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Abstract

Existing models extract entity relations only after two entity spans have been precisely extracted
that influenced the performance of relation extraction. Compared with recognizing entity spans,
because the boundary has a small granularity and a less ambiguity, it can be detected precisely
and incorporated to learn better representation. Motivated by the strengths of boundary, we
propose a boundary determined neural (BDN) model, which leverages boundaries as task-related
cues to predict the relation labels. Our model can predict high-quality relation instance via the
pairs of boundaries, which can relieve error propagation problem. Moreover, our model fuses with
boundary-relevant information encoding to represent distributed representation to improve the
ability of capturing semantic and dependency information, which can increase the discriminability
of neural network. Experiments show that our model achieves state-of-the-art performances on
ACE05 corpus.
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1 Introduction
Relation extraction aims to identify semantic relations between entities. This basic task in in-

formation extraction facilitates many more complex tasks, such as question answering [18], machine
translation [22], emotion detection [20] and knowledge base construction [23]. Take a sentence from the
ACE05 corpus for example (Figure 1). The entity of Person (PER) "thousands of pro-life crusaders"
is associated with the geo-political entity (GPE) "Washington D.C." by a physical relation (PHY).

Figure 1: An example from ACE05 corpus

The previous relation extraction models can be roughly divided into two categories: pipeline models
[42] and joint models [15, 16, 38]. The pipeline models extract relations in two steps, namely, entity
recognition [5, 6] and relation classification [7, 43]. Ignoring the relevance between the two steps, the
pipeline models tend to have the problem of error propagation. That is why the joint models came
into being. The joint models extract entities and relations, and combine them into a unified framework
[29, 30]. The relations are extracted based on the recognition of entity spans. Any error of entity
recognition would spread to relation extraction. Therefore, the performance of relation extraction
depends heavily on the effect of entity recognition.

Every entity span has a start boundary and an end boundary. For example, "Washington" is the
start boundary of the entity "Washington D.C." in Figure 1. There are three advantages of boundary
recognition over entity span recognition. First, the boundaries can be clearly encoded, due to their
small granularity. Second, it is easy to automatically recognize boundaries, because they are dependent
on local features. Third, the boundary-relevant information facilitates the learning of representation.
For these advantages, the boundaries can provide a powerful support to relation extraction.

In many applications, researchers only care about the presence/absence of relations in raw texts.
For instance, the protein interactions extracted from biomedical literature are important to new med-
ical research. In public opinion analysis, it is more significant to find specific public opinions than to
identify the expresser. Thus, a distinctive way of relation extraction is to extract semantic relations
from sentences without needing the accurate measurement of entity spans.

For relation extraction, this paper combines boundary detection model with relation extraction
model into a boundary determined neural (BDN) model. Specifically, a sequence labeling model was
applied to identify boundaries. Based on the detected boundaries, the relation labels were classified
with boundary pairs and relevant information. There are two prominent advantages of our model:
(1) The model can generate many high-quality candidate boundaries, eliminating the need to import
inaccurate entity spans into the relation extraction model; (2) By learning different representations,
the model improves the capture of semantic and dependency information, which in turn improves the
relation prediction.

This paper mainly makes two contributions: (1) Relation extraction was solved from a fresh
perspective. Instead of entity spans, boundaries were selected as task-related cues to classify the
relations. (2) The BDN model was developed to extract relations, and proved to achieve state-of-the-
art results on ACE05 corpus.

2 Literature Review
Relation extraction has received growing interest in recent years. As mentioned before, pipeline

models and joint models are the two major types of tools to extract relations.
Pipeline models treat entity recognition and relation extraction as two separate tasks. By pipeline

models, named entities are recognized before the extraction of relations. Named entity recognition
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(NER) [24, 25, 26] is usually treated as a sequence model based on neural networks like bidirectional
long short-term memory with a conditional random field (CRF) layer (Bi-LSTM-CRF) or Bi-LSTM
with convolutional neural network (CNN) (Bi-LSTM-CNN). The output is a flattened labeling se-
quence. Li et al. [26] designed the Cross-BiLSTM, which interleaves the forward and backward
hidden states between LSTM layers. Recently, boundary supervision [34, 44] is introduced to entity
recognition.

Meanwhile, relation extraction is normally treated as a multi-label classification task. The task can
be executed under a shallow architecture or a deep learning (DL) architecture. Shallow architectures
like support vector machine (SVM) and maximum entropy are often used in conjunction with feature
engineering or kernel methods. As for DL architectures, the deep semantic features are widely ex-
tracted by recurrent neural networks (RNNs) [35, 36] and CNNs [17, 39, 40]. Tran et al. [36] preserved
full relational information by integrating segment-level attention-based CNNs with dependency-based
RNNs. Zhong and Chen [42] learned two encoders built on deep pretrained language models. Besides,
the relation extraction models can be improved with texture features [1, 2, 8]. Chen et al. [8] grouped
the features extracted from each sentence into multiple sets, and thus obtained the structural and
semantic information required for relation extraction. Nevertheless, all relation extraction models
must recognize entities first. They may suffer heavily from error propagation, for the neglection of the
interaction between entity recognition and relation extraction.

Unlike pipeline models, joint models fuses the information of entities with that of relations, and
identify entities and their relations under a unified framework. These models either adopt the strategy
of parameter sharing or the strategy of joint decoding [3, 41]. By parameter sharing, the model shares
some input features or internal hidden states. Bekoulis et al. [3] proposed a neural model with the CRF
layer for NER and the sigmoid loss for multiple head prediction. Yu et al. [41] decomposed relation
extraction into two subtasks, namely, the extraction of head- and tail-entities, and the extraction of
their relations; the two subtasks were deconstructed into several sequence labeling problems based on
tagging scheme. However, the parameter sharing models cannot capture all the interactions between
entities, owing to the limitations of independent decoders.

To utilize the interaction between decoders, some joint decoding algorithms were developed to
decode entities and relations all at once [13, 45, 46]. For example, Zeng et al. [45] proposed an end-
to-end neural model based on sequence-to-sequence (Seq2Seq) with copy mechanism. To improve the
accuracy of entity recognition, Zeng et al. [46] created a multi-task framework which adds a sequence
labeling task to Zeng et al. [45] encoder. Yet the framework requires complex tags or decoding process.

To prevent mistakes from inaccurate entity spans, our model utilizes boundaries to classify relation
labels instead of entity spans. The boundary-relevant information was fused to the neural network to
learn different representations, such that the semantic and dependency information can be captured
to improve model performance.

3 Methodology
The proposed BDN model is illustrated in Figure 2. The model obviously consists of two parts:

boundary detection and relation extraction. The former part executes the sequence labeling task of
generating boundary candidates from a sentence. The boundary candidates are employed as cues for
relation extraction. The latter part takes boundary pairs as input to forecast relation types. This
part is composed of a feature combination layer, an embedding layer, a convolution layer, a pooling
layer, and a fully-connected layer (output layer).

3.1 Boundary detection

For a given sentence consisting of n tokens T = {t1, t2, ..., tn}, the word embedding of the i-th
token ti can be expressed as:

xi = Emb(ti). (1)

where, Emb is the embedding operation. Here, the word embedding is initialized with a pretrained
bidirectional encoder representations from transformers (BERT) mode [14]. Then, x = {x1, x2, ..., xn}
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Figure 2: Framework of BDN model

is fed into a Bi-LSTM layer [19] to learn hidden states.
Each LSTM can be formalized as a function fθ(x1:n, i) with parameter set θ, where f is a nonlinear

function (e.g., logistic sigmoid function or hyperbolic tangent function). The network can only capture
important features from the input. To acquire more features, a Bi-LSTM can be applied to traverse
the input data twice. The Bi-LSTM encompasses a forward LSTM and a backward LSTM fL and fR,
with parameter sets of θL and θR, respectively. Taking token sequence x1:n and index i as input, the
corresponding vector vi = fθ(x1:n, i) can be formalized as:

fθ(x1:n, i) = hL,i ◦ hR,i. (2)

hL,i = fL(x1, x2, ..., xi). (3)
hR,i = fR(xn, xn−1, ..., xi). (4)

where, ◦ is vector concatenation; vi is the concatenation of forward hidden representation hL,i and
backward hidden representation hR,i at in the i-th step. In formula (3), an LSTM is applied on the
input sequence to learned from the past context x1:i. In formula (4), the reverse form of the input
sequence is fed into the LSTM to learn the future context xn:i.

Rather than assign an entity class label to each token, this paper predicts the boundary labels in
the task. Let t1, t2, ..., tn be a sentence with start and end boundaries. The tokens are labeled by the
BO tagging scheme. The boundary tokens ti are assigned with labels B − ε, where ε is the set of
pre-defined entity types; the non-boundary tokens are assigned with labels O.

Then, the boundary labels are predicted by feeding the corresponding representation v = (v1,v2,
...,vn) into a CRF layer, which is good at learning the constraint relationship between labels. The
layer then outputs the final prediction label sequence ye = (ye1, ye2, ..., yen) for the input T . The optimal
sequence can be obtained by the Viterbi algorithm. Then, the output label can be expressed as:

ye = arg maxP (v, y′). (5)

where, P (v, y′) is the likelihood function of training the tags sequence v; y′ is the ground-truth label
sequence.

To sum up, boundary detection is considered as a sequence-labeling task. The input x1:n is
represented as a token sequence t1, t2, ..., tn and fed into a forward LSTM and a backward LSTM.
The two vectors are added to the CRF layer to decode the optimal label sequence. Then, the start
boundary and an end boundary of each entity are identified separately. Every detected end boundary
is greedily matched with the detected start boundary. The boundaries can be assembled into entity
spans following prior work [9].

3.2 Relation extraction

3.2.1 Feature combination layer

Deep neural networks can automatically learn abstract high-dimensional semantic information
from raw inputs [10]. However, the learning is limited to the local information around each word in
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the sentence. For instance, CNNs cannot encode semantic information out of the filter range.
In relation extraction, a sentence usually contains several relation instances. The semantic depen-

dencies between these instances cannot be fully encoded by deep neural networks. Inspired by Chen
et al. [11, 12], our model fuses features based on the boundary-relevant information, so as to enhance
the representation and capture the semantic dependencies in a sentence. Instead of processing each
pair of entity spans, our model leverages each pair of boundaries and its relevant features as input.

For each input sentence and its boundary label sequence, our model processes every pair of can-
didate boundaries independently. Because relations are symmetric in general, every pair of candidate
boundaries 〈ti, tj〉 can generate two relation instances: 〈ti, tj , r〉 and 〈tj , ti, r〉, where r ∈ R and R
with being the set of the relation labels, including a null label of the absence of relation between a
boundary pair.

The features of each relation instance can be denoted as follows:

F1 = {z|z = TypeOf(ti)_TypeOf(tj)} . (6)

F2 = {z|z = T_PositionOf(ti)_PositionOf(tj)} . (7)
F3 = {z|z = NGram(ti, tj)} . (8)

where, _ is concatenation; TypeOf(ti) is an indicator of boundary type (e.g., person (PER), and
organization (ORG)); PositioOf(ti) maps position of ti to an n-dimensional vector about the relative
distance of the current word to ti.

F1 concatenates two boundary labels into a feature, and thus captures the semantic and dependency
information of a relation instance. For example, in the ACE (Automatic Content Extraction) English
Annotation Guidelines for Events, a "Gen-Affiliation" is defined as the relationship between a facility
and geo-political boundary. F2 concatenates the input sentence and two positions into a feature,
providing information for relation extraction. Each sentence can be divided by two boundaries into
three parts:[t1, ti−1], [ti, tj−1] and [tj , tn]. F3 concatenates three features, i.e., different representations
from different channels, into a multichannel feature.

To sum up, the feature combination layer extracts the features from the input sentence, and then
combines them into the final feature. These features are designed to capture the semantic dependencies
in a sentence and fed into the next layer. They can be formalized as follow.

F = ∪3
i=1Fi = F1 ∪ F2 ∪3

j=1 F
j
3 . (9)

3.2.2 Embedding layer

For each relation instance, all the features are allocated to g groups, and each group is embedded
into a vector. An independent lookup table is adopted to transform the groups into vector representa-
tions. Let m be the dimensionality of the embedded words. The embedding operation can be defined
as: [

xg1, x
g
2, ..., x

g
h

]
= Emb(Fg). (10)

The output is expressed as a matrix xg ∈ Rh×m. After that, each group is separately convoluted.

3.2.3 Convolution layer

The convolution layer transforms the representations into abstract features, using a convolutional
filter w with a window size l . A filter can be viewed as a weight matrix w = [w1, w2, . . . , wl](wl ∈ Rl×k).
Then, the convolutional operation can be described as:

Xg
i = f

(
wxgi:i+k + b

)
(1 ≤ i+ k ≤ h). (11)

where, f is an activation function (e.g., rectified linear unit (ReLU); b is the bias. Convolution filters
generally adopt a fixed window size, and thus unable to learn variable features flexibly. This process
can then be replicated for various filters with different window sizes to produce a feature map:[

Xg
1 , X

g
2 , ..., X

g
h−k+1

]
= Conv(xg). (12)
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The output of the convolution layer can be referred to as Xg ∈ R(h−k+1)×h , which represents a
high-dimensional abstract representation.

3.2.4 Pooling layer

Following the convolution layer, a pooling layer is arranged to determine the most useful feature
in each feature representation. The max pooling over time on Xg can be defined as:

X̂g = max
{
Xg

1:h−k+1

}
. (13)

The pooling scores for every filter are concatenated into a feature representation:[
X̂g

1 , X̂
g
2 , ..., X̂

g
s

]
= Pooling(Xg). (14)

The output of the pooling layer can be referred to as X̂g ∈ Rs, where s is the number of filters in
the model and X̂s is the max pooling score of the s-th filter.

3.2.5 Fully connected layer

A relation instance inputted to the model can be encoded as:

X̂ = ⊕gi=1Pooling(Conv(Emb(F g))))) = ⊕gi=1X̂g. (15)

where, ⊕ is the concatenation operation. The dropout strategy is adopted to prevent overfitting. The
output can be described as:

o = f ′(X̂ · c) + b′. (16)

where, · is element-wise multiplication operation; c is Bernoulli random variables; b’is the bias; f ′ ∈
Rr×s

′ is the weight, withbeing s′ equal to s plus the dimension of the features, and r being the relation
type.

Finally, a softmax function is adopted to predict the probabilistic distribution for all types. Pa-
rameter θ is calculated by stochastic gradient descent (SGD), and updated by error backpropagation
algorithm:

P (i|c, θ) = eoi∑r
i=1 e

oi
. (17)

4 Experiment

4.1 Datasets

Our model was evaluated on ACE 2005 corpus, using both English corpus and Chinese corpus.
ACE05 defines 7 types of entities, namely, Facility (FAC), Geo-Political Entities (GPE), Location
(LOC), Organization (ORG), Person (PER), Vehicle (VEH), and Weapon (WEA), and 6 types of re-
lations between entities, namely, Artifact (ART), Gen-Affiliation (GEN-AFF), Org-Affiliation (ORG-
AFF), Part-Whole (PARTWHOLE), Person-Social (PER-SOC), and Physical (PHYS).

The files from ACE05 English corpus were preprocessed and segmented by the procedure mentioned
in Li’s work [27]. Those from ACE05 Chinese corpus were split into a training set, a verification set,
and a test set by the ratio of 6:2:2. Table 1 shows the data of each corpus. Every file was segmented into
sentences. A relation instance was deemed as negative, if there is no relation between two boundaries.
Since boundaries are ordered in a sentence, if a sentence has three boundaries (A, B, C), then six pairs
could be generated: [A, B], [A, C], [B, C], [B, A], [C, A], and [C, B]. Since the nested entities may
have the same boundaries, three pairs could be added: [A, A], [B, B] and [C, C].
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Table 1: Data of each corpus
Dataset Number of relation types Number of entity types Number of files Number of sentences

Train Verification Test
ACE English 7 6 511 7,273 1,765 1,535
ACE Chinese 7 6 628 5,546 1,858 1,850

4.2 Parameter settings

The BERT base model (uncased) was taken as the base encoders for ACE corpus. The dimension
of word embedding was set to 768 in BERT. The embedded data were further mapped into a 128×2-
dimensional vector in Bi-LSTM. The filter windows of 3, 4, 5, 6, and 7 were adopted with 128 feature
maps. The dimensionality of word and feature were configured as 100 and 50, respectively. Learning
rate, dropout probability, and batch size were set as 0.9, 0.5 and 64, respectively.

The performance of our model was measured by Precision (P), Recall (R) and F1 score (F1) to
evaluate the performance [4]. The strict relation evaluation Rel+ was adopted, where a predicted
relation is considered correct if both entity span and relation type are correct. In addition, boundary
evaluation is denoted as Rel, where the boundaries must be correct.

4.3 Baselines

Our model was compared with the following existing models:
Beam search [27], an incremental method, which adopts segment-based decoder based on semi-

Markov chain and global features;
SPTree [31], which detects entities with bidirectional sequential LSTM, and decodes relations

with tree-structured LSTM-RNN;
Global normalization [47], a table-filling method, which integrates syntactic information to

facilitate global learning;
Att-BiLSTM [21], a BiLSTM model with attention, which does not adopt any dependency tree;
Minimum risk training [32], which recognizes entities with an RNN, extracts relations with a

CNN, and trains the model by a minimum risk strategy;
Graph convolutional network (GNN) [33], which detect all entity spans, and then designs an

entity-relation bipartite graph to support relation extraction;
Multi-turn question answering (QA) [28], which characterizes each entity type and relation

type via a question answering template, and then extracts relations by a standard machine reading
comprehension (MRC) framework;

Table-sequence encoder [38], which introduces table-sequence encoders containing two different
encoders;

Span-level NER decoder [37], which predicts the relations in RE decoder with a span-level
NER;

Two independent encoders [42], as a pipeline approach, which are built on span-level repre-
sentations and contextual representations, respectively.

Several contrastive experiments were also carried out, including "Ours w/o AF", which uses a
standard multi-class classifier to detect relation, and "Ours w/o CF", which utilizes the most useful
feature: the type information.

4.4 Comparing with existing models

This subsection compares our model with the published models on the ACE English corpus. As
shown in Table 2, our model outperformed the previous models in relation extraction: the advantage in
F1 score was at least 1.8% on boundary evaluation (Rel) and 0.6% on strict evaluation (Rel+), when
recognizing entity spans. It can be concluded that our model is exceptionally powerful in relation
extraction. The main reason is that our model uses boundary-related information to learn better
representations. These data, which contain priori knowledge and experience, can be transformed into
the high-dimensional abstract representations, making it easier to capture semantic and dependency
information. That is how our model achieved excellent performance of relation extraction.
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Table 2: Comparing with existing models
Model Entity Rel Rel+

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)
Li and Ji [27] 85.2 76.9 80.8 68.9 41.9 52.1 65.4 39.8 49.5

Miwa and Bansal [31] 82.9 83.9 83.4 - - - 57.2 54.0 55.6
Zhang et al. [47] - - 83.6 - - - - - 57.5

Katiyar and Cardie [21] 84.0 81.3 82.6 57.9 54.0 55.9 55.5 51.8 53.6
Sun et al. [32] 83.9 83.2 83.6 64.9 55.1 59.6 - - -
Sun et al. [33] 86.1 82.4 84.2 68.1 52.3 59.1 - - -
Li et al. [28] 84.7 84.9 84.8 - - - 64.8 56.2 60.2

Wang and Lu [38] - - 89.5 - - 67.6 - - 64.3
Taillé et al. [37] - - 87.4 - - 61.2 - - 64.4

Zhong and Chen [42] - - 88.7 - - 67.0 - - 62.2
Ours:span 86.9 86.7 86.8 75.1 66.5 69.4 77.6 62.7 65.0

Ours:boundary 92.8 90.4 91.6 75.3 76.7 75.3 - - -

Table 3: Results on ACE05
Relation Type ACE English ACE Chinese

P(%) R(%) F(%) P(%) R(%) F(%)
PART-WHOLE 72.02 85.21 78.06 82.58 73.50 77.78

ORG-AFF 91.12 84.29 87.57 99.39 80.20 88.77
GEN-AFF 82.57 69.23 75.31 93.65 85.51 89.39
PHYS 67.16 58.44 62.50 96.58 92.97 94.74

PER-SOC 87.80 86.40 87.10 91.30 86.90 89.05
ART 50.86 76.72 61.17 97.27 88.56 92.71
Total 75.26 76.72 75.29 93.46 84.60 88.74

Our model also brought the highest performance, improving the F1 score by +7.7% on boundary
evaluation (Rel), when predicting relation types with boundaries. The improvement is attributable
to two facts: First, boundary detection performs better than entity span recognition. Our model can
generate high-quality candidate boundaries to be fed into the next layer. This solves the mistakes
from inaccurate entity spans, and alleviates the error propagation problem. Second, our model can
capture more features between boundary pairs, making the network more discriminable. The edge of
our model in F1 score over other models clearly shows its superiority.

4.5 Results on ACE05

Table 3 compares the results of our model on English corpus and Chinese corpus against those of
baselines.

Our model achieved better performance on Chinese corpus than on English corpus. The perfor-
mance gap was 13.5% in F1 score. The reason may be the good performance on Chinese boundary
detection. Besides, Chinese and English sentences differ greatly in syntactic structure. English sen-
tences are generally longer and stricter in word order, which is the key in sentence interpretation. By
contrast, Chinese sentences are composed of informative characters, which reflect the syntactic and
semantic information of the sentence.

4.6 Analysis of boundary detection

To disclose the influence of boundaries, experiments were conducted on boundary detection of
English corpus and Chinese corpus. Table 4 compares the detection results of three models on start
boundaries, end boundaries and entity spans. Note that the BERT was adopted to encode word se-
mantics, BiLSTM to capture the semantic and grammatical dependencies in a sentence representation,
and CRF to support detection with artificial features.

As shown in Table 4, the F1 scores of boundary detection were 4-6% higher than that of entity
recognition. The possible reasons are as follows: the boundaries are clear and of small granularity,
leaving no space for ambiguity; the boundary detection is more dependent on local features, and
easier to be recognized automatically. It was observed that BERT-BiLSTM achieved 2% higher F1
score than the best result of BERT-CrossBiLSTM [26]. This fully demonstrates the superiority of our
boundary detection model.
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Table 4: Influence of boundary detection
Dataset Model Start Boundary End Boundary Spans

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

ACE English
random-Bilstm 83.11 68.85 75.31 83.77 66.74 74.29 - - -

Bert-CrossBilstm [26] 87.31 91.39 89.30 86.70 88.81 87.74 - - -
Bert-Bilstm 92.80 90.44 91.60 92.39 89.43 90.88 86.92 86.74 86.83

ACE Chinese
random-Bilstm 85.85 76.92 81.14 87.59 80.97 84.15 - - -

Bert-CrossBilstm [26] 93.04 94.12 93.58 94.35 93.63 93.99 - - -
Bert-Bilstm 94.72 95.26 94.99 95.91 95.29 95.60 92.21 86.56 89.30

Table 5: Influence of feature combination
Model ACE English ACE Chinese

P(%) R(%) F(%) P(%) R(%) F(%)
S 50.82 75.94 59.64 76.41 46.36 57.04
F1 73.17 69.42 71.13 93.48 71.29 80.31
F2 67.73 74.92 69.88 91.40 78.87 84.53
F3 58.21 79.06 65.84 72.29 74.14 72.81

F1 ∪ F2 67.52 77.80 71.05 92.63 83.53 87.70
F1 ∪ F3 82.90 67.65 74.19 83.93 84.12 83.59
F2 ∪ F3 65.89 78.18 70.54 91.49 78.71 84.35

F1 ∪ F2 ∪ F3 75.26 76.72 75.29 93.46 84.60 88.74

4.7 Analysis of feature combination

Table 5 lists the experimental results on the influence of boundary-relevant features on model
performance. The F1 scores on English corpus and Chinese corpus stood at 59.64% and 57.04%,
respectively. This is because the entity can be any word, and the sentence fails to provide sufficient
information. Moreover, model F1 increased the F1 score by +1.3% and +5.3% from the levels of
models F2 and F3, respectively. This means the boundary-relevant features provide critical informa-
tion to support relation extraction, and type information is highly useful in improving the relation
performance. In addition, models F1, F2 and F3 suffered a significant performance drop compared
with the combination of all features, indicating the insufficiency of solely relying on a single feature.
It can be concluded that the improvement over other models comes from the abundance of features.

4.8 Analysis of different boundary

To better understand the BDN performance, the influence of the start and end boundaries was
evaluated separately on relation extraction. As shown in Figure 3, the performance of start boundary
reached an F1 score of 75.29% and 88.74% on English corpus and Chinese corpus, respectively. The
results were 0.6% and 1.5% better than the F1 scores with end boundary on the two corpuses, respec-
tively. During the ablation experiment, the performance dropped deeply, but the performance of the
start boundary approached that of the end boundary. The result indicates that the two boundaries
have no significant difference in the impact on relation extraction. Both start boundary and end
boundary can flexibly support relation extraction in place of entities.

5 Conclusion
This paper presents a BDN model, which leverages the boundaries to predict relation labels. Our

model combines sequence labeling model with classification model to accurately classify relation in-
stances. Experimental results show that the BDN can effectively extract relations, and outperform
start-of-the-art baselines on ACE05 corpus. Through extensive analyses, the authors fully demon-
strated the superiority of our model in boundary detection, and validated the importance of using
boundary pairs as input and learning different representations from boundary-relevant information.
The future research will further reduce mistakes and make more meaningful comparisons in a unified
end-to-end evaluation setting.
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Figure 3: Influence of Different Boundary
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