Kepler-enabled workflow pro-
cessing runtime dynamically implements each step of the workflow with allocated resources on
the local cluster in VERS or launches it to remote data centers, and finally coordinates the
whole collaborative workflow processing procedure.

The dynamic processing of large-scale collaborative workflows on Keplerenabled runtime

goes as follows:
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Firstly, Abstract workflow matching is responsible for interpreting the requested or-
ders into abstract RS workflows without allocation. With the key word "Product Type",
runtime searches for the corresponding abstract workflow in the workflow repository for
each RS order requested through the cloud web portal, while, the abstract workflow inter-
preted only tells the blueprint of the data processing procedure, including the functional
name of each step as well as the control logic among them. But the actual processing
program or data needed for processing in each workflow step is not decided yet.

Secondly, Optimal Resource Allocation continues to conduct optimal resource mapping
for each workflow step according to the current status of various resources and systems.
The resources here refer to three main categories of resources including algorithm re-
sources with actual programs, various RS data required for processing and also processing
resources like processors and network which are needed for execution. Initially, a knowl-
edge query from product knowledge repository is invoked for acquiring the knowledge
rules for this designated RS data product. The product knowledge represents in rules
that mainly indicate the requirement of the RS data, such as the resolution or sensor
of the RS imageries, auxiliary data as well as some parameter data or file needed. Then
with the knowledge rules of data products, there follows the generating of a condition
statement for an RS data query. Accordingly, a list of RS imageries or auxiliary data
could be drawn out from the data repository for further processing. After that goes the
algorithm allocation, the candidate executable programs are deposited from the algorithm
repository with the key word of the functional name of the algorithms.

Thirdly, Partly generating concrete Kepler workflow from abstract workflow with al-
located resources. Here runtime only generates part of the Kepler workflow for certain
processing steps with allocated resources. Each step of the Kepler workflow is then
represented as an executable Kepler "actor".

Fourthly, Run Kepler workflow on Kepler workflow engine. In the case when the process-
ing step of workflow is a local actor, then a PBS/Torque task submission is triggered
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Figure 9: Dynamic and optimal workflow processing for large-scale RS applications with Kepler.

to the LRMs (Local Resource Manager). Then the LRMs launches the program of this
workflow processing step onto the allocated processors (VMs or BMs) in the virtual
HPC cluster environment in the Cloud and executes it in parallel, while, if the workflow
step is "sub-workflow" expressed as a web service actor, Kepler would directly invokes
the web service interfaces for execution. If the processing step is a remote job execu-
tion, then a remote action is invoked with a remote job submission. After receiving the
job submission, the LRMs of the remote data center would soon run the program on
processors and final feedback with interim data.

e Finally, the workflow processing is continued recursively from optimal resource allocation,
generating Kepler workflow to implementing workflow collaboratively until the end of the
workflow procedure. Following this process, the entire complex processing workflow could
be generated and implemented dynamically on the Kepler engine with a nearly optimal
performance QoS of the whole processing procedure. When the workflow ends, the RS
data products would be registered into the RS data product repository for downloading.

Consequently, with the logical control and data transferring among data centers, a distributed
workflow among different data centers or cloud systems could be collaboratively implemented.
Each step of the workflow is implemented with the optimal allocated resources according
to current system status. Even when a failure of the allocated resources occurs, then a re-
allocation of the resource would be triggered for a re-build and re-run of the Kepler workflow.
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4 Experiments and Discussion

The pipsCloud which offers a high-performance cloud environment for RS big data has been
successfully adopted to build the Multi-data-center Collaborative Process System (MDCPS). By
virtue of the data management service in pipsCloud, the multi-source raw RS data, interim
data and also data products can all be efficiently managed and accessed. Through the VE-

Figure 10: The 5-day synthetic global NDVI products in 2014.

(a) NPP products from day 211 to 215 (b) NPP products from day 221 to 225

Figure 11: The 5-day synthetic global NDVI products in 2014.

RS service in pipsCloud, a customized virtual HPC cluster environment is easily built and
equipped with RS software, a parallel programming model and a largescale task scheduling
especially for RS applications. By employing the VS-RS service offered in pipsCloud, MDCP
are well constructed and equipped upon the VE-RS cluster environment with order manage-
ment, a workflow engine and a depository for RS algorithms and workflows. Furthermore,
enabled by the Kepler workflow engine, the complex processing procedures for global RS data
products are customized as dynamic workflows that are implemented through collaboration a
cross multiple data centers. This processing is dynamic since the concrete workflows are not
predefined but dynamically formed through runtime resource mapping from abstract workflows
to data centers.

Actually, MDCPS connects several national satellite data centers in China, such as CCRSD,
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NSOAPS, NMSC. It offers online processing of regional to global climate change related
quantitative RS data products with these multisource RS data across data centers. The RS
data products generated by MDCPS include vegetation related parameters like NDVI 18 and
NPP19, radiation and hydrothermal flux related parameters like AOD20 and SM21, as well as
global ice change and mineral related parameters. The 5-day global synthetic NDVI parameter
product in 2014 generated using MODIS 1km data is shown in Figure 10. The 5-day global
synthetic NPP parameter products which were also produced with MODIS 1km data in day
211 to 215 and day 221 to 225 in 2014 are relatively demonstrated in sub figure (a) and
(b) in Figure 11.

The performance experiments on typical RS algorithms with both increasing processors and
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Figure 12: Run time of NPP and NDVI with scaling nodes.

data amounts are carried out for the validation of the scalability of the pipsCloud platform.
In this experiment, two MPI-enabled RS algorithms are chosen for implementing, including
NDVI and NPP. Meanwhile, the pipsCloud platform offers a virtual multi-core cluster with
10 nodes connected by a 20 gigabyte Infiniband network using RDMA (Remote Direct Memory
Access) protocol. Each node is a bare-metal provisioned processor with dual Intel (R) Quad
core CPU (3.0 GHz) and 8 GB memory. The operating system was Cent OS5.0, the C++
compiler was a GNU C/C++ Compiler with optimizing level O3, and the MPI implementa-
tion was MPICH.

The runtime and speedup performance merit of both NPP and NDVI with increasing num-
bers of processors are illustrated relatively in Figure 12 and Figure 13. As is demonstrated in
sub figure (a), the run time merit curves of these two algorithms decrease almost linearly es-
pecially when scaled toless than 4 processors (32 cores). However, the decrease rate is much
slower when scaled from 5 processors (40 cores) to 10 processors (80 cores). The main reason
for that would be the total run time which is relatively small makes the speedup not that
obvious, since the system overhead could not be omitted. The same trend is also shown in
sub figure (b) that the speedup metric curves of both two algorithms soar up linearly when
scaling to 10 processors (80 cores). With the amount of RS data increasing from 0.5 gigabytes
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Figure 13: Speedup of NPP and NDVI with scaling nodes.

to about 300 gigabytes, the experimental result is depicted in Figure 14. Judging from the
performance curves demonstrated, the MPI-enabled NPP and NDVI algorithms implemented
on pipsCloud both show their excellent scalability in terms of data.

5 Conclusions

The Cloud computing paradigm has been widely accepted in the IT industry with highly

matured Cloud computing middleware technologies, business models, and well-cultivated ecosys-
tems. Remote sensing is a typical information associated zone, where data management and
processing play a key role. The advent of the high resolution earth observation era gave birth
to the explosive growth of remote sensing (RS) data. The proliferation of data also gave rise
to the increasing complexity of RS data, like the diversity and higher dimensionality charac-
teristic of the data. RS data are regarded as RS 'Big Data’.
In this paper we discussed how to bring the cloud computing methodologies into the remote
sensing domain. We focus the overall high performance Cloud computing concepts, technologies
and software systems to solve the problems of TS big data. pipsCloud, a prototype software
system for high performance Cloud computing for RS is proposed and discussed with in-deep
discussion of technology and implementation. As a contribution, this study brings a complete
reference design and implementation of high performance Cloud computing for remote sensing.
In future applications, such as smart cities and disaster management, the great challenges will
arise due to fusion of huge remote sensing data with other IoT data. The pipsCloud, benefit-
ing from the ubiquity, elasticity and high-level of transparency of the cloud computing model,
could manage and process the massive data, meeting the future applications’ requirements.
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