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Abstract

Interval-valued time series (ITS) is a collection of interval-valued data whose entires are ordered
by time. The modeling of ITS is an ongoing issue pursued by many researchers. There are diverse
ITS models showing better performance. This paper proposes a new ITS model using possibility
measure-based encoding-decoding mechanism involved in fuzzy theory. The proposed model con-
sists of four modules, say, linguistic variable generation module, encoding module, inference module
and decoding module. The linguistic variable generation module can provide a series of linguistic
variables expressed in fuzzy sets used to described dynamic characteristics of ITS. The encoding
module encodes I'TS into some embedding vectors with semantics with the aid of possibility measure
and linguistic variables formed by linguistic variable generation module. The inference module uses
artificial neural network to capture relationship implied in those embedding vectors with semantic.
The decoding module decodes for the outputs of the inference module to produce the output of lin-
guistic and interval formats by using the possibility measure-based encoding-decoding mechanism.
In comparison with existing I'TS models, the proposed model can not only produce the output of

linguistic format, but also exhibit better numeric performance.

Keywords: interval-valued time series, granular computing, information granules, fuzzy sets,

possibility measure.
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1 Introductory comments

Interval-valued time series (ITS) is a collection of interval-valued data whose elements are ordered
by time, where time can be replaced by any other variable of some physical meaning. In general,
ITS is denoted as X = {X; = [zf,2V]|zF < 2V;al 2V € Rit = 1,2,---  k}, where X; = [2F,2V]
is an interval number, 27 and z¥ represent the lower and upper bounds of the observed variable X
at time t, respectively. I'TS coming with interval format can depict the uncertainty and variability of
variables, which has been applied into many fields such as finance, energy, environment, agriculture
etc. As a description of temporal relationships in interval format, the modeling of ITS is an ongoing
topic pursued by many researchers. There are diverse methods devoted to develop ITS models. These
methods fall with the following three classes.

The first class is the statistical theory-based methods. In general, this class of methods exploits
some existing statistic modeling methods to develop I'TS model. When using this class of methods to

U L
model, ITS is first decomposed to the interval mid-point series M = {M; = %\t =1,2,--- ,k}

and the interval radius series R = {R; = #\t =1,2,---,k} by calculating respectively interval
mid-points and interval radius. Subsequently, some classic statistical modeling methods [15] like
autoregressive (AR), autoregressive moving average (ARMA), and exponential smoothing etc. are
invoked to make these two time series model, respectively. As a result, two numeric models concerning
those two time series are produced, which are regarded as a whole and become the model of the ITS.
When the ITS model is used to carry out prediction, the interval mid-point and interval radius that
deliver by the model are recombined to form the lower and upper boundaries of predictive interval,
say, igj = M; + R; and i’tL = M; — R;, where @gj and :fvtL are the predictive upper lower boundaries.
Along this idea, Maia et al. [9] presented AR model and ARMA model of ITS, where these two
ITS models are denoted as AR! and ARMA!, respectively. Maia and de Carvalho [10] extended the
Holt’s exponential smoothing method [7] encountered frequently in numeric time series to make ITS
model. The resulting model is termed as the interval Holt model (Holtl). By extending the asymptotic
distribution theory [6] to deal with interval-valued data, Sun and Han et al. [16] presented an interval-
valued threshold autoregressive models (iTAR) for ITS. Wang and Song et al. [19] develop a granular
model to compensate piecewise the residual error of iTAR model for enhancing further its performance.

The second class is the blackbox model-based methods, where the blackbox model could be artificial
neural network (ANN) [5] or multi-output support vector regression (MSVR) [18]. This class of
methods first organize ITS into a series of input-output pairs in the form {(zF |,V |, zF 5,2V o, -+,
zk 2V ) (zF, 2L)}, where d is a delay factor. Then the architecture of blackbox are determined in
terms of those input-output pairs, and the corresponding parameters are learned in supervised manner.
In such way, the blackbox model for ITS is finally produced. Bearing this in mind, Maia et al. [9]
proposed the ANN-based ITS model, named as ANN!, where two independent ANNs are used to fit the
interval mid-point series M and interval radius series R. Maia and de Carvalho [10] also proposed the
multilayer perceptrons (MLP)-based ITS model, which is named as ANN™. Here the MLP includes
2d inputs and two outputs. Xiong et al. [20] also developed the ANN-based ITS model by considering
the interval numbers as the complex numbers and making use of the fully complex-valued radial basis
function neural networks [17]. Similarly, Xiong and Bao et al. [21] also proposed the MSVR model
of ITS (which is named as MSVR!), where MSVR is used to fit the input-output pairs produced by
ITS and the corresponding parameters are learned by firefly algorithm [23]. Since the blackbox model
like ANN or support vector regression (SVR) etc. has the well ability to approximate any nonlinear
function, this class of methods can deal with the non-stationary and nonlinear problems encountered
in ITS.

The last class is the hybrid methods that combine with the above-mentioned two class of ones. Maia
et al. [9] combines the above ARIMA! and ANN' models into the hybrid model ARIMA! — ANN™.
Maia and de Carvalho [10] integrates the above Holt! and ANN!M models into the hybrid model
Holt! = ANN. Xiong and Li et al. [22] also designed a hybrid model of ITS, named as Holt! - MSVR!,
by combining Holt! and MSVR! models. The ITS models established by the hybrid methods exhibit
better performance in comparison with the above two class of ones.

Albeit the above-mentioned statistical theory-, blackbox model-, and hybrid method-based ITS
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model have exhibited better performance in many fields, they exist also several evident limitations.
One is that the above-mentioned methods are all failed when ITS includes linguistic variables such as
“higher amplitude”, “low amplitude” and so on. Another is that most of the existing methods require
to decompose ITS into interval mid-point and interval radius time series, which increases additional
computation. In addition, the above methods do not consider the interpretability of output of ITS
model, which means that the output of I'TS models established by the above methods does not have
semantics. To reduce these limitations, Lu et al. [8] proposed the linguistic modeling framework of
ITS based on granular computing (GrC) [11]. In the framework, ITS are first regarded as information
granules expressed in some formalism and encoded by a predefined granular codebook. Then the
encoded results are delivered the multilayer perceptrons based granular inference system to carry out
causal inference. Finally, the inferred results are decoded by the predefined granular codebook to
produced the interval-valued output with linguistic landmark. In this framework, Zhou et al. [24]
proposed the granular model of ITS, where interval is regarded as an information granule expressed
in fuzzy set.

Inspired by GrC idea, in this study, a novel hybrid ITS model where the encoding-decoding scheme
based on possibility measure [3] is introduced into the above granular modeling framework of ITS is
proposed. The model is consisted of four modules. The first module is linguistic variable generation
module, which can produce some linguistic variables expressed in the form of fuzzy sets. These
linguistic variables depict characteristics of ITS. The second module is the encoding module, which
focuses on making ITS semantics. In this module, ITS is taken as a series of information granules
expressed in interval format, and is encoded into some embedding vectors with semantics in terms
of linguistic variables formed already in the first module by the possibility measure-based encoding
mechanism. Entries in the embedding vector is the value of possibility degree of the interval-valued
data versus individual linguistic variables. The third module is inference one in which ANN is exploited
to capture relations implying in those embedding vectors with semantics, and to perform causal
reasoning. The last module is the decoding one. It decodes for the reasoning results produced by
the inference module by means of two different types of possibility measure-based schemes to produce
different format of outputs. The proposed modeling method exhibits the following advantages.

e Possibility measure-based encoding-decoding mechanism is introduced into the modeling process
of ITS, which improves performance of the ensuing I'TS model.

e The proposed modeling method does not increase extra computational consumption since inter-
val number is regarded as a whole (an information granule) and participate into the subsequent
modeling process of I'TS.

e The proposed model can produce not only the output in linguistic format, but also the output
in interval format.

The paper is organized as follows. In Section 2, we introduce the possibility measure-based
encoding-decoding mechanism. Section 3 presents the proposed modeling method of I'TS in detail. Ex-
periments on several financial datasets from the real world are covered in Section 4. Some discussions
concerning the impact of the parameter involved in the proposed modeling method on performance of
corresponding I'TS model are also involved in this section. Section 5 provides some concludes.

2 Possibility measure-based interval encoding and decoding mech-
anisms

In this section, possibility measure is first recalled. In a sequel, the possibility measure-based
interval encoding and decoding mechanisms are detailed.
2.1 Possibility measure

The possibility measure [3] originates from possibility theory [4]. Possibility theory is an extension
of the theory of fuzzy sets and fuzzy logic [25], which is introduced to represent and operate uncertainty
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Figure 1: Calculations of possibility measure.

conveyed by natural language. In possibility theory, possibility measure is used to assess the similarity
between two fuzzy sets in the same universe of discourse.

Consider two fuzzy sets A and B in the universe of discourse U, their possibility measure is defined
as

A= Poss(4, B) = sup [min{y, (x). p, (2)}). (1)

where 11, and ., are membership functions of fuzzy sets A and B, respectively. The definition of above
possibility measure can also generalized by admitting any ¢-norm to replace the minimal operator. In
this case, the possibility measure can be rewritten as

A = Poss(A, B) = 21618 [A(x) t B(x)],

where the symbol ¢ stands for any ¢-norm. Computationally, the possibility measure Poss(A, B) can
quantify the optimistic degree of overlap between two fuzzy sets A and B. Specifically, the total of
n ordered probes with span d is first generated uniformly within the universe of discourse U. These
probes are expressed in the form prob; € U with ¢ = 1,2,--- ,n, where prob; < proby < --- < prob,
and prob; —prob;—1 =d (i = 2,3,--- ,n). Subsequently, for each of probes, we calculate the minimum
of membership degrees between it with respect to fuzzy sets A and B, say, min{ A(prob;), B(prob;)},
1=1,2,---,n. Finally, the value of possibility measure between fuzzy sets A and B can be determined
by picking up a highest one among those minimums. When the value of d trends to zero, the probability
measure in (1) can be solved accurately. Fig.la visualizes calculation of possibility measure between
fuzzy sets A and B. Furthermore, since interval can be regarded as a kind of degenerated fuzzy set,
the possibility measure between fuzzy set and interval can also be calculated in light of the above
process, see Fig.1b.

2.2 Possibility measure-based interval encoding-decoding mechanism

Using possibility measure-based encoding-decoding mechanism can realize reconstruction of inter-
val. In this subsection, we first formulate the problem of interval reconstruction, and then elaborate
on the realization of interval reconstruction by means of possibility measure-based encoding-decoding
mechanism.

Suppose that c¢ reference fuzzy sets in the universe of discourse U, denoted as A, As,--- , Ae,
and an interval B = [a, ] defined in U. The interval B can be encoded by means of reference fuzzy
sets in the form of possibility measure, which means that the interval B is encoded into a vector
(M, A2, -+, Ae), of which, \; (i =1,2,--- ,¢) is obtained by (1) with the aid of a series of probes. The
reconstruction problem of interval B is to estimate the lower bound a and upper bounds b of interval
B by making use of those well-defined reference fuzzy sets and values of possibility measure.

To address the above reconstruction problem of interval B, we resort to possibility measure-based
decoding mechanism that are already presented in the theory of possibility theory [1, 12]. In light of
the decoding mechanism, the method of reconstructing interval B = [a, b] is detailed as follows, where
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the key of reconstruction of interval is to estimate the upper bounds of values of the eigenfunction of
interval over the entire universe of discourse.

Specifically, the total of n ordered probes with span d are first generated uniformly in U, say,
proby, proba, - -+ ,prob, € U with prob; — probj_1 = d (i = 2,3,---,n). Subsequently, considering
the reference fuzzy set A; (j = 1,2,--- ,¢) and the possibility measure value A; of the interval to be
estimated versus this fuzzy set, we can estimate the upper bounds of values of the eigenfunction of
interval B concerning individual probes by the following formula

1, if AJ(LE) < )‘j

N , @
'L if A(:ZZ) > )\j

fi(@) = Aj(z)pA; = {

where x € {proby,proby,--- ,prob,}. Thus, in the universe of discourse U, a total of n estimated
upper bounds of values of the eigenfunction of interval B are generated for all probes with the aid
of reference fuzzy set Aj;, viz., fj(pz) with ¢ = 1,2,--- ,n. In the same way, for other reference fuzzy
sets, the estimated upper bounds of values of the eigenfunction of interval B with regard to individual
probes can also obtained. Further, those upper bounds of eigenfunction values estimated by reference
fuzzy sets can be aggregated by the minimal operator in terms of individual probes, namely,

A

F(p:) = min{ fi(p:), fo(pi), -, fe(pi)} (3)

with ¢ = 1,2,--- ,n, which results in the formation of estimated upper bounds of values of the eigen-
function of interval B to be reconstructed. Note that the values of F' distribute completely over the
entire universe of discourse U when the prob span d used to generate probes tends to zero. Once the
estimation of upper bounds of values of the eigenfunction of interval B to be reconstructed have been
determined, we can select respectively the minimal and maximal points among those probes that make
the value of £ be equal to 1 as the estimations of lower and upper bounds of interval B, i.e., B= [, 13]
with a = min{probi\ﬁ(probi) =1,i=1,2,---,n} and b= max{probi\ﬁ’(probi) =1,i=1,2,---,n}.
It is important to note that if reference fuzzy sets are triangular fuzzy sets whose membership func-
tions are characterized with % overlap degree and the prob span d used to uniformly generate probes
tends to zero, the reconstruction of interval B with zero error happens, viz., ¢ = a and b="b.

In what follows, we present an illustrative example to show the reconstruction of interval [0.18, 0.51]
by exploiting the possibility measure-based decoding mechanism, where several different number of
reference fuzzy sets with triangular membership functions characterized by % overlap and different

o e o e
6 6

e

e ———

(a) 3 fuzzy sets and M = (b) 4 fuzzy sets and M = (¢) 5 fuzzy sets and M =

{0.64,1,0.02} {0.46, 1,0.53, 0} {0.28,1,1,0.04, 0}
/ 5 _
H i
: : :
1 | [}
: | 1
jo e M Interval 8=[0.18 0/51] | !“\!9 018 0.51] l——‘ JI I 0.18 0.51] I.-‘
(d) 6 fuzzy sets and M = (e) 7 fuzzy sets and M = (f) 9 fuzzy sets and M =
{0.1,1,1,0.55, 0,0} {0,0.92,1,1,0.06, 0,0} {0.56,1,1,1,0.08, 0,0,0,0}

Figure 2: Upper bound of distribution of estimation of eigenfunction value of interval [0.18,0.51].
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Table 1: The reconstruction of interval [0.18,0.51] in the case of different numbers of fuzzy sets and
different sizes of prob span.

. Possibility measure (Encoding) Reconstructed interval (Decoding)
Ay Ag Az Ay As Ag A7 As Ag d=0.2 d=0.1 d=0.01

3 064 10 002  — — — — — — 0.2,0.4] 0.2,0.5] [0.18,0.51]
4 046 1.0 053 0 — — — — — (0.2,0.4] (0.2,0.5]  [0.18,0.51]
5 028 1.0 1.0 0.04 0 - — — — 0.2,0.4] 0.2,0.5] [0.18,0.51]
6 0.1 1.0 1.0 055 0 0 — — — 0.2,0.4] (0.2,0.5]  [0.18,0.51]
7 0 092 1.0 1.0 006 00 00 — — [0.2,0.4] (0.2,0.5]  [0.18,0.51]
9 0 05 10 10 1.0 008 0 0 0 [0.2,0.4] (0.2,05]  [0.18,0.51]

sizes of prob span are used. Tab.1 reports the corresponding results for the reconstruction of interval.
Fig.2 also visualizes the reconstruction process of interval for the prob span d being 0.01, where the
red dashed line is the estimated upper bounds of eigenfunction values of interval to be reconstructed.
From Tab.1, we can observe that the zero reconstruction error happens when the prob span is a smaller
value in making use of possibility measure-based decoding scheme with triangular fuzzy sets whose
membership functions are characterized by % overlap to rebuild an interval.

3 The modeling of ITS using possibility measure-based interval encoding-
decoding scheme

In this section, the construction process of the proposed I'TS model is first detailed, and then an
illustrative example is presented to exhibit the process. In the construction of the model, an ITS
including k interval-valued data coming with the form X = {X; = [¢F,2V] | 2} <2V 2l 2V e Rt =

1,2,--+ ,k} is considered.

3.1 The construction of proposed ITS model

The proposed modeling method of ITS starts with the determination of corresponding universe of

discourse U. we denote min{z¥ - zL} and maz{2{,2Y, - 2V} as 2 and a0, respectively.
Let [ and [l respectively become the trim factors of lower and upper bounds, where lq,lo > 0. Thus
the universe of discourse U can be obtained, i.e., U = [u1,u2] = [Tmin — l1, Tmaz + l2]. The framework

of the proposed modeling method of ITS X is vividly presented in Fig.3. It is consisted of the following
four modules: 1) linguistic variable generation module, 2) encoding module, 3) inference module and
4) decoding module.

Embedding vector Predictive embedding

Interval-valued Possibility- with semantics vector with semantics Possibility-] Predictive interval-valued
_ OSSII?I ity-based Inference module ossﬂ.n ity-based i :
data X, at time £ encoding module decoding module data X, | at time 7 + 1

Linguistic variable
generation module

Figure 3: The framework of modeling I'TS using possibility measure-based interval encoding-decoding
mechanism.

The main function of linguistic variable generation module is to generate ¢ (¢ > 2) linguistic
variables used to describe amplitude characteristics of ITS. The formed linguistic variables are used
to make ITS semantics in a sequel. Since fuzzy sets can be acted as a bridge to link data with natural
language, our task in this module is essentially to design c linguistic variables expressed in fuzzy sets
coming with some semantics on the discourse of universe U. To design these fuzzy sets, there are two
compelling requirements to be simultaneously addressed: 1) the universe of discourse U is covered
by these fuzzy sets, and 2) at least one in these fuzzy sets can be activated by any element located
in the universe of discourse U. In order to satisfy both these two requirements, here we consider to
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directly construct c triangular fuzzy sets whose membership functions are distributed uniformly on the
the universe of discourse U and characterized by % overlap. The reason behind this consideration is
that the zero reconstruction error can be produced when using these triangle fuzzy sets to reconstruct
interval (see 2.2 for details). Specifically, we first divide the entire universe of discourse U = [u, ug]
into ¢ — 1 segments evenly, which results in the formation of ¢ — 2 ordered split points. These split
points can be denoted as s1, S2, -+, Sc_2, Where u; < 51 < S9 < -+ < §¢c_o < ug and s; = %
with ¢ = 1,2,--- ,c — 2. Next these produced split points together with two end points u; and ug of
the universe of discourse U are taken as the kernels of ¢ triangular fuzzy sets to be constructed. The
interval composed of the two points adjacent to individual kernels (viz. the points of the left and right
hand sides of each kernel) is served as the support of the corresponding triangular fuzzy set, where
when the left end point of U, uq, becomes the kernel of some triangle fuzzy set, the point of the left
hand side of this kernel coincides with u; whereas when the right end point of U, ug, becomes the
kernel of some triangular fuzzy set, the point of the right hand side of this core coincides with us.
In this way, the total of ¢ triangular fuzzy sets whose membership functions are characterized by %
overlap are generated completely, and the corresponding member functions are expressed as follows

S 2 s sig sl
Tei—uy T E UL, 81 P
i {0731 " therwise 1 Ai@ = TEEs, T € [Sf_hsi]
0, otherwise (4)
Ac(z) = ;27—57;;22’ T € [Sc—2, U
¢ . b
0, otherwise

where sg = u; and s._1 = ug. Once c triangular fuzzy sets with membership functions being % overlap
have been constructed on the discourse of universe U, we associate respectively linguistic variables
like “amplitude is low”, “amplitude is medium”, “amplitude is high” etc. with the above fuzzy sets in
terms of the distribution of their support on the universe of discourse U. It is worth noting that these
fuzzy sets come with semantics delivered by the corresponding linguistic variables. As a results, ¢
triangular fuzzy sets with some well-defined semantics whose membership functions are characterized
by % overlap expressed in (4) are finally formed.

The function of encoding module is to encode each interval-valued data including in ITS X into
an embedding vector with semantics so that ITS is described in terms of those linguistic variables
produced already in the linguistic variable generation module. To realize this function, we can invoke
directly the possibility measure presented in 2.1 to encode individual interval-valued data including
in ITS X. In detail, for the interval-valued data X; emerged at time ¢, we first generate n probe
points with the span d within the universe of discourse U. These n points together two end points
of U form the ordered collection Prob = {proby, proby,proba,--- , proby,, prob,.1}, where proby = ug,
proby,+1 = uyp and proby < proby < proby < --- < prob, < prob,y1 with probji 1 — prob; = d
(j =0,1,--- ,n). Next with the aid of this probe point collection, the possibility degree between the
interval-valued data X; and linguistic variables expressed in triangular fuzzy sets with membership
functions characterized by % overlap is calculated by the formula (1), that is,

Aii = Poss(Xy, A;) = xréllgng{min(Xt(x), Ai(x))}. (5)

Thus the interval-valued data X is transform into an embedding vector with semantics [A¢1 (A1), A\i2(42),
-+, Me(A¢)]. The resulting embedding vector with semantics can be interpreted as “X; is Ay with
A1 possibility, or is Ay with Ay possibility, - - -, or is Ac with M. possibility”. In the same manner, for
other interval-valued data including in the ITS X, the corresponding possible degrees of them with
respect to individual triangular fuzzy sets (linguistic variables) can be also obtained. As a result, a k-
by-c possibility degree matrix associated with semantics, which is regarded as the linguistic expression
of ITS X, is formed finally, viz.,

AMi(Ar)  A2(42) - Aie(Ae)
Ao1(A1)  A22(Az) -+ Aae(Ae)

G =PeilAlizra - = : : : : (6)
Ae1(A1) Aga(A2) oo Ape(Ae)

It is worth noting that the tth (¢t = 1,2,--- , k) row of the matrix G expresses that the possibility
degrees that an observation X; of ITS at time ¢ is characterized by all linguistic variables. Whereas
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the ith (i = 1,2, -+, ¢) column of the matrix G expresses that the possibility degrees to which ITS
X can be characterized by the ith linguistic variable A;.

The function of inference module is to capture the relationships between the possibility degree of
the corresponding interval-valued data versus individual linguistic variables at the current time ¢t — 1
and those degrees encountered at the next time ¢ around the possibility degree matrix G produced by
the encoding module. The relationships to be captured can be formally represented in the mapping

A-11(A1) Adg-1)2(A2), s Ap-ne(Ae)) = (A (A1), Ao (A2), -+, Me(Ae)), (7)

where t = 2,3, -+ , k. To realize this mapping, the artificial neural network (ANN) become an available
option. Here an artificial neural network with a single hidden layer shown in Fig.4 can be considered,
where the number of its input and output layers are ¢, which is equal to the total number of lin-
guistic variables produced in the linguistic variable generation module. The number of neurons of
corresponding hidden layer is determined experimentally by trial-and-error method.

[y i
'/\\"@"f( 4,

e 3
'i;"v’ A2 »

Fn - S0
A, EN% EXBDA— s
L RGO
l“'”‘"”-Ac_ WA, A

hune, g

Input layer Output layer

Hidden layer

Figure 4: Architecture of artificial neural networks located in inference module.

Having the architecture of ANN, we subsequently construct the training set by organizing the
possibility degree matrix G into a series of input-output pairs in the form

the (t—1)th row of G the tth row of G
{{)‘(t—l)laA(t—l)Qa e 7>\(t—1)c]; [)\tla)\t%"' a)‘tc}}
—_—
inputs outputs
with ¢ = 2,3,--- , k. The resulting training set is used to train the ANN in a supervised mode. With

the completion of the training of ANN, the weights of connections between neurons in individual
layers are obtained, which results in the realization of mapping expressed in the form of (7). When
the well-trained ANN is working, it receives the embedding vector with semantics [A¢1 (A1), Ai2(A2),
-+, Me(Ae)] produced by the encoding module at time ¢, and then processes this vector in the hidden
layer. The processed result is further passed to the output layer of this ANN, which results in the
formation of predictive embedding vector with semantics fo time ¢, say [S\(tﬂ)l(Al), 5\(t+1)2(A2), e

~

At H)C(AC)}. The predictive embedding vector with semantics reveals the estimation of possibility
degree of interval-valued data X;;; presented at the next time t 4+ 1 versus individual linguistic
variables generated already in linguistic variable generation module.

The function of decoding module is to decode for the predictive embedding vector with seman-
tics [S\(t—‘,-]_)]_(Al), 5\(,5+1)2(A2), e 5\(t+1)C(AC)] produced by the inference module. Here two decoding
schemes are considered:

1) The maximal possibility degree-based decoding scheme: this decoding scheme makes the model
produce linguistic output. More specifically, in light of the predictive possibility degree produced by
inference module, we select the linguistic variable A; having the maximal possibility degree as the
output of the model at time ¢ + 1, where A; € A with j = argmax;—12... ¢ 5‘(t+1)i- Meanwhile, the
output of model is interpreted as “the interval-valued data is A; with 5‘(t+1)j possibility degree at time
t+ 1"

2) The possibility measure-based interval reconstruction decoding scheme: by using this decoding
scheme, the model produce the output of interval format. In this decoding scheme, by means of
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the linguistic variables in the linguistic variable generation module and the probe collection Prob
used in the encoding module, the output produced by the model, say Xt+1 = [fctLH,ﬁ:tUJrl], can be
determined through invoking the possibility measure-based interval encoding-decoding mechanism
elaborated already in Subsection 2.2 to decode the predictive embedding vector. Here :%tLH and @UH
express the predictive lower and upper bounds of interval-valued data at time ¢ + 1, respectively.

3.2 An illustrative example

In this subsection, a randomly generated ITS consisting of 12 instances, X = {[0.09, 0.15],[0.21, 0.38],
[0.25,0.37], [0.32,0.54], [0.47,0.66], [0.42,0.57],[0.51, 0.89], [0.48, 0.74], [0.88, 0.98], [0.73,0.97], [0.43, 0.84]
,[0.31,0.48]}, is used to demonstrate how to invoke the proposed method to create the corresponding
ITS model. The specific modeling method is as follows:

1. Determination of universe of discourse U. For the I'TS X to be modeled, its minimal lower
bound is 0.09, and its maximal upper bound is 0.98, viz., £, = 0.09 and x4, = 0.98. Let the trim
factors I; and lo be 0.09 and 0.02, respectively. Thus the universe of discourse U can be determined,
ie., U= [u1,u2] = [Tmin — l1, Tmaz + 2] = [0.0,1.0]

2. Formation of linguistic variables. Suppose that the total number of linguistic variables to be
generated is 5, that is, ¢ = 5. Invoking the method detailed in the linguistic variable generation module,
five linguistic variables can be finally formed, that is A; : amplitude is lower, As : amplitude is low,
As : amplitude is medium, Ay : amplitude is high, As : amplitude is higher. The individual
linguistic variables are described in the form of the following triangular membership functions with %
overlap (see Fig.4):

dz 1 € [0,0.25) 4z, x € 10,0.25) 4z —1, 2 €[0.25,0.5)
—4xr+1, x ,0.
Aq(z) = ] JAg(z) =< —dx +2, £ €[0.25,0.5] ,A3(x) =< —4x+3, =z €][0.5,0.75] ,

0, otherwise ) )

0, otherwise 0, otherwise
4z —2, 1z €]0.5,0.75) ir—3 € [0.75,1.0]
x—3, x .75, 1.
Ay(z) =< -4z +1, z€][0.75,1.0] ,As(z) = )
) 0, otherwise
0, otherwise

3. Encoding of ITS X . According to the method provided in the encoding module, we first generate
an ordered probe point collection Prob = {0.0,0.01,0.02,0.03,---,0.99,1.0} with the span d = 0.01
on the universe of discourse U = [0.0,1.0]. Then for each instance in ITS X, X;, t = 1,2,---,15,
the possibility measures of them with regard to individual linguistic variable are calculated by (5)
with the aid of the probe point collection Prob and the linguistic variables A; with ¢ = 1,2,--- |5,
which results in the formation of possibility degree matrix G. The corresponding results are reported
in Tab.(2), where each instance in ITS X can be interpreted in the well-defined linguistic variables.
For example, the interval-valued data [0.21,0.38] presented by ITS X at time 2 can be interpreted as
“10.21,0.38] is Ay with 0.16 possibility or is As with 1.0 possibility or is As with 0.52 possibility.”

4. Perform inference. According to the above-mentioned in inference module, the ANN with a
single hidden layer exhibited in the form of Fig.4 is first established where the value of ¢ is set to 5

Table 2: The matching level matrix G obtained by using five linguistic terms for ITS X

. Ay Az As Ay As
Time stamp Instance (lower) (low) (medium) (is high) (higher)
1 [0.09,0.15] 0.64 0.60 0.0 0.0 0.0
2 [0.21,0.38] 0.16 1.0 0.52 0.0 0.0
3 [0.25,0.37] 0.0 1.0 0.48 0.0 0.0
4 [0.32,0.54] 0.0 0.72 1.0 0.16 0.0
5 [0.47,0.66] 0.0 0.12 1.0 0.64 0.0
6 [0.42,0.57] 0.0 0.32 1.0 0.28 0.0
7 [0.51,0.89] 0.0 0.0 0.96 1.0 0.56
8 [0.48,0.74] 0.0 0.08 1.0 0.96 0.0
9 [0.88,0.98] 0.0 0.0 0.0 0.48 0.92
10 [0.73,0.97] 0.0 0.0 0.08 1.0 0.88
11 [0.43,0.84] 0.0 0.28 1.0 1.0 0.36
12 [0.31,0.48] 0.0 0.76 0.92 0.0 0.0
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Table 3: Training set used to train ANN

Instance No. Input neurons (linguistic variable) Output neurons (linguistic variable)

Aq As As Ay As Ap Ao As Ay As
1 0.64 0.60 0.0 0.0 0.0 0.16 1.0 0.52 0.0 0.0
2 0.16 1.0 0.52 0.0 0.0 0.0 1.0 0.48 0.0 0.0
3 0.0 1.0 0.48 0.0 0.0 0.0 0.72 1.0 0.16 0.0
4 0.0 0.72 1.0 0.16 0.0 0.0 0.12 1.0 0.64 0.0
5 0.0 0.12 1.0 0.64 0.0 0.0 0.32 1.0 0.28 0.0
6 0.0 0.32 1.0 0.28 0.0 0.0 0.0 0.96 1.0 0.56
7 0.0 0.0 0.96 1.0 0.56 0.0 0.08 1.0 0.96 0.0
8 0.0 0.08 1.0 0.96 0.0 0.0 0.0 0.0 0.48 0.92
9 0.0 0.0 0.0 0.48 0.92 0.0 0.0 0.08 1.0 0.88
10 0.0 0.0 0.08 1.0 0.88 0.0 0.28 1.0 1.0 0.36
11 0.0 0.28 1.0 1.0 0.36 0.0 0.76 0.92 0.0 0.0

Table 4: Predicted output of model established by the proposed method for ITS X

time Input interval Real output Predicted Linguistic results Predicted interval

stamp linguistic variable interpretation
1 [0.09,0.15] [0.21,0.38] As the amplitude of ITS is low at time 2 [0.25,0.38]
2 [0.21,0.38] [0.25,0.37] Az the amplitude of ITS is low at time 3 [0.25,0.37]
3 [0.25,0.37] [0.32,0.54] As the amplitude of ITS is medium at time 4 [0.32,0.53]
4 [0.32,0.54] [0.47,0.66] A3 the amplitude of ITS is medium at time 5 [0.47,0.63]
5 [0.47,0.66] [0.42,0.57] Az the amplitude of ITS is medium at time 6 [0.43,0.56]
6 [0.42,0.57] [0.51,0.89] Ay the amplitude of ITS is high at time 7 [0.51,0.89]
7 (0.51,0.80]  [0.48,0.74] As the amplitude of ITS is medium at time 8 [0.49,0.74]
8 [0.48,0.74] [0.88,0.98] As the amplitude of ITS is higher at time 9 [0.88,0.98]
9 [0.88,0.98] [0.73,0.97] Ay the amplitude of ITS is high at time 10 [0.74,0.96 |
10 [0.73,0.97] [0.43,0.84] Ay the amplitude of ITS is high at time 11 [0.43,0.83 ]
11 [0.43,0.84] [0.31,0.48] A3 the amplitude of ITS is medium at time 12 [0.31,0.50 ]

and the number of neurons in the hidden layer is set as 10 (for illustrative purpose). Next the ANN
is trained in light of Tab.3, where the activation function of neurons in the input layer is a linear
function. The activation function of neurons in the hidden and output layers are a sigmoid function.
Once the training of ANN has been completed, the predictive embedding vector with semantics is
obtained.

5. Perform decoding. For example, when an interval-valued data [0.09,0.15] observed at time 1 is
fed into the model, with the aid of the already formed linguistic variables and probe point collection
Prob, an embedding vector with semantics [0.64(A1),0.60(A2),0.0(As),0.0(A4),0.0(A5)] is first ob-
tained by encoding module and then delivered into the inference module along with the corresponding
semantic neurons. With the completion of calculation, the inference module generate the correspond-
ing output, say [0.0(A;),1.0(Az),0.52(A43),0.0(A4),0.0(As)], which indicates the estimated possibility
degree of the interval-valued data encountered at time 2 versus individual well-defined linguistic vari-
ables. Subsequently, the output of the inference module is decoded along with two different schemes:
in light of the decoding scheme (i), the linguistic outcome produced by the ITS model is Ay, which
means that “the amplitude of ITS is low at time 2”. Whereas in light of the decoding scheme (ii),
the numeric outcome produced by the ITS model is [0.25,0.38]. The other predicted results are also
reported in Tab.4.

4 Experimental studies

In this section, experiments concerning four real-world financial datasets with different dynamic
characteristics are perform to validate the proposed modeling method, and explore the impact of
the crucial parameter in the proposed method (say, the total number of linguistic variables ¢) on
the corresponding model performance. In addition, the comparison experiments with other modeling
methods of ITS is also performed to exhibit the merit of the proposed method. Before starting all
experiments, the universe of discourse of each dataset is first determined. Then each dataset involved
in experiments are split into the training set and the testing set in term of the proportion of 2 to 1,
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where the training set is used to model and the testing set is used to evaluate the performance of
corresponding model.

In order to evaluate the performance of model at the linguistic level, we can envision the resulting
ITS model as a classification model, viz., when an interval-valued data observed at time ¢ is fed into
the this I'TS model, the interval-valued data predicted by the model at time ¢t + 1 belongs to which
linguistic variables generated already through linguistic variable generation module. Here the subscript
of the symbol expressed each linguistic variable is regarded as the corresponding class label. Thus
some performance metrics used to evaluate classifier can be considered to quantify the performance of
ITS model established by the proposed method on the linguistic level. In the experiments, we select
the classification accuracy (Laccy,) and the Kappa coefficient (L) [2] as the corresponding indicators
to evaluate the performance of established ITS models at the linguistic level. They are defined as
follows

mOf(t 1, if L, =1L
LAccuzzma f(t) :{ . At t7 (8)
& om 0, if Li# Ly
and
PO — Pe N P 1 -
Ly = 1= p 0= andpe:W;NTiXNPi- 9)

In (8), m is the total number of instances, L; and L; are the predicted linguistic lables and true
linguistic lables at time t, respectively. Here the true linguistic lables of an instance (interval-valued
data) can be obtained through selecting the one having the maximal value of possibility degree in
linguistic variables by means of (5). The symbols m, Nrp, Np; and Np; in (9) express the total
number of instances, the amount of instances being correctly predicted (classified), the amount of
instances truly belonging to the ith linguistic variable (class) and the amount of instances predictively
belonging to the ith linguistic variable (class), respectively.

For the evaluation of performance of model at the numeric level, the mean absolute percentage
error (MAPE) encountered frequently in many existing ITS models is exploited, which is defined as
follows

J i
MAPE = ="
t=1

~L L ~U U

Ty — xy| + —zf |

L U )
Ly Ly

(10)

where m is the number of instances. 27 and 2V are the predicted lower upper bounds of interval at
time t. xtL and x? are the real lower upper bounds of interval presented at time t. Evidently, the
higher the values of L .., and L, the better the performance of the corresponding I'TS model at the
linguistic level. The smaller the values of M APFE, the better the performance of the corresponding
ITS model at the numeric level.

Besides, when the proposed method is used to model ITS, the prob span d used in the encoding
and encoding modules is set as 0.01. For the ANN located in inference module, the activation function
of neurons in its input layer is linear function, and of those neurons in the hidden and output layers
are sigmoid function. The number of neurons in the hidden layer is experimentally determined in the
way where the number can be sought when it is enough to guarantee ANN reach minimal training
error and going beyond it does not lead to a remarkable improvement of the error. Back-propagating
errors method [13] is used to train ANN. To ensure high confidence in the experimental results, in
all experiments, for each value of ¢, experiments are implemented ten times independently, and the
average values of corresponding performance indicators are recorded and reported.

4.1 Summary of experimental datasets

There are four real-world financial datasets involved in the experiments, which exhibits different
dynamic characteristics. The first dataset is the stock prices of General Electric Company dataset
(GE). It includes 1507 observations, which records the daily lowest and highest prices from January
3, 2012 to December 29, 2017 (https://finance.yahoo.com/quote/GE/). The second dataset is the
West Texas Intermediate crude oil spot price dataset (WTT). It consists of daily lowest and highest oil
prices from January 3, 2006 to December 31, 2015, and has a total of 2525 observations (https://cn.


https://finance.yahoo.com/quote/GE/
https://cn.investing. com/commodities/crude-oil-historical-data
https://cn.investing. com/commodities/crude-oil-historical-data
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investing.com/commodities/crude-oil-historical-data). The third dataset SP500 is regard to
Standard & Poor’s 500 index. It records the daily lowest and highest values of Standard & Poor’s
500 index from January 3, 2000 to December 31, 2013, which consists of 3521 observations (https:
//finance.yahoo.com/quote/%5EGSPC). The last dataset is the exchange rate of the Euro against
the US dollar dataset (EURUSD) including 2322 observations. The dataset recorded daily lowest and
highest exchange rates from January 1, 2007 to December 31, 2015 (https://finance.yahoo.com/
quote/EURUSD=X?p=EURUSD=X). The university of discourse of above-mentioned four datasets, in turn,
are [17.0,33.0], [32, 148], [660, 1850] and [1.0, 2.0],

4.2 Experimental results and analysis

In this section, two experiments are implemented for the above-mentioned each dataset. The
first experiment is to explore the impact of different value of ¢ on the performance of ensuing ITS
model, and the second experiment is to complete the performance comparisons between the ITS model
established by the proposed method and the ones constructed by the other competitive methods. The
corresponding experimental results are reported in Fig.5, Fig.6, Fig.7 and Tab.5, respectively.

4.2.1 The impact of parameter on ITS model performance

Fig.5 clearly reveals that the average linguistic performance of established ITS model exhibits an
evident downtrend with increase of value of ¢ in terms of indicator L 4..,. For example, let us consider
GE dataset. For its training set (see the blue dot dash line in Fig.5a), when the value of ¢ is 3, the
average value of the corresponding L sccy, is 0.98. When the value of c is 5, the average value decreases
to 0.95. When the value of ¢ is 8, the average value is continuously down, and decreases to 0.92.
Whereas when the value of ¢ is 10, the average value reaches its minimum, that is 0.89. For the
testing set (see the orange dot dash line in Fig.5a), the similar trend is also presented — the average
value of L pce, is gradually down from its high value 0.97 to its low value 0.87 when the value of ¢
increases from 3 to 10. For the remaining three datasets, the downtrend of linguistic performance of
established ITS model indicated by the average value of L 4.q, with increase of value of ¢ can also
be found in Fig.5b, Fig.5c and Fig.5d. Further, in terms of indicator L, the linguistic performance
of ITS model established by the proposed method versus the value of ¢ is also shown a remarkable
downtrend (see Fig.6) — for the training set of GE dataset, see Fig .6a, when the value of ¢ is 3, the
average value of L, is 0.97. Whereas when the value of ¢ is gradually increased to 5, 8 and 10, the
average value is declined to 0.91,0.90 and 0.86 in turn. For the testing set, the situation is also similar:
when the value of ¢ increases from 3 to 5, 8 and 10 in turn, the average value of indicator L, starts
to decline from the high value 0.93 to 0.90, 0.88 and the low value 0.76. For the other three datasets,
the similar trend can also be observed in Fig.6b, Fig.6c and Fig.6d. The above phenomena can be
explained from two perspectives. From the perspective of expression of knowledge, the size of value of
c reflects the degree of fineness of semantics expressed by fuzzy sets used to described characteristics of
ITS. The higher the value of ¢, the finer the semantics generated in the linguistic variable generation
module. This means that the linguistic variables are difficult to be allocated when assigning them into
individual interval-valued data in ITS. From the perspective of classification, the more the number to

T s T s T s Lo T s
\ Tesing st o Teting st N\ Tesing st Tetng st

| 5
VR =

(a) GE dataset (b) WTT dataset (c) SP500 dataset (d) EURUSD dataset

Figure 5: Plots of L sc, versus values of c.
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(a) GE dataset (b) WTT dataset (c) SP500 dataset (d) EURUSD dataset

Figure 6: Plots of L, versus values of ¢

: ;
‘

(a) GE dataset (b) WTTI dataset (c¢) SP500 dataset (d) EURUSD dataset

Testing set

Figure 7: Plots of M APFE versus values of ¢

be classified, the higher the value of c. This means that the classification task becomes more difficult.
It is also worth to note that the higher value of ¢ results in the reduction of the interpretability of
output of ITS model established by the proposed method.

Fig.7 reveals that the relationship of the numeric performance of ITS model established by the
proposed method versus different values of ¢ — the average MAPE value does not decrease with
increase of value of c¢. The significant decrease of the average MAPE value happens when the value of
¢ is moved from the lower value towards some higher value. For instance, we consider the training set
of GE dataset, see Fig.7a. When the value of ¢ is 3, the average MAPE value is 2.246. When the value
of ¢ is moved to 4, the average value down to 1.931. However, when continuously moving the value of
¢ towards its high value, the average MAPE values do not exhibit visible downtrend. At this moment,
the value of ¢ being 4 becomes a “inflection point”. For the testing set of GE dataset, the similar trend
is also observed in Fig.7a. The same phenomenon is also found in Fig.7b and Fig.7c when considering
WTI dataset and SP500 dataset. The corresponding inflection points are 6 and 5, respectively. We
also note that for the EURUSD dataset, when the value of ¢ moves from 3 towards 6, the average
MAPE value shows a downtrend whereas the average value starts to increase when the value of ¢ goes
beyond 6. Evidently, for the EURUSD dataset, the corresponding inflection point is 6. Fig.8 shows
the one-step-ahead forecasting results delivered by the corresponding ITS model established by the
proposed method for each dataset, where the value of ¢ is set as the inflection point. In order to
improve visibility, in the individual subplots located in Fig.8, the lowest values are 5.0, 20.0, 200.0
and 0.2 less than the actual and predicted lowest values, respectively.

4.2.2 Comparison with other existing methods

In four real-world datasets involved in the experiments, there are three datasets, say WTI, SP500
and EURUSD datasets, allowed to directly compare with other several competitive methods in lit-
eratures [22], [10], [9], [21], [13] and [10]. Tab.5 reports that the average MAPE value delivered
when using the ITS model established by the proposed method with the values of ¢ being “inflection
points” to perform one-, five-, and ten-step-ahead forecasting for these three datasets, and shows the
corresponding compared results. From Tab.5, we clearly see that the ITS model established by the
proposed approach can reach the better predicted results in comparison with other six hybrid models.
For example, for WTI dataset, when performing one-step-ahead forecasting, the average MAPE value
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for the model established by the proposed method is 3.273, 6.265 for Holt!-MSVR model [22], and
whereas the value is 7.616 for Holt'-ANN! model [10], 9.589 for ARIMAL-ANN! model [9], 9.131
for MSVR! [21], 11.385 for iMLP model [13] and 13.263 for Holt' model [10]. In comparison with
other models, our model can improve the average MAPE value by 47.6% for Holt!-MSVR model,
57% for Holt'-"ANN' model, 65.8% for ARIMA'-ANN" model, 64.1% for MSVR! model, 71.3% for
iMLP model and 75.3% for Holt! model, respectively. When performing five-step-ahead forecasting,
our model can can improve the average MAPE value by 26.7% for Holt'-MSVR model, 25.3% for
Holt'-ANN' model, 55.3% for ARIMA-ANN" model, 48% for MSVR! model, 59.1% for iMLP model
and 64.1% for Holt! model, respectively. Analogously, when performing ten-step-ahead forecasting,
our model can can improve the average MAPE value by 25.7% for Holt'-MSVR model, 32.5% for
Holt'-ANN! model, 33.2% for ARIMA~ANN" model, 48.6% for MSVR! model, 53.8% for iMLP
model and 57.5% for Holt' model, respectively. For the other two datasets, the SP500 dataset and
the EURUSD dataset, the same situation can also observed. Further, in comparison with other ITS
models, the established model also exhibits a unique advantage, that is the model supports to form
the output in linguistic format, which facilitates the understand of users to outcomes of model.

Table 5: Comparison with other methods for three datasets.

Dataset P}fsilzc(f:lon Our approach Holt!-MSVR!  Holt-ANN!  ARIMAL-ANN!! MSVR! iIMLP Holt!
1 3.273 6.265 7.616 9.589 9.131 11.385 13.263
WTI 5 5.225 7.129 7.000 11.706 10.050 12779 14.556
10 8.012 10.785 11.872 11.994 15.602 17.345 18.859
1 2.339 5.641 6.721 9.674 8.336 10.631 12.306
SP500 5 4.614 6.746 8.164 10.377 9.629 12.477 13.734
10 5.671 8.439 11.257 11.789 14.449 15.274 17.709
1 3.532 5.793 7.304 8.903 8.502 10.515 12.260
EURUSD 5 5.379 6.667 8.167 10.750 9.564 12.446 13.802
10 8.454 10.730 12.066 11.872 15.826 17.258 19.096

& 1000

Time Time

(a) c=4, MAPE =1931 (b) c=6, MAPE =3.486 (c)c=5, MAPE =2154 (d) c=6, MAPE = 2.997

Figure 8: The best forecasting results delivered by ITS models established in the case of inflection
points where the value of MAPE is reported for entire dataset: (a) GE dataset, (b) WTI dataset, (c)
SP500 dataset and (d) EURUSD dataset.

5 Conclusions

In this paper, a novel modeling method of I'TS using possibility measure-based encoding-decoding
mechanism is proposed. The method includes linguistic module, encoding module, inference module
and decoding module. Here the linguistic module provides a series of linguistic variables expressed in
fuzzy sets for encoding module. The encoding module can make I'TS semantics in the form of possibility
degree matrix which consists of embedding vectors with semantics. The inference module can realize
the mapping between the embedding vectors with semantics, and the decoding module makes use of
two different schemes to decode for the predictive embedding vectors with semantics produced by the
inference module to form respectively the linguistic and numeric outputs. Four real-world financial ITS
are involved to validate the feasibility and effectiveness of the proposed method. The corresponding
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experimental results draw some conclusions as follows: (i) the linguistic and numeric performance of
established ITS model is highly sensitive to the number of generated linguistic variables (the value
of ¢); (ii) the lower number of linguistic variables makes the output of the established ITS model
produce better interpretability; The higher number of linguistic variables results in the degeneration of
corresponding linguistic performance. (iii) in order to make the established ITS model produce better
numeric accuracy, the range of number of linguistic variables is recommended as 4 to 6. The over high
number of linguistic variables could result in the reduction of numeric performance of corresponding
ITS model.
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