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Abstract

In this article, we model a variant of the well-known syndrome decoding problem as a linear
optimization problem. Most common algorithms used for solving optimization problems, e.g. the
simplex algorithm, fail to find a valid solution for the syndrome decoding problem over a finite field.
However, our simulations prove that a slightly modified version of the syndrome decoding problem
can be solved by the simplex algorithm. More precisely, the algorithm returns a valid error vector
when the syndrome vector is an integer vector, i.e.,the matrix-vector multiplication, is realized over
Z, instead of F,.
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1 Introduction

In 1978, the Coset Weight Problem (CWP) and the Subspace Weight Problem (SWP), usually
known by the name of Syndrome Decoding Problem (SDP), have been proven to be N'P-complete for
random binary codes by Berlekamp, McEliece and van Tilborg [6]. The hardness of those two problems
is central in code-based cryptography. In fact, the security of certain cryptographic applications like
the public-key cryptosystems of McEliece [32] and Niederreiter [39] relies directly on the difficulty of
solving an instance of SDP. The idea of McEliece had a great succes in the code-based cryptographic
community, as a plethora of variants were proposed. Mainly aiming to reduce the key size as well as
to have tight security reductions, these variantions consisted in changing the private code or adding
additional structure. In Table 1 we present a non-exhaustive list of candidates with references, as well
as existing/possible attacks. SDP is not only present in public-key encryptiion schemes (PKE), it is
also a key ingredient for code-based hash functions [1], as well as code-based signature schemes [12].

Table 1: McEliece variants and structural attacks

Code family PKE scheme  Attacks Variants on  Attacks on | Wieschebrink’s Attacks on Weak keys
sub-codes sub-codes technique Wieshbrink’s tch.
Goppa 32 [30]
GRS 39 [48] [5] [51, 52] [50] [13]
Reed-Muller [47] (11, 33] [23] [40]
Concatenated [44] [45]
Algebraic Geometry [25] [14, 20, 48] [14] [14]
LDPC (36] (36]
QC-LDPC 2] [41]
Wild Goppa [7, 8 (15, 16]
Srivastava 42 19
Convolutional 31 28
MDPC 34 37 [17] [4]
Polar 46 (3, 18] [24]

Integer Linear Programming (ILP) has been widely used in the literature to reformulate and
solve various economic, logistic, computer science and many more real life problems [22, 43, 49].
It was also used in cryptographic context, mainly for the study of stream ciphers. In [38] Mixed
Integer Linear Programming (MILP) is used to prove security bounds against both differential and
linear cryptanalysis. The authors in [38] implement MILP-based methods to obtain practical results
for Enocoro-128v2, as well as for calculating the number of active S-boxes for AES. In [9, 10] the
authors illustrate how MILP can be used in the case of the Trivium stream cipher, and the lightweight
block cipher Ktantan. For doing so, the authors in [10] reformulate a non-linear multivariate Boolean
equation system into a MILP problem and use the CPLEX solver to find a solution.

Algorithms for solving ILP problems (ILPP) have been developed for more than 40 years. The
well-known book in Discrete Optimizations by [26] offer a detailed view of the major techniques,
e.g., polyhedral or cutting-planes methods, Chvatal-Gomory cuts, lattice basis reductions, and many
others. Even though ILPPs with binary constrains are NP-hard in general [27], there are several
particular instances which are solvable in polynomial time, such as totally uni-modular matrices [35],
or fixed number of variables [29]. For a recent review on the evolution of ILPPs see [21]. We will see
that in our case the ILPP does not fall in any of these cases. However, we obtain practical results
that point out to a polynomial time complexity.

Our contribution We show, in this article, that if the SDP is modified, it becomes in practice
much easier to solve. Our main contribution is to formalise a modified variant of the SDP into an
ILPP. Our strategy is the following. We take the original SDP and replace the multiplication in Fy
by the usual integer multiplication. Hence, the syndrome vector is no longer a binary vector, but
an integer vector. Furthermore, we will formalise this modified SDP as an ILPP and prove that if
there is an unique vector &* solution to the ILPP, satisfying the Hamming weight condition in the
SDP, then x* is the optimum solution of the ILPP. Hence, to find the error vector, solution to the
SDP, one needs to solve the ILPP and output x*. We test our method in Maple software using two
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functions: simplex and LPSolve. Our simulations point out that the modified SDP is always solvable
by the corresponding ILPP. Moreover, the empirical performance of the LP solvers points out to a
polynomial-time algorithm.

The article is organized as follows. In Section 2, we introduce a short technical background from
coding theory necessary for the rest of the article. Section 3 gives a brief description of the ILPP.
In the same section we describe the modified SDP as an ILPP. In Section 4, we propose a series of
simulations to sustain the efficiency of this method.

2 Syndrome decoding problem

Throughout this article, F, denotes the finite field with ¢ elements, My, ,, (F) denotes the set of
k x n matrices over a field F. An [n, k] linear code & over Fym is a linear subspace of dimension k of
the vector space Fym. Any element in ¢ is called a codeword. A generator matriz for a [n, k] linear
code is a k x n matrix (often denoted by G) whose rows form a basis for the code. The dual of €,
denoted by €, is the linear code which consists of all vectors y € Fym such that Ve € € y- c’' =o0.
A parity-check matriz of € is a generator matrix of its dual. It is also an (n — k) x n matrix H of full
rank that satisfies He! = 0 for all ¢ € €. The Hamming distance between two vectors is the number
of coordinates on which they differ. This distance induces a norm known as the Hamming weight wt.
One of the main attributes of an error-correcting code, exploited by any code-based cryptosystem,
is the decoding capability of a code ¥. A decoding function of a code ¥ takes as input any vector
y from the ambient space and outputs the most likely codeword ¢ € %, i.e., the ¢ that maximizes
the probability of receiving y given that ¢ was sent over the communication channel. The majority
of the code-based schemes use the Binary Symmetric Channel framework. In this case, the decoding
problem can be solved by the well-known closest vector problem. One possible solution is the SDP.

Definition 1 (Decisional SDP).
Instance: A full rank matriz H € M,,_y,, (F2), a vector s € Fy~F
and an integer w > 0.
Question: Is there a vector x € Iy of weight < w, such that Hx = s?

This problem can be defined over any finite extension field. However, the most common one is
over [Fy.

3 Modified syndrome decoding problem

3.1 Integer Linear Programming

Any ILPP can be written either in canonical form or in standard form.

Definition 2 (ILPP). Let n,m be two positive integers. Let ¢ € Z™", b € 7™, s € Z™ and A €
M (Z). Define

e the canonical form of an ILPP
max{c'z|Ax < b,z € Z",x > 0}; (1)

e the standard form of an ILPP
max{c'z|Ax +d=0b,x,d € Z",x >0,d > 0}. (2)

Notice that in the standard form the vector d can be seen as a quantification of the difference
between Ax and b, compared to the canonical form. Indeed, in the canonical form, b — Ax might be
equal to any positive vector, where as in the standard form this vector is fixed and given. Any vector «
satisfying Ax < b is called a feasible solution. If a feasible solution x* satisfies the maximum condition
in (1) then * is optimal. A particular ILPP, that we will consider here, is when equality holds in
Equation (1), i.e., Az = b, which is equivalent to the standard form (2) with d = 0. Considering the
dual problem, we have:
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Definition 3 (Primal-Dual ILPP). Let n,m be two positive integers and ¢ € Z™,b € 2™, s € ™ and
A € My, (Z). Define the primal ILPP as

max{c'z|Ax = b,z € Z",z > 0}. (3)
Then the dual problem of (3) is defined as

min{b'z|A'z = c,x € Z",x > 0}. (4)

3.2 The modified syndrome decoding problem
We define the Modified SDP over Z as:

Definition 4 (Z-MSDP).
Instance: H € M,y (Z) with h;j € {0,1} for all i,j
a vector s € Z" % and an integer w > 0.
Question: Is there a vector x € {0,1}" with wt(x) <w, s.t. Hx = s?

Remark 3.1. The difference between SDP and Z-MSDP is that the matriz-vector multiplication is
no longer performed in Fy, but in Z. This is why the syndrome vector now has entries in Z instead of
Fs.

In the rest of article we restrict our analysis to the case where wt(x) = w. We also suppose that the
Z-MSDP has a solution, i.e., the syndrome vector s was not generated at random, but was obtained
as a valid instance of the matrix-vector multiplication.

Theorem 1. Let us suppose that there exists a unique vector x* € {0,1}"™ with wt(x*) = w, solution
to the Z-MSDP. Then x* is the optimum solution of an ILPP.

Proof. Suppose that such an «* exists and is unique, i.e., Hz* = s with s € Z" % and wt(x*) = w. We
will construct an ILPP for which z* is the optimum solution. For that, we simply set A’ = H,c = s,

and b' = (1,...,1) in (4). Since @ € {0,1}" wt(x) = > x; = (1,...,1) - @, but this is equal to b'z*.
i=1

The ILPP we need to solve can now be defined

min{b'z|A'z = ¢,z € {0,1}"}. (5)
This implies that x* is a feasible solution to (5), and as &* is the unique vector satisfying Alz* = ¢
with wt(z*) < w, * is optimum for the minimum weight condition. O

Remark 3.2. The condition from (5), more ezxactly € {0,1}", could possibly be replaced with the
more general x € Z™. In this case, Theorem 1 still holds as long as there is no other integer feasible
solution ' € Z™ with (1,...,1) - &' <w.

4 Simulations

We simulated the algorithm that solves the Z-MSDP on a regular laptop with the Linux operating
system running on a 2-core processor at 2.60 gigahertz. We are running our script using the Maple
software and its optimization packages, more precisely, the simplex minimize and LPSolve functions.

Remark 4.1. Throughout our simulations we noticed that, in nearly all the cases, the LPSolve func-
tion was much faster than the simplez function. That is why we will describe and discuss our variant
of the algorithm that uses the LPSolwve function.

Our script is composed of two steps, the Generation function and the Solve function.
The Generation function takes as input the integers n, k, w and outputs an error vector e of weight
w and an integer syndrome vector s.



https://doi.org/10.15837 /ijccc.2020.5.3920 5

1. Firstly, it generates a random binary matrix of length n and dimension £ using the RandomMatrix
function and it checks that all rows/columns are pairwise distinct;

2. Secondly, it generates a random binary vector of fixed Hamming weight w ;

3. Thirdly, it computes the corresponding integer syndrome s.

The Solve step takes as input the matrix and the syndrome and outputs the estimated error.
1. Firstly, it creates the system using the binary matrix and the syndrome s;
2. Secondly, it defines the constraints on the solution, i.e., Hamming weight is minimized;

3. Thirdly, it calls the LPSolve function with the aforementioned parameters. The output of the
LPSolve function is a vector of rational numbers and the corresponding Hamming weight.

4. There is also a verification step, where we check the equality of the two vectors, i.e., between
the e and the output vector of the Solve function.

We conducted two types of experiments, i.e., verification and performance. The first type of sim-
ulations were done to check the correctness of the solution. More exactly, we counted how many
verification steps were successful for a given number N of trials. Our results showed that with prob-
ability 1 the LPSolve function recovers the exact error vector. The experiments were conducted for
values of n up to 200 and k < 5. We repeated each experiment for 10000 different vectors for a fixed
matrix, and repeat this for 1000 random binary matrices.

Remark 4.2. We noticed that our algorithm retrieved the correct error vector for any value of w.
This fact implies that for some given binary matrix H and integer vector s there is only one binary
solution, and on top of that it has the minimum Hamming weight.

Moreover, even when the condition on x to be binary was relaxed to x € Z", the solution to
the problem found by our algorithm was the binary one. In other words, for the given matriz and
syndrome, there were no feasible integer solutions satisfying (1,...,1) - x = w.

If we slightly modified one of the components of the syndrome s, i.e., the new syndrome s* =

¢
s+ (0, ...,0,€5,0,. .. ,O) , and apply the Solve function to the initial matrix and s*, we noticed two
different cases:

e when €; > 0 the algorithm finds a solution, which is a rational vector different from e;

e when ¢; < 0 the algorithm does not find a solution with Hamming weight < w.

Table 2: Timings (in seconds) for the LPSolve function for two types of parameters. On the left hand
side for k = n/2 and on the right hand side for k£ = %. Also two different types of values for w, w = \/n
(upper part of the table) and w = logy(n) (lower part of the table).

| k| n | w/n |Timings[s] | & | n | w/n [ Timings[s] |
250 500 0.044 1.74 167 500 0.044 1.03
500 1000 0.031 16.92 333 1000 0.031 9.65
750 1500 | 0.025 63.8 500 1500 | 0.025 34.38
250 500 0.017 1.72 167 500 0.017 0.98
500 1000 0.010 16.24 333 1000 0.010 8.34
750 1500 0.007 63.41 500 1500 0.007 34.14

The second type of simulations were evaluating the performance of the algorithm. The LPSolve
function performed extremely well for small values of n, e.g., for n = 100 and k = 50 it took less than
25 milliseconds to find the solution for any w < n/3. For n = 200 and k = 100 it took less than 0.1
second for any w < /n.

For large values of n, we illustrate in Table 2 the performance of the LPSolve function. It is worth
noting that for n = 1500,k < n/2 and w < \/n we need less than 60 seconds to find the solution.
Also, we can observe that from k& = n/2 to k = n/3 the timings are almost divided by 2.
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5 Conclusion and Perspectives

We have shown in this article that, using linear programming, we can efficiently solve a modified
version of the syndrome decoding problem (the Z—MSDP). Our simulations reveal interesting prop-
erties, that we intend to investigate in the near future from a theoretical point of view. Among the
most significant ones, we mentioned the uniqueness of the binary solution, even under less restrictive
conditions, and the fact that the observed work factor of the algorithm was polynomial (more precisely
cubic in the parameters). It would be interesting to see if other modifications of other similar hard
problems can be solved more efficiently using linear programming.
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