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Abstract

The aim in this paper is experimentally to show that a predictive pulsed control law is able to
enlarge the stabilizing sampling periods of a networked control system (NCS) more than the classical
predictive ZOH-control law. Additionally, using a comparisson in the system response between the
predictive pulsed control law and the predictive ZOH-control law, it is obtained that the pulsed
control law requires less energy consumption to stabilize a NCS exposed to large time-delays. A
3-DOF Hover is used as case study.
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1 Introduction
Ideal control systems assume that flow of information is a continuous signal within a control loop.

However, whenever a control system is physically implemented, the flow of information becomes a
discontinuous signal due to presence both of the digital devices and the digital signal processing
time. Special case happens as a control system is implemented over a digital communication network,
case in that systems are called networked control system (NCS). In that case, digital devices and
digital communication networks can provide flexibility, modularity, and low cost to control system
implementation. However, this digital processing can also induce significant discontinuities in the flow
of information; of course, the discontinuities arise from lags during the information update. If update
is fast enough, then the discontinuous flow of information seems a continuous signal and the system
performance is not affected. Conversely, if lags increase then the system performance degrades or even
the system stability can be lost.

Two issues born here related to control theory: 1) the stability analysis of NCS, and 2) the
search of control strategies to deal with time-delays on NCS. On one hand, stability analysis has been
performed by three main approachs: the discrete approach, the time-delay system approach, and the
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impulsive system approach. Discrete approachs are the earliest and can be found for exmaple in [7].
The time-delay systems analysis can be found in [5, 6, 15]. And an impulsive system approach can
be found in [13, 14]. On the other hand, different to stability analysis, some control strategies have
appeared to deal with the loss of performance caused by large time-delays. These control strategies
not only propose an stability analysis but also improve the control systems performance. Within
these strategies, the most popular are predictive control techniques whose objective is to generate
a set of time-ahead control predictions to use as sampling as time-delays become large. Examples
of predictive control strategies can be found in [1, 9, 12, 19]. Otherwise, in the same line of control
strategies, there is a little known strategy called the pulsed control law which has shown to improve the
performance and even recover the stability of control systems exposed to large time-delays. Different
from the standard way of applying the control law as a zero-order-hold (ZOH), where control signal
is maintained constant between sampling times, the pulsed control law consists of maintaining the
control signal constant for some period of time and then put in back till the next sampling time. In
general, the novelty of the pulsed control law relies on the enlargement of the stabilizing sampling
period region of the NCS without the need of redesigning a new control law. This result has been
reported in [2, 3, 10, 11, 17], and a dynamic proof and explanation about this phenomenon is presented
in [4].

It should be stressed that the ZOH-control law has played a major role in predictive strategies.
In a different way, in this work the power both of a predictive strategy and a pulsed control law are
merged to improve the NCS performance under a proposed configuration. The NCS configuration used
in this paper consists of adding a predictor in the control loop and send one-step ahead predictions to
the controller for computing the control algorithm. Once the control law packet reach the actuators,
one can decide if the pulsed control law or the ZOH-control law is applied. To these ways of applying
the control law to the system, we have called them the predictive pulsed control law or the predictive
ZOH-control law respectively. Our intention in this paper is to compare the system response beetwen
the predictive pulsed control law and the predictive ZOH-control law as long as the NCS is exposed
to random large time-delays. Two results are obtained: 1) it is shown that the predictive pulsed
control law is able to preserve the NCS stability for larger time-delays more than the predictive ZOH-
control law, and 2) for large sampling periods the predictive pulsed control law requires less energy
consumption than the ZOH-control law for the NCS stabilization.

Outline of the paper is as follows. Section 2 describes details and assumptions of the proposed NCS
reconfiguration, and a complete system model is obtained. In Section 3, the stability of the complete
system model is discussed. In Section 4, the model of a 3-DOF Hover is introduced, and in Section 5
the comparison of the system response between the predictive pulsed control law and the predictive
ZOH-control law is presented. Finally, conclusions are said in Section 6.

Notation. We use k to denote the time-stamp of packets considering that k ∈ Z+ and {k} is an
ordered sequence. Identity matrix in Rn×n is denoted by I. P > 0 denotes a symmetric and positive
definite matrix P ∈ Rn×n. Symbol “ ′ ” stands for matrix transposition. N(χ|χ̄, P ) denotes a normal
probability function of the random variable χ, with mean χ̄ and covariance matrix P .

2 System description
The block diagram of the used NCS configuration is shown in Figure 1. This configuration considers

a continuous plant and assumes that samples are sent from the sampler as a packet with a time-stamp
k. Also, a predictor has been added after sampler with the aim of sending state predictions through the
network. Indeed, it is intended that the predictor compensates the effects of the network-time-delay
over the control system.

Two relevant times arise within the control loop: 1) the sampling instant sk where sensors pick up
measurements of the output system, and 2) the update control instant tk where the control signal is
updated due to stamped packet k. Some standard definitions are derived from these instants. Namely,
the sampling period Tk is defined as

Tk = sk+1 − sk, ∀ k, (1)
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Figure 1: NCS with a predictor.

the network-delay is defined as
ηk = tk − sk, ∀ k, (2)

and the time-delay is defined by

τ(t) = t− sk, tk ≤ t < tk+1. (3)

Under previous definitions, a linear system with constant matrices (A,B) is described by

ẋ(t) = Ax(t) +Bu(t), tk ≤ t < tk+1, (4)

where u(t) is the control law. Usually, u(t) is an algorithm based on measurements x(sk) taken from
the sampler. However, under configuration in Figure 1, u(t) is based on the predictor output. Thus,
the predictor output was denoted as x̂(sk+ηk) to emphasize that its output is an estimate of the state
x after ηk-seconds ahead to the sampling time sk. In consequence, for a given state feedback matrix
K, the control law given by

u(t) = Kx̂(sk + ηk), tk ≤ t < tk+1, (5)

is defined as the predictive ZOH-control law, and the control law given by

u(t) =
{
Kx̂(sk + ηk), if tk ≤ t < tk + h,

0, if tk + h ≤ t < tk+1,
(6)

is defined as the predictive pulsed control law for 0 < h < (tk+1 − tk). Thus, our aim in the following
is to compare both control laws (5) and (6) as long as network-delays ηk becomes larges and the
stabilizing state feedback matrix K is the same.

2.1 Assumptions

In general, in NCS the communication channels are not perfect and the flow of information is always
exposed to random time-delays and packet losses. However, in order to deal with the randomness of
the network-delay, it is assumed that the following three assumptions hold:

Assumption 1. The state feedback matrix K asymptotically stabilizes the system (4) without time-
delays, i.e. the matrix A+BK is a Hurwitz matrix.

Assumption 2 (Gaussian randomness). The network-delay ηk is considered to be an uncorrelated
random variable with an statistical behavior described by

ηk ∼ N(ηk|η̄, σ2)

where N(ηk|η̄, σ2) denotes a normal probability function with mean η̄ and covariance σ2.

Assumption 3 (Zero packet losses). There are no packet losses in the network, and the sampling
instant sk+1 is triggered by the control update instant tk, i.e.

sk+1 = tk ∀k. (7)
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Figure 2: Sampling periods are equal to the network-delays by Assumption 3.

Remark 2.1. It must be stressed that Assumption 3 implies that ηk = Tk for every k, i.e. the k-th
network-delay is equal to the k-th sampling period (see Figure 2). Furthermore, notice that ηk = Tk
does not imply neither Tk = Tk+1 nor ηk = ηk+1 for every k. Later could be only possible in probability
sense due to the statistical behavior of ηk (Assumption 2). Therefore, by Assumption 3 we have that

sup
tk≤t<tk+1

τ(t) = Tk + ηk+1 = Tk + Tk+1. (8)

This is the maximum time-delay experienced by the system (4).

2.2 Modelling

In order to implement and get a complete model of the NCS with the configuration in Figure
1, both an appropiate system model and a prediction model are needed. Notice that two complete
models must exists, one for the predictive ZOH-control law and other one for the predictive pulsed
control law. Assumptions 1-3 were used to deduce these models.

2.2.1 The system model

Let η̄ = T be the mean sampling period of the random variable ηk. Hence, thanks to Assumption
3, we can solve the differential equation (4) for the mean sampling period T at times tk to get the
discrete model {

x(k + 1) = Āx(k) + B̄σu(k) + q(k)
y(k) = Cx(k) + r(k), (9)

where q(k) and r(k) are additive, uncorrelated and zero-mean noise quantities generated by the η(k)-
randomness and sensor measurements respectively such that

q(k) ∼ N(q(k)|0, Q), r(k) ∼ N(r(k)|0, R). (10)

Notice that q(k) represents the uncertainty at solving the differential equation (4) because of the
presence of the digital network.

A code variable σ was added to distinguish between the system model generated by the control
law used: fixing σ = 1 denotes the solution to the system (4) using the predictive ZOH-control law
(5), and fixing σ = 2 denotes the solution to the system (4) using the predictive pulsed control law
(6). Namely,

Ā = eAT , B̄1 =
∫ T

0
eAsds, B̄2 =

∫ h

0
eA(T−s)ds, C = I. (11)

2.2.2 Prediction model

To build the prediction model, it was used the Bayesian approach addressed in [18] to predict
the one-step-ahead state of the system x̂(k + 1) at time-step k. Under this approach, three models
are needed: the probabilistic system model p(x(k + 1)|x(k)), the probabilistic measurement model
p(y(k)|x(k)), and the solution to the Kolmogorov equation

p(x(k + 1)|y(k)) =
∫
p(x(k + 1)|x(k))p(x(k)|y(k))dx(k). (12)

From (9) and (10), we have that

p(x(k + 1)|x(k)) = N(x(k + 1)|Āx(k) + B̄σu(k), Q), (13)
p(y(k)|x(k)) = N(y(k)|Cx(k), R). (14)
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Hence, by [18], using (13) and (14), the solution to (12) at every k-step, is given by a recursive
computation of update and prediction. Update is given by

p(x(k)|y(k)) = N(x(k)|x̂+(k), P+
k )

with

x̂+(k) = x̂(k) + PkC
′(CPKC ′ +R)−1(y(k)− Cx̂(k)) (15)

P+
k = Pk − PkC ′(CPKC ′ +R)−1CPk , (16)

and prediction is given by

p(x(k + 1)|y(k)) =
∫
p(x(k + 1)|x(k))p(x(k)|y(k))dx(k)

= N(x(k + 1)|x̂(k + 1), Pk+1) (17)

where

x̂(k + 1) = Āx̂+(k) + B̄σu(k) (18)
Pk+1 = ĀP+

k Ā
′ +Q. (19)

Equations (15)-(16) and (18)-(19) form jointly the prediction model.

2.2.3 The complete system model

Defining
Fk = PkC

′(CPkC ′ +R)−1,

and replacing (15) in (18), we get that the predicted state is given by

x̂(k + 1) = (Ā− ĀFkC)x̂(k) + B̄σu(k) + ĀFky(k). (20)

Then, using (20) and the system model (9), we have that the prediction error defined as x̃(k + 1) =
x(k + 1)− x̂(k + 1) is given by

x̃(k + 1) = (Ā− ĀFkC)x̃(k)− ĀFkr(k) + q(k). (21)

On the other hand, the system model can be rewritten as

x(k + 1) = Āx(k) + B̄σ(Kx̂(k)−Kx(k) +Kx(k)) + q(k)
= (Ā+ B̄σK)x(k)− B̄σKx̃(k) + q(k). (22)

Hence, using (21) and (22), the complete system model results in[
x(k + 1)
x̃(k + 1)

]
=

[
Ā+ B̄σK −B̄σK

0 Ā− ĀFkC

] [
x(k)
x̃(k)

]
+

[
q(k)

q(k)− ĀFkr(k)

]
. (23)

Previous model is the complete system model related to the NCS in Figure 1. Recall that σ stands
for the control law used, the predictive ZOH-control law (σ = 1) or the predictive pulsed control law
(σ = 2).

3 Stability
To analyze the stability of the model (23), notice that if we take its expected value, then by the

separation principle, the system stability is guaranteed iff (Ā + B̄σK) and (Ā − ĀFkC) are Schur
matrices. This type of stability is commonly known as stability in mean []. Thus, for getting stability
in mean we have to ensure that (Ā+ B̄σK) and (Ā− ĀFkC) are Schur matrices. We focus on these
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points. On one hand, since we are assuming that (A+BK) is a Hurwitz matrix (Assumption 1), then
the matrix (Ā + B̄σK) must be Schur for small sampling periods T . On the other hand, the Schur
property of (Ā − ĀFkC) is guaranteed if the covariance matrix Pk converges to some matrix P > 0.
To study this convergence, it is replaced (16) in (19) for getting

Pk+1 = ĀPkĀ
′ − ĀPkC ′(CPkC ′ +R)−1CPkĀ

′ +Q. (24)

Previous equation is the recursive Riccati equation, and it is known to be convergent to P > 0 as
k →∞ if either of the following conditions holds

(i) The pair (A,C) is observable provided R > 0 [8].

(ii) The pair (A,C) is detectable and the pair (A,Q
1
2 ) is stabilizable [16].

Thus whereas either of the later requirements hold, the matrix Ā− ĀFkC will be Schur.
Summarizing, we can establish the following

• Small smapling periods T ensures Ā+ B̄K is Shcur.

• Either condition (i) or condition (ii) ensures Ā− ĀFkC is Schur.

In the following, specially in testing, we select matrices A,B,K,C,R such that the Schur property of
the matrices Ā+ B̄K and Ā− ĀFkC is guaranteed for small sampling periods.

4 Case study
To achieve our goals, a 3-DOF Hover system distributed by Quanser company was used as case

study (see Figure 3). In general, the dynamic of this system is non-linear, however if the Hover is
operated under certain conditions, then the Hover dynamic can be considered as linear.

Figure 3: Quanser 3-DOF Hover.

The built-in controller provided by Quanser allows us to regulate the system orientation by con-
trolling the yaw (ψ), pitch (θ), and roll (φ) angles of the Hover. The linear dynamic is achieved by
regulating the ψ-position under θ = φ = 0. Thus, under θ = φ = 0, the continuous system model is{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) (25)
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where x(t) = [ψ θ φ ψ̇ θ̇ φ̇]′, and

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −0.0001 0 0
0 0 0 0 −0.0002 0
0 0 0 0 0 −0.0002

 ,

B =


0 0 0 0
0 0 0 0
0 0 0 0

−0.0326 −0.0326 0.0326 0.0326
0.4235 −0.4235 0 0

0 0 0.4235 −0.4235

 ,

K = −


−55.90 66.14 0.00 −20.70 18.11 0.00
−55.90 −66.14 −0.00 −20.70 −18.11 −0.00
55.90 0.00 66.14 20.70 0.00 18.11
55.90 −0.00 −66.14 20.70 −0.00 −18.11


C = I.

Now, from previous matrices and for a fixed value of T , the complete system model (23) is obtained
by computing the system model (9) and the prediction model given by equations (15)-(16) and (18)-
(19).

Hence, using the matrices (A,B,C) of the 3-DOF Hover, the system model (9) is formed by
computing the matrices Ā and B̄σ through (11), and the prediction model is formed using the previous
matrices Ā, B̄σ, C and the following covariance matrices

Q =



0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.01 0 0 0
0 0 0 0.01 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01



R =



0.289 0 0 0 0 0
0 0.289 0 0 0 0
0 0 0.289 0 0 0
0 0 0 0.029 0 0
0 0 0 0 0.029 0
0 0 0 0 0 0.029


× 10−6

P0 = I. (26)

It is stressed that there are two complete system models, one induced by the predictive ZOH-
control law (σ = 1) and other one induced by the predictive pulsed control law (σ = 2). Our task in
the next section, is to compare the system response between these models (σ = 1 and σ = 2) as the
mean sampling period η̄ = T increases.

Remark 4.1. From the matrices in (25) and (26), hand calculations show that A+BK is a Hurwitz
matrix, Q and R are positive definite matrices, and the pair (A,C) is observable. As a result, the
matrices Ā+ B̄K and Ā− ĀFkC are Schur matrices and then the 3-DOF Hover under configuration
in Figure 1 must be stable for small sampling periods.

5 Results
The tests consisted of setting up the 3-DOF Hover as in Figure 1, and compare the system per-

formance between the predictive ZOH-control law (5) and the predictive pulsed control law (6). As
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performance measures, we select the standard energy of the error signal (ESE) and the control signal
energy (CSE) defined as

ESE =
∫ t

0
e′(s)e(s)ds

with e(t) = x(t)− xq, where xq is the dessired equilibrium point, and

CSE =
∫ t

0
u′(s)u(s)ds. (27)

Our control routine consisted of switching the desired equilibrium point xq between two positions,
xq1 = [0 0 0 0 0 0]′ and xq2 = [30◦ 0 0 0 0 0]′, and compare the measures of ESE and CSE as the predictive
pulsed control law or the predictive ZOH-control law is used. This routine was repeated for several
mean sampling periods, namely T = 10[ms], 20[ms], 40[ms], 60[ms], 100[ms].

For getting a comparison of the system response between the predictive ZOH-control law and the
predictive pulsed control law, we have plot the system state x, the predicted state x̂, and the measures
of ESE and CSE for each control law: Figure 4 shows the results obtained by using the predictive ZOH-
control law and Figure 5 shows the results obtained by using the predictive pulsed control law for a
mean sampling period T = 40[ms]. Figure 6 and 7 show the results using the predictive ZOH-control
law and the pulsed control law respectively, as the mean sampling period is T = 60[ms]. Finally, the
same routine under T = 100[ms] was done; Figures 8 and 9 show its results.
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Figure 4: Test under the predictive ZOH-control
law and T = 40[ms].
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Figure 5: Test under the predictive pulsed con-
trol law and T = 40[ms].

During previous testing, it was observed that the predictive ZOH-control law preserves the system
stability only as the sampling period T is in the region 0 ≤ T < 60[ms]. On the other hand, as
Figure 9 shows, the predictive pulsed control law remains the system stability for sampling periods
T greater than 60[ms], actually until T = 100[ms]. For summarizing results, Table 1 collects the
maximum values of ESE and CSE for each sampling period T and control law used. Figure 10 depicts
these maximum ESE’s as a function of the sampling periods T for each control law. From Figure 10,
we see that for small sampling periods, the predictive pulsed control law requires more energy than
the predictive ZOH control law to stabilize the NCS. However, as sampling period T increases, the
energy consumption is larger using the predictive ZOH control law than using the pulsed control law.
Even, the predictive pulsed control law maintains the NCS stability for larger sampling periods than
the predictive ZOH-control law as Figures 8 and 9 depict.
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Figure 6: Test under the predictive ZOH-control
law and T = 60[ms].
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Figure 7: Test under the predictive pulsed control
law and T = 60[ms].
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Figure 8: Test under the predictive ZOH-control
law and T = 100[ms]. The systems is unstable.
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Figure 9: Test under the predictive pulsed control
law and T = 100[ms].

Table 1: ESE and CSE comparison between the predictive ZOH-control law and the predictive pulsed
control law.

T = 10[ms] T = 20[ms] T = 40[ms] T = 60[ms] T = 100[ms]
ZOH Pulsed ZOH Pulsed ZOH Pulsed ZOH Pulsed ZOH Pulsed

ESE 2461.6 - 2449.1 - 2451.1 2510.4 2630.7 2613.4 – 2844.1
CSE 351.12 - 348.68 - 383.43 466.13 740.06 587.00 – 666.65



https://doi.org/10.15837/ijccc.2020.6.4052 10

0 20 40 60 80 100

T [ms]

300

350

400

450

500

550

600

650

700

750

800

T
o
ta

l 
C

S
E

Pulsed law

ZOH law

Figure 10: Total energy consumptions for both the predictive pulsed control law and the predictive
ZOH-control law.

6 Conclusions
Previous works related to the pulsed control law have reported that the stabilizing sampling period

region of NCS is enlarged as it is used. This paper has shown that the pulsed control law keeps its
effectiveness even if random network-delays are present in the control loop, and this control law works
fine along with the classical theory about bayesian predictors.

Furthermore, one interesting result in the paper is that for large sampling periods, referring us
to the system energy consumption, the system stabilization using the pulsed control law is not as
hard as using the ZOH-control law. In this sense, our results can be summarized saying that the
ZOH-control law is convenient as sampling is small, but the pulsed control law is more convenient as
sampling is large. The reasons of later is because of the following reasons: 1) whenever there are large
time-delays, the pulsed control law stabilizes the system to a lower energy cost than the ZOH-control
law, and 2) the pulsed control law is able to preserve the system stability for larger time-delays than
the ZOH-control law. Previous results can be so useful in NCS where control systems are exposed to
large time-delays. For instead, if a communication network is not busy, the predictive ZOH-control law
can be used, but if there is congestion or a fault in communication channels and time-delays becomes
large, then the predictive pulsed control law can be applied with better benefits than the predictive
ZOH-control law.

Finally, it is worth of mention that a strong assumption in our work is the zero packet losses
in communication channels. Rarely communication networks exhibit zero packet losses. However,
there are communication protocols (particularly protocols focused on automation control systems as
Profibus) which guarantee that every message reach its destiny performing retransmissions to ensure
reliable messaging as TCP/IP. This enables our work.
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