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Abstract: Abstract: In this paper, a robust-adaptive-fuzzy-neural-network con-
troller (RAFNNs) bases on dead zone compensator for industrial robot manipulators
(RM) is proposed to dead the unknown model and external disturbance. Here, the
unknown dynamics of the robot system is deal by using fuzzy neural network to
approximate the unknown dynamics. The online training laws and estimation of the
dead-zone are determined by Lyapunov stability theory and the approximation theory.
In this proposal, the robust sliding-mode-control (SMC) is constructed to optimize
parameter vectors, solve the approximation error and higher order terms. Therefore,
the stability, robustness, and desired tracking performance of RAFNNs for RM are
guaranteed. The simulations and experiments performed on three-link RM are pro-
vided in comparison with neural-network (NNs) and proportional-integral-derivative
(PID) to demonstrate the robustness and effectiveness of the RAFNNs.
Keywords: adaptive control, fuzzy neural networks, robot manipulators, unknown
dead-zone.
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1 Introduction

In fact, Robot manipulators are multi-input multi-output (MIMO) non-linear systems. In
working process, robot system always bear the external disturbance, nonlinear fiction, pay load,
etc. to overcome this face. So many controller propose such as adaptive controller, robust adap-
tive controller, backstepping controller, and intelligent controller, etc [2,8,9,17,26,29]. Backstep-
ping technique has been widely applied to design adaptive controller for nonlinear system [13].
Investigations base on Backstepping control method were provided a systematic framework for
the design of tracking and regulation strategies, suitable for a large class of state feedback lin-
earizable nonlinear systems [4,10,25,28]. However, there are some problems in the Backstepping
design method. A major constraint is that certain functions must be ”linear in the unknown pa-
rameters", which may not be satisfied in practice. Furthermore, some tedious analysis is needed
to determine "regression matrices", and the problem of determining and computing the regres-
sion matrices become even more acute. To deal these problems, intelligent controllers based on
fuzzy control for RM have been proposed. The Fuzzy logic technique is a successful implementa-
tion for the approximation of non-linear systems [1,5,11,12,15,16,22,27]. In [11], the intelligent
controller based on fuzzy logic was proposed for robotic manipulators under uncertain environ-
ments. In this controller, the approximation capability of fuzzy logic was used to approximate
the unknown dynamic of robot system. The parameters of the intelligent controller were adjusted
online bases on the Lyapunov algorithm. In [15], the authors suggested an adaptive fuzzy sliding
mode control with nonlinear observer (AFSMCO) for the robot manipulators with unknown ex-
ternal force. Here, by combining the advantages of fuzzy logic, sliding mode control and nonlinear
observer, the performance of control system was improved. However, most proposed adaptive
fuzzy controllers were difficult in building suitable fuzzy control rules, membership function, and
how to guarantee the system stability was a challenge problem to be solved. To deal this dif-
ficult problem, the adaptive fuzzy neural networks were proposed [3, 18, 23, 24]. In [23], Rong-
Jong Wai, and Rajkumar Muthusamy suggested an intelligent controller bases on fuzzy neural
network control for robot manipulator in order to improve the control performance of position
tracking. In this controller, sliding mode control was developed for position tracking of robot
manipulator system. Moreover, the fuzzy neural network was employed to approximation the
unknown dynamic of control system. The fuzzy neural network was designed bases on the SMC
rules. The adaptive laws were determined by using the Lyapunov theorem. In [24], a fuzzy neural
network combined with backstepping control was proposed for robot manipulator to achieve the
robustness and stability. Here, the fuzzy neural network was inherited backstepping control to
improve the robustness of backstepping control. The parameters of fuzzy neural network control
were determined and adjusted online by the Lyapunov theorem. The robustness and stability of
proposed controller were improved.

Recently years, one of the important subjects for robotic manipulator that has attracted
many researchers is the compensation of dead-zone. In fact, deal-zone is a natural and nonlinear
item. To deal with compensation of non-smooth nonlinearities, many researches were proposed
[6,7, 14,19–21]. In [21], an adaptive neural network is proposed to compensate the dead-zone of
the hydraulic system. In this proposed controller, the RBF neural network is applied to identify
the dead-zone parameters and a cost function is proposed to provide the best approximation of
dead-zone. The parameters of the control system and the dead-zone are easier to calculate.

In this paper, to deal with the problem of compensation dead-zone with the unknown dy-
namic and external disturbance, an adaptive robust fuzzy neural network control based on back-
stepping technique has been proposed. This proposed proposal is combined the advantage of
FNN, sliding mode control, adaptive control and backstepping technique. The unknown robot
dynamics are approximated by the FNN and the tracking errors are compensated by using the
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robust term. In addition, all the parameters of the proposed controller are adjusted by the sta-
bility Lyapunov theory. Thus, the robustness and effectiveness of RAFNNs control system are
guarantee.

The paper is organized as follows. The preliminaries are described in section 2. Section
3 presented control design and stability analysis. The simulation and experimental results of
three-link robot manipulators are provided in section 4. Finally, section 5 gives conclusion.

2 Preliminaries

2.1 Model of Robotic Manipulators

Consider the dynamics of an n-link robot manipulator with external disturbance:

MRM (Θ) Θ̈ + CRM

(
Θ, Θ̇

)
Θ̇ +GRM (Θ) + FRM

(
Θ̇
)

= τ − τ0 (1)

With Θ = [Θ1 Θ2 . . .Θn] ∈ Rn×1 is the joint position vector, Θ̇ =
[
Θ̇1 Θ̇2 . . . Θ̇n

]
∈ Rn×1

is the velocity vector and Θ̈ =
[
Θ̈1 Θ̈2 . . . Θ̈n

]
∈ Rn×1 is the acceleration vector. MRM (Θ),

CRM

(
Θ, Θ̇

)
and GRM (Θ) are [n× n] expressing the symmetric inertial matrix, Coriolis and

Centripetal terms, and Gravity terms, respectively. FRM
(

Θ̇
)
represents the n× 1 vector of the

frictions. τ0 represents the n× 1 vector of the input unknown disturbances. And τ is the n× 1
control input vector of joints torque. For designing controller, several properties of the robot
dynamics (1) have been assumed as follows.

Property 1: MRM is the symmetric inertial Matrix and bounded as:

ϑ1‖x‖2 ≤ xTMRMx ≤ ϑ2‖x‖2,∀x ∈ Rn (2)

With ϑ1 and ϑ2 are known positive constants.
Property 2: ṀRM − 2CRM is skew symmetry matrix, in which

xT
[
ṀRM − 2CRM

]
x = 0 (3)

Property 3: CRM , GRM and FRM are satisfied:

‖CRM Θ̇‖ ≤ CkRM‖Θ̇‖2, ‖GRM‖ ≤ GkRM , FRM ≤ FkRM‖Θ̇‖+ F0 (4)

With CkRM , GkRM , FkRM , F0 are positive constants.
Property 4: τ0 ∈ Rn is the unknown disturbance and τ0 is bounded as follows:

‖τ0‖ ≤ τk, τk > 0 (5)

According to assumptions given in [19], the dead zone function shows Fig. 1, and which is
expressed as follows:

τ = D(u), D(u) =


hr(u− dr) for u > dr

0 for dl ≤ u ≤ dr
hl(u+ dl) for u < dl

(6)

Here, dr > 0, dl < 0 are unknown constant parameters of dead zone. hl (u) , hr (u) are the
unknown smooth functions.
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Figure 1: Dead zone model.

Where u is control input before entering the dead zone. τ is control input after entering the
dead zone. Therefore (6) can be rewritten as:

τ = D (u) = u− satD (u) (7)

where the asymmetric saturation function is defined as:

satD(u) =


dr for u > dr

u for dl ≤ u ≤ dr
dl for u < dl

(8)

2.2 Backstepping controller

The conventional Backstepping controller for the dynamic of the RM is described as follows:
Step 1: the tracking error vector ZΘ1 (t) and derivative of ZΘ1 (t) are define as the follows:

ZΘ1 (t) = Θd −Θ and ŻΘ1 (t) = Θ̇d − Θ̇ (9)

By using Θ̇ as the first virtual control input. Define an intermediate function as:

αΘ1 (t) = Θ̇d + λΘ1ZΘ1 and α̇Θ1 (t) = Θ̈d + λΘ1ŻΘ1, λΘ1 > 0 (10)

Consider the first following Lyapunov function candidate LΘ1 as:

LΘ1(ZΘ1(t)) =
1

2
ZTΘ1ZΘ1 (11)

The tracking error vector ZΘ2 (t) is define as the follows:

ZΘ2 (t) = αΘ1 (t)− Θ̇ = ŻΘ1 + λΘ1ZΘ1 (12)

The derivative of LΘ1(ZΘ1(t)) is:

L̇Θ1(ZΘ1(t)) = ZTΘ1ŻΘ1 = ZTΘ1(ZΘ2(t)− λΘ1ZΘ1) (13)

Step 2: the derivative of ZΘ2 (t) along to time, we have

ŻΘ2 (t) = α̇Θ1 (t)− Θ̈ (14)

Where Θ̈ used as the second virtual control input. Substituting (9, 10, 12, 14) into (1), we
have:

MRM ŻΘ2 = MRM α̇Θ1 + CRMαΘ1 − CRMZΘ2 +GRM + FRM + τ0 − τ (15)
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Consider the second Lyapunov function LΘ2 as follows:

LΘ2(ZΘ1(t), ZΘ2(t)) = LΘ1(ZΘ1(t)) +
1

2
ZTΘ2MRMZΘ2 (16)

The derivative of LΘ2 = (ZΘ1 (t) , ZΘ2 (t)) is:

L̇Θ2 = ZTΘ1(ZΘ2 (t)− λΘ1ZΘ1) +
1

2
ZTΘ2ṀRMZΘ2 + ZTΘ2MRM ŻΘ2 (17)

Substituting (15) into (17) and use Property 2, we have:

L̇Θ2 = ZTΘ1(ZΘ2 (t)− λΘ1ZΘ1) +
1

2
ZTΘ2ṀRMZΘ2

+ ZTΘ2 (MRM α̇Θ1 + CRMαΘ1 − CRMZΘ2 +GRM + FRM + τ0 − τ)

= ZTΘ1ZΘ2 (t)− ZTΘ1λΘ1ZΘ1 +
1

2
ZTΘ2

(
ṀRM − 2CRM

)
ZΘ2 + ZTΘ2 (y + τ0 − τ)

= ZTΘ1ZΘ2 (t)− ZTΘ1λΘ1ZΘ1 + ZTΘ2 (y + τ0 − τ)

(18)

With
y = MRM α̇Θ1 + CRMαΘ1 +GRM + FRM (19)

To continue our design, the adaptive control law is presented as:

τ = y + λΘ2ZΘ2 + ZΘ1 + τ0, λΘ2 > 0 (20)

Substituting (20) into (18), we have:

L̇Θ2 = −ZTΘ1λΘ1ZΘ1 − ZTΘ2λΘ2ZΘ2 ≤ 0 (21)

Since (21), L̇Θ2 < 0, so L̇Θ2(ZΘ1 (t) , ZΘ2 (t)) < L̇Θ2(ZΘ1 (0) , ZΘ2 (0)). If ZΘ1 (t) , ZΘ2 (t) are
bounded with t > 0. By defining Ω(t) = ZTΘ1λΘ1ZΘ1+ZTΘ2λΘ2ZΘ2 so Ω (t) ≤ L̇Θ2(ZΘ1 (t) , ZΘ2 (t))
and integrate the Ω (t) with respect to time as follows:∫ t

0
Ω (ξ) dξ ≤ LΘ2(ZΘ1 (t) , ZΘ2 (t))− LΘ2(ZΘ1 (0) , ZΘ2 (0)) (22)

Because LΘ2(ZΘ1(0), ZΘ2 (0)) is a bounded function and LΘ2(ZΘ1(t), ZΘ2(t)) is nonincreas-
ing and bounded, we have:

lim
t→∞

∫ t

0
Ω (ξ) dξ <∞ (23)

According to Barbalat’s Lemma [20], when Ω̇ (t) is bounded function. It can be shown that

lim
t→∞

t∫
0

Ω (t) dt = 0. From this result, we see that, ZL1 (t) , ZL2 (t) will converge to zero when

t→∞ and the global stability of the control system for RM is guaranteed.

2.3 Structure of adaptive Fuzzy Neural Networks

A fuzzy logic system includes four parts: the knowledge base, the fuzzifier, the fuzzy inference
engine working on fuzzy rules, and the defuzzifier. The knowledge base of the fuzzy logic system
is a collection of fuzzy IF-THEN rules of the following form:

R1: IF s1 is Rl1 and s2 is Rl2 and ... and s2 is Rln, THEN y is Gl, l = 1, 2, ..., N
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Where s = (s1, ..., sn)T and y are the fuzzy logic system input and output, respectively.
F li , G

l are associated with the fuzzy membership functions µF li (si) and µGl(y), respectively. N
is the number of rules.

The output of the fuzzy system can be expressed as:

y(s) =

∑N
l=1 δl

∏n
i=1 µF li

(si)∑N
l=1

[∏n
i=1 µF li

(si)
]

Where δl = max
y∈R

µGl(y) and δ = [δ1, δ2, ..., δN ]T .

The FNNs structure includes four - layer as shown in Fig. 2, which comprises the input,
membership, rule and output layers.

Figure 2: The FNNs structure.

Layer 1 (Input layer): Each node in this layer corresponds to one input linguistic variables
si (i = 1, 2, . . . , n), and only transmits directly input values to the next layer.

Layer 2 (Membership layer): In this layer, each node represents the input values with the
following Gaussian membership functions:

µji (si) = exp

[
−
(
si −mj

i

)2
/
(
bji

)2
]

(24)

Where mj
i and b

j
i (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) are, respectively, the center and standard

deviation of the Gaussian membership function of the ith input variable xi to the node of this
layer, and m denotes the total number of membership functions.

Layer 3 (Rule layer): Each node in this layer, which is described as a fuzzy rule, multiplies
the inputs signal and the outputs result of the product. The output value of this layer is
calculated:

δk =
n∏
i=1

ωkijµ
j
i (si), k = 1, 2, . . . , N (25)

Where δk is the kth output of the rule layer, ωkji is the weight between the membership layer
and the rule layer, and N is the total number of rules.

Layer 4 (Output layer): In this layer, each node represents the output linguistic variables,
and acts as a defuzzifier. The output can be represented as follows:

yf =

N∑
1

wfkδk (26)
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Moreover, (26) can be rewritten:

y = [y1y2 . . . yN0 ]T = Wδ = yFNNs (s,W,m, b) (27)

With
W = [w1w2 . . . wN0 ]T (28)

δ = [δ1δ2 . . . δN ]T (29)

Where w =
[
wi1 w

i
2 . . . w

i
N

]T .
Next, we employ this FNNs as an approximator in our control design. Base on approximation

error analysis, there exists an optimal FNNs with its optimal parameters:

y (s (t)) = W ∗T δ∗ (s (t) ,m∗, b∗) + ∆ (s (t)) (30)

Where W ∗,m∗, b∗ are the optimal parameters of W,m, b, respectively, ∆ (s (t)) is the ap-
proximation error vector.

Assumption 1: the bound of optimal FNNs parameters:

‖W ∗‖ ≤ Lw, ‖m∗‖ ≤ Lm, ‖b∗‖ ≤ Lb (31)

Where Lw,Lm,Lb are the positive real values.
Assumption 2: Error of approximation process is bounded:

‖∆∗‖ ≤ L∆ (32)

Where L∆ is the positive real value. The output of the FNNs is the approximate value and
is represented as the following:

ŷ = Ŵ T δ̂
(
s (t) , m̂, b̂

)
(33)

Where ŷ, Ŵ , m̂, b̂ are the approximate values of y,W ∗,m∗, b∗, respectively.

3 Control design and stability analysis

3.1 Control design

We recommend the RAFNNs to find an adaptive law of the suitable adaptive RAFNNs
model that makes control system able to achieve the required approximation errors accuracy.

Architecture of the dead zone compensator is shown in Fig. 3.

Figure 3: Adaptive dead zone compensation.

To compensate the effects of dead zone, the control input after passing the dead zone can
be described in the following form [19]:

u = τd + ηd̂r + (I − η) d̂l (34)
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Where η = I if τd ≥ 0, η = 0 if τd < 0. The direct control input for robot manipulator can
be expressed as follows:

τ = τd + ηd̂r + (I − η) d̂l − ED
(
τd + ηd̂r + (I − η) d̂l

)
= τd − D̃TΞ + D̃T� (35)

Where D̃ = D − D̂, D̃ = diag
{
d̃1, d̃2, . . . , d̃n

}
and Ξ = [η, I − η]T and the modelling

mismatch � satisfies the bound [7].
‖�‖ ≤

√
n (36)

Here, we proposed an intelligent controller which combines adaptive fuzzy neural networks
control and Backstepping technique to suppress the effects of the uncertainties and approximation
errors. Thus, the unknown functions of robot manipulator control system are estimated, and the
stability can be guaranteed. The block diagram of RAFNNs is described in Fig. 4.

Figure 4: The block diagram of the adaptive control system.

The RAFNNs control law is presented as:

τd = ŷ + λΘ2ZΘ2 + ZΘ1 + τSMC + τα − D̃TΞ + D̃T� (37)

Where ŷ is the approximation of y function, τSMC is a sliding control term, and τα is the
adaptive control.

By using the RAFNNs control law (37) into (12), we can be rewritten as:

MRM ŻΘ2 = ỹ − (CRM + λΘ2)ZΘ2 − ZΘ1 + τ0 − τSMC − τα − D̃TΞ + D̃T� (38)

With
ỹ = y − ŷ = W ∗T δ∗ − Ŵ T δ̂ + ∆ (39)

The parameter errors are defined as: W̃ = W ∗−Ŵ ; δ̃ = δ∗− δ̂; m̃ = m∗− m̂ and b̃ = b∗− b̂.
Thus, equation (39) is possible to be rephrased as:

ỹ = W ∗T δ̃ + W̃ T δ̂ + ∆ (40)
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The function δ̃ can be expanded in a Taylor series as:

δ̃ =

[
∂δ1

∂m
,
∂δ2

∂m
, . . . ,

∂δ

∂m

]
m=m̂

m̃+

[
∂δ1

∂b
,
∂δ2

∂b
, . . . ,

∂δn
∂b

]
b=b̂

b̃+H
(
m̃, b̃

)
(41)

Or
δ̃ = ΥT m̃+ ΓT b̃+H

(
m̃, b̃

)
(42)

where H(m̃, b̃) ∈ Rn is the higher - order term vector:

ΥT =

[
∂δ1

∂m
,
∂δ2

∂m
, . . . ,

∂δn
∂m

]
m=m̂

∈ Rn×(nm); ΓT =

[
∂δ1

∂b
,
∂δ2

∂b
, . . . ,

∂δn
∂b

]
b=b̂

∈ Rn×(nm)

Substitute (42) into (40), we have:

ỹ + τ0 = W̃ T
[
δ̂ + ΥT (m∗ − m̂) + ΓT

(
b∗ − b̂

)]
+ Ŵ

(
ΥT m̃+ ΓT b̃

)
+W ∗TH

(
m̃, b̃

)
+ ∆ + τ0

= W̃ T
(
δ̂ −ΥT m̂− ΓT b̂

)
+ Ŵ T

(
ΥT m̃+ ΓT b̃

)
+ ω (x,N)

(43)

Where ω = [ω1, ω2, . . . , ωn]T ∈ Rn and using (42), we obtain

ω = W̃ T
(
ΥTm∗ + ΓT b∗

)
+W ∗TH

(
m̃, b̃

)
+ ∆

=
(
W ∗T − Ŵ T

) (
ΥTm∗ + ΓT b∗

)
+W ∗T

(
δ̃ −ΥT m̃− ΓT b̃

)
+ ∆ + τ0

= W ∗T
(
δ̃ + ΥT m̂+ ΓT b̂

)
− Ŵ T

(
ΥTm∗ + ΓT b∗

)
+ ∆ + τ0

The bound of ω is determined as:

‖ω‖ = ‖W ∗T
(
δ̃ + ΥT m̂+ ΓT b̂

)
− Ŵ T

(
ΥTm∗ + ΓT b∗

)
+ ∆ + τ0‖

= ‖(W ∗T δ̃ + ∆ + τ0) +W ∗T
(

ΥT m̂+ ΓT b̂
)
− Ŵ T

(
ΥTm∗ + ΓT b∗

)
‖

Since
‖W ∗TΥT m̂‖ ≤ ‖W ∗TΥT ‖‖m̂‖; ‖W ∗TΓT b̂‖ ≤ ‖W ∗TΓT ‖‖b̂‖;

‖Ŵ T
(
ΥTm∗ + ΓT b∗

)
‖ ≤ ‖Ŵ T ‖‖ΥTm∗ + ΓT b∗‖

Hence, we can infer:

‖ω‖ ≤ ‖W ∗T δ̃ + ∆ + τ0‖+ ‖W ∗TΥT ‖‖m̂‖‖W ∗TΓT ‖‖b̂‖‖Ŵ T ‖‖ΥTm∗ + ΓT b∗‖

≤
[
‖W ∗T δ̃ + ∆ + τ0‖, ‖W ∗TΥT ‖, ‖W ∗TΓT ‖,

(
‖ΥTm∗ + ΓT b∗‖

)]T [
1, ‖m̂‖, ‖b̂‖, ‖Ŵ‖

]
≤ β∗TΩ0

(44)

Where

β∗ =
[
‖W ∗T δ̃ + ∆ + τ0‖, ‖W ∗TΥT ‖, ‖W ∗TΓT ‖,

(
‖ΥTm∗ + ΓT b∗‖

)]T
; Ω0 =

[
1, ‖m̂‖, ‖b̂‖, ‖Ŵ‖

]T
Follow above analysis, a sliding mode control term τSMC is designed by:

τSMC =
ZΘ2

(
βTΩ0

)2
‖ZΘ2‖βTΩ0 + S

(45)
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Where S is a positive scalar control gain

Ṡ = −kSS,S (0) > 0 (46)

With β = [β1, β2, β3, β4]T is a bound of vector β∗.
To estimate the sliding control term τSMC we present adaptive term τ̂SMC as:

τ̂SMC =
ZΘ2

(
β̂TΩ0

)2

‖ZΘ2‖β̂TΩ0 + S
(47)

Where β̂ is the estimate of β∗.
The adaptive control τα is designed by:

τα =
ZΘ2

‖ZΘ2‖+ ζ
α (48)

Where ζ > 0 and it is chosen such that
∞∫
0

ζdt <∞.

With the adaptation law as follows:

α̇ =
‖ZΘ2‖2

‖ZΘ2‖+ ζ
(49)

Applying (43) to (38), yields:

MRM ŻΘ2 = W̃ T
(
δ̂ −ΥT m̂− ΓT b̂

)
+ Ŵ T

(
ΥT m̃+ ΓT b̃

)
+ ω

− (CRM + λΘ2)ZΘ2 − ZΘ1 − τSMC − τα − D̃TΞ + D̃T�
(50)

Based on the aforementioned analysis, the online adaptive update laws of RAFNNs, adaptive
control, and sliding control term parameters can be chosen as:

˙̂
W = kW (δ̂ −ΥT m̂− ΓT b̂)ZTΘ2

˙̂m = kmŴΥTZΘ2

˙̂
b = kbŴΓTZΘ2

˙̂
β = kβ‖ZΘ2‖Ω0

Ṡ = −kSS
α̇ = kα‖ZΘ2‖2

‖ZΘ2‖+ζ
˙̂
D = kDΞZTΘ2 − kDαDD̂‖ZΘ2‖

(51)

Here kw, km, kb, kβ, kS , kα, kD are positive adaptation rates.

3.2 Stability analysis

Theorem 1: Consider the RAFNNs adaptive control law of an n-link robot manipulator
represented by (1) is designed in (37), and a sliding control term τSMC is given by (45), the
adaptation control is defined in (48) and the parameters ˙̂

W, ˙̂m,
˙̂
b,

˙̂
β, Ṡ, α̇, ˙̂

D are adjusted
by the adaptive algorithm (51). Then the position tracking error and all the system parameters
converges to zero.
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Proof: The Lyapunov function candidate is chosen as follows as:

L (t) =
1

2

[
Z
T

Θ1
ZΘ1 + Z

T

Θ2MRMZΘ2 +
1

kw
W̃ T W̃ +

1

km
m̃T m̃+

1

kb
b̃T b̃+

1

kβ
β̃T β̃

+
2

kS
S +

1

kα
α2 +

1

kD
tr
(
D̃T D̃

)] (52)

The derivative of L(t) along to time, we have:

L̇ (t) = ZTΘ1 (ZΘ2 (t)− λΘ1ZΘ1) +
1

2
ZTθ2ṀRMZΘ2 + ZTΘ2MRM ŻΘ2 −

1

kw
W̃ T ˙̂

W

− 1

km
m̃T ˙̂m− 1

kb
b̃T

˙̂
b− 1

kβ
β̃T

˙̂
β +

1

kS
Ṡ +

1

kα
αα̇− 1

kD
tr
(
D̃T ˙̂

D
) (53)

Substitute (50) into (53) and using property 2, we obtain:

L̇ (t) = −ZTΘ1λΘ1ZΘ1 − ZTΘ2λΘ2ZΘ2 + ZTΘ2

[
W̃ T

(
δ̂ −ΥT m̂− ΓT b̂

)
+Ŵ T

(
ΥT m̃+ ΓT b̃

)
+ ω − τSMC − τα + D̃TΞ− D̃T�

]
− 1

kw
W̃ T ˙̂

W − 1

kυ
m̃T ˙̂m

− 1

kb
b̃T

˙̂
b− 1

kβ
β̃T

˙̂
β +

1

kS
Ṡ +

1

kα
α
kα‖Zθ2‖2

‖Zθ2‖+ ζ
− 1

kD
tr
(
D̃T ˙̂

D
) (54)

Substituting the adaptive algorithm (51) to (54), we have:

L̇ (t) = −ZTΘ1λΘ1ZΘ1 − ZTΘ2λΘ2ZΘ2 + ZTΘ2 (ω − τSMC − τα) + ZTΘ2

(
D̃TΞ− D̃T�

)
− β̃T ‖ZΘ2‖Ω0 − S + α

‖ZΘ2‖2

‖ZΘ2‖+ ζ
− tr

(
D̃T

(
ΞZT

Θ2
− αDD̂‖ZΘ2‖

)) (55)

By using (44), (45) and (48), it becomes:

L̇ (t) ≤ −ZTΘ1λΘ1ZΘ1 − ZTΘ2λΘ2ZΘ2 − ZTΘ2

ZΘ2

(
β̂TΩ0

)2

‖ZΘ2‖β̂TΩ0 + S
+ ZTΘ2β

∗TΩ0

− β̃T ‖ZΘ2‖Ω0 − S + tr
(
D̃TZTΘ2

(
αDD̂ −�

))
≤ −ZTΘ1λΘ1ZΘ1 − ZTΘ2λΘ2ZΘ2 +

S‖ZΘ2‖β̂TΩ0

S‖ZΘ2‖β̂TΩ0 + S
− S + tr

(
D̃TZTΘ2

(
αDD̂ −�

))
(56)

Since the sum of the last two terms in (56) is always less than zero, we can place the new
upper bound on L̇.

L̇ (t) ≤ −ZTΘ1λΘ1ZΘ1 − ZTΘ2λΘ2ZΘ2 + tr
(
D̃TZTΘ2

(
αD

(
D − D̃

)
−�

))
(57)

By using trD̃T
(
D − D̃

)
=
(
D̃,D

)
− ‖D̃‖2 ≤ ‖D̃‖‖D‖ − ‖D̃‖2 and using (36) into the

inequality (57) could be rewritten as follows:

L̇ ≤ −ZTΘ1ΩΘ1ZΘ1 − ZTΘ2ΩΘ2ZΘ2 +
√
n‖ZΘ2‖‖D̃‖+ αDDM‖ZΘ2‖‖D̃‖ − αD‖ZΘ2‖‖D̃‖2

≤ −ZTΘ1ΩΘ1ZΘ1 − ZTΘ2ΩΘ2ZΘ2 + c0‖ZΘ2‖D̃‖ − αD‖ZΘ2‖‖D̃‖
2‖

(58)

With c0 =
√
n+ αDDM .
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We see that to make sure L̇ ≤ 0

−c0‖ZΘ2‖‖D̃‖+ αD‖ZΘ2‖‖D̃‖2 > 0 (59)

So, if we choose suitable constant vectors αD, DM which satisfy (59),
L̇
(
ZΘ1 (t) , ZΘ2 (t) ,S (t) , W̃ , ã, b̃, β̃

)
≤ 0, L̇

(
ZΘ1 (t) , ZΘ2 (t) ,S (t) , W̃ , ã, b̃, β̃

)
is a negative

semidefinite function, L̇
(
ZΘ1 (t) , ZΘ2 (t) ,S (t) , W̃ , ã, b̃, β̃

)
≤ L̇

(
ZΘ1 (0) , ZΘ2 (0) ,S (0) , W̃ , b̃, β̃

)
,

if all parameters such as ZΘ1 (t) , ZΘ2 (t) ,S (t) , W̃ , ã, b̃, β̃ are bounded with t > 0. By defining
ε (t) = −ZTΘ1ΩΘ1ZΘ1 −ZTΘ2ΩΘ2ZΘ2 so ε (t) ≤ −L̇ (t) and integrate the ε (t) with respect to time
as follows:

∫ t

0
(ξ) dξ ≤ L (ZΘ1 (0) , ZΘ2 (0) , S (0) , W̃ , ã, b̃, β̃

)
− L

(
ZΘ1 (t) , ZΘ2 (t) ,S (t) , W̃ , ã, b̃, β̃

)
(60)

Because L
(
ZΘ1 (0) , ZΘ2 (0) ,S (0) , W̃ , ã, b̃, β̃

)
is a bounded function, and

L
(
ZΘ1 (t) , ZΘ2 (t) ,S (t) , W̃ , ã, b̃, β̃

)
is nonincreasing and bounded, we have

lim
t→∞

∫ t

0
ε (ξ) dξ <∞ (61)

According to Barbalat’s Lemma [20], when ε̇ (t) is bounded function. It can be shown that

lim
t→∞

t∫
0

ε (t) dt = 0. From this outcome, we see that, ZΘ (t) will converge to zero when t → ∞

and the global stability of the control system for RM is assured by the updated law (37).

4 Simulation and experimental results

4.1 Simulation results

Here, a three-link RM is applied to confirm the efficiency of the suggested control method
based on RAFNNs for illustrative purposes. The detailed system parameters of three-link RM
model (Fig. 5) are given as follows:

MRM =

 MRM11 MRM12 MRM13

MRM21 MRM22 MRM23

MRM31 MRM32 MRM33

 ;CRM =

 CRM11 CRM12 CRM13

CRM21 CRM22 CRM23

CRM31 CRM32 CRM33

 ;

GRM =

 GRM1

GRM2

GRM3

 ;
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Figure 5: The model of three-joint RM.

MRM11 = (m1 +m2 +m3) l21 + (m2 +m3) l22 +m3l
2
3 + 2 (m2 +m3) l1l2 cos (Θ2) ;

+ 2m3l1l3 cos (Θ2 + Θ3) + 2m3l2l3 cos (Θ3) ;

MRM12 = (m2 +m3) l22 +m3l
2
3 + (m2 +m3) l1l2 cos (Θ2)

+m3l1l3 cos (Θ2 + Θ3) + 2m3l2l3 cos (Θ3) ;

MRM13 = m3l
2
3 +m3l1l3 cos (Θ2 + Θ3) +m3l2l3 cos (Θ3) ; MRM21 = MRM12;

MRM22 = (m2 +m3) l22 +m3l
2
3 + 2m3l2l3 cos (Θ3) ; MRM23 = m3l

2
3 +m3l2l3 cos (Θ3) ;

MRM31 = m3l
2
3 +m3l1l3 cos (Θ2 + Θ3) +m3l2l3 cos (Θ3) ;

MRM32 = M23; MRM33 = m3l
2
3;

CRM11 = −2 (m2 +m3) l1l2 sin (Θ2) Θ̇2 − 2m3l1l3 sin (Θ2 + Θ3)
(

Θ̇2 + Θ̇3

)
− 2m3l2l3 sin (Θ3) Θ̇3;

CRM12 = − (m2 +m3) l1l2 sin (Θ2) Θ̇2 −m3l1l3 sin (Θ2 + Θ3)
(

Θ̇2

)
− 2m3l2l3 sin (Θ3) Θ̇3 − 2m3l1l3 sin (Θ2 + Θ3) Θ̇3;

CRM13 = −m3l2l3 sin (Θ3) Θ̇3 −m3l1l3 sin (Θ2 + Θ3) Θ̇3; CRM22 = −2m3l2l3 sin (Θ3) Θ̇3;

CRM23 = −m3l2l3 sin (Θ3) Θ̇3; CRM32 = m3l2l3 sin (Θ3) Θ̇2; CRM33 = 0;

GRM1 = (m1 +m2 +m3) gl1sin (Θ1) + (m2 +m3) gl2sin (Θ1 + Θ2)

+m3gl3sin (Θ1 + Θ2 + Θ3) ;

GRM2 = (m2 +m3) gl2sin (Θ1 + Θ2) +m3gl3sin (Θ1 + Θ2 + Θ3) ;

GRM3 = m3gl3sin (Θ1 + Θ2 + Θ3)

Where m1,m2,m3 are links masses; l1, l2, l3 are links lengths; The parameters of three link
RM are given as follows: m1 = 5.4 (kg) , m2 = 4.4 (kg) ,m3 = 2 (kg) , l1 = 520 (mm) , l2 =
420 (mm), l3 = 260 (mm); g = 9.8

(
m/s2

)
.

The desired joint trajectories of the three link robot manipulator are chosen by:

Θd =
[

Θd1 Θd2 Θd3

]T
=
[

0.5 sin (2πt) 0.5 sin (2πt) 0.5 sin (2πt)
]T
.

In addition, external disturbances and friction force in this simulation are selected as fol-



A Robust Adaptive Control using Fuzzy Neural Network
for Robot Manipulators with Dead-Zone 705

lowing:

τ0 =

 3sin (πt)
3sin (πt)
3sin (πt)

 ; FIRM

(
Θ̇
)

=


5Θ̇1 + 0.3sign

(
Θ̇1

)
5Θ̇2 + 0.3sign

(
Θ̇2

)
5Θ̇3 + 0.3sign

(
Θ̇3

)
 .

The proposed controller parameter values are given as follows: λ = diag (6, 6, 6) ;K =
diag (100 , 110 , 100) ; kw = diag (60, 60, 60, 60, 60) ; km = kb = diag (50, 40, 50) ∈ Rmp×mp;
kβ = diag (0.001, 0.001, 0.001, 0.001, 0.001); kS = 0.12; kα = 0.1,hr (u) = u− dr; hl (u) = u+ dl;
dr = 10; dl = −10; kD = 10; αD = 0.2.

The initial conditions are selected as follows: S (0) = 1, Ω0 (0) = [1 1 1 1], ζ (0) = 1.

In here, the proposed RAFNNs is applied to control the RM in comparison with the NNs [26]
and PID. The simulation results of the NNs, PID and the proposed RAFNNs are shown in Fig.
6. Since the simulated results, we see that, the position tracking of three links with the RAFNNs,
NNs, and PID can be guaranteed, and the tracking errors of the NNs, PID and the proposed
intelligent controller are converged. However, the proposed intelligent control system converges
faster than the NNs and PID systems. It means that all updated parameters in the dynamic
structure RAFNNs and the amount of the rule nodes are adjusted, the approximation capability
of the dynamics structure RAFNNs is also superior to the NNs and PID systems. Moreover,
from Fig. 6 it can be observe that, the control force of the suggested RAFNNs is smoother and
has smaller oscillation than the NNs and PID to attain the requested level of performance when
the tracking errors reach the high value.

Figure 6: Simulated results of trajectory, tracking errors, and control efforts of the NNs, PID
and proposed RAFNNs system.
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4.2 Experimental results

Here, we implemented two experimental outcomes to prove the efficiency of the RAFNNs
controller on a three-link robot manipulators. Fig. 7 illustrates the experimental control system
model.

Figure 7: Experimental control system.

The first experimental example assumes that 0.5-kg payload is added in the masses of three
links RM, and all parameters are the same as in the simulation model. The experimental results
of joint trajectory, control torques and tracking errors are exposed in Fig. 8. From Fig. 8, we
can easily see that the position tracking of RM are still obtained with PID, NNs, and RAFNNs.
However the responses and the tracking error norm of the RAFNNs are quite better than the
NNs and PID methods. Furthermore, from these results can see that the proposed intelligent
controller torques are less and smooth than NNs in [26], and PID which still exist the chattering
phenomena when a load of manipulators changed. Therefore, the position tracking performance
of the recommended RAFNNs is better than the NNs and PID under parameters variation. It
means that due to the dynamic structure, the proposed RAFNNs is less sensitive to the parameter
variation than the NNs and PID.

The second experimental case, the external disturbance de (t) is suddenly injected more into
control system when the robot is tracking a trajectory. This occurred after the first 0.5s of the
experimental period, and all other parameters are the same as in the simulation model. The
external disturbance shapes are expressed as follows:

de (t) = [100 sin (100t) 100 sin (100t) 100 sin (100t) ]T

.
The experimental outcomes of the second case are shown in Fig. 9. According to these

results, it is easy to see that, the performance of the proposed RAFNNs is just slightly affected,
while the performance of PID approach is seriously affected. Therefore, the control performance
and robustness of the proposed RAFNNs under external disturbance are better than the NNs [26]
and PID. It is obvious that the performance of the proposed RAFNNs is better than the NNs
and PID system after a period of learning.
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Figure 8: Trajectory, tracking errors, and control efforts of the NNs, PID and proposed RAFNNs
system in the first experimental case.

Figure 9: Trajectory, tracking errors, and control efforts of the NNs, PID and proposed RAFNNs
system in the second experimental case.
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5 Conclusions

In this paper, an adaptive robust control system based on structure FNN has been proposed,
and the mathematical proof has been presented. It has been also successfully implemented to
control the joints of three-link RM for achieving high precision position tracking and compensa-
tion dead-zone. By combining the FNN, Lyapunov stability theorem, the adaptive control laws
are developed to tune all parameters of the network in order to reduce approximation error and
improved control performance. In addition, the robust term is designed dealing with the approx-
imation error, prime parameter vectors and higher order terms in Taylor series. Therefore, the
proposed controller proved that this control system could achieve desired tracking performance.
The stability and robustness of the closed-loop manipulators system are guaranteed. Simulation
and experimental results of three-links RM via the proposed RAFNNs and NNs, PID also have
provided in this study to compare and display. The proposed RAFNNs control systems can be
applied to other systems, such as MMR, AC servo systems, and they can also be applied as a
good alternative in the existing robot manipulator control system. This application could require
further investigations.

Bibliography

[1] Baigzadehnoe, B.; Rahmani, Z.; Khosravi, A.; Rezaie, B. (2017). On position/force track-
ing control problem of cooperative robot manipulators using adaptive fuzzy backstepping
approach, ISA Transactions, 70, 432–446, 2017.

[2] Bragina, A. A.; Shcherbakov, V. P.; Shiryaev, V. I. (2018). Synthesis of Adaptive Control
of Robotic Manipulator by the Method of Lyapunov Functions, IFAC-PapersOnLine, 51,
298–303, 2018.

[3] Chen, C. (2011). Robust Self-Organizing Neural-Fuzzy Control With Uncertainty Observer
for MIMO Nonlinear Systems, IEEE Transactions on Fuzzy Systems, 19, 694–706, 2011.

[4] Chung, C.; Chang, Y. (2013). Backstepping control of multi-input non-linear systems, IET
Control Theory & Applications, 7, 1773–1779, 2013.

[5] He, J.; Luo, M.; Zhang, Q.; Zhao, J.; Xu, L. (2016). Adaptive Fuzzy Sliding Mode Controller
with Nonlinear Observer for Redundant Manipulators Handling Varying External Force,
Journal of Bionic Engineering, 13, 600–611, 2016.

[6] He, W.; Dong, Y.; Sun, C. (2015). Adaptive neural network control of unknown nonlinear
affine systems with input deadzone and output constraint, ISA Transactions, 58, 96–104,
2015.

[7] Ik Han, S.; Lee, J. (2016). Finite-time sliding surface constrained control for a robot manip-
ulator with an unknown deadzone and disturbance, ISA Transactions, 65, 307–318, 2016.

[8] Ishii, C.; Shen, T.; Tamura, K. (1997). Robust model-following control for a robot manipu-
lator, IEE ProcControl Theory Appl, 144(1), 53–60, 1997.

[9] Jing, C.; Xu, H.; Niu, X. (2019). Adaptive sliding mode disturbance rejection control with
prescribed performance for robotic manipulators, ISA transactions, 91, 41–51, 2019.

[10] Jing, Z.; Changyun, W.; Ying, Z. (2004). Adaptive backstepping control of a class of un-
certain nonlinear systems with unknown backlash-like hysteresis, IEEE Transactions on
Automatic Control, 49, 1751–1759, 2004.



A Robust Adaptive Control using Fuzzy Neural Network
for Robot Manipulators with Dead-Zone 709

[11] Karamali Ravandi, A.; Khanmirza, E.; Daneshjou, K. (2018). Hybrid force/position control
of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding
mode control, Applied Soft Computing, 70, 864–874, 2018.

[12] Khorashadizadeh S.; Sadeghijaleh, M. (2018). Adaptive fuzzy tracking control of robot ma-
nipulators actuated by permanent magnet synchronous motors, Computers & Electrical
Engineering, 72, 100–111, 2018.

[13] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V. (1995). Nonlinear Adaptive Control Design,
New York, NY, USA: Wiley, 1995.

[14] Lewis, F. L.; Tim, K.; Wang, L. Z.; Li, Z. X. (1999). Deadzone compensation in motion
control systems using adaptive fuzzy control system, IEEE Trans. Control. Syst. Technol,
7, 731–742, 1999.

[15] Peng, J.; Dubay, R. (2019). Adaptive fuzzy backstepping control for a class of uncertain non-
linear strict-feedback systems based on dynamic surface control approach, Expert Systems
with Applications, 120, 239–252, 2019.

[16] Precup, R.; Tomescu, M.; Preitl, S. (2009). Fuzzy logic control system stability analysis
based on Lyapunov’s direct method, International journal of computer, communication &
control, IV, 415–426, 2009.

[17] Rossomando, F. G.; Soria, C.; Carelli, R. (2014). Sliding mode control for trajectory tracking
of a non- holonomic mobile robot using adaptive neural networks, Control Engineering and
Applied Informatics, 16, 12–21, 2014.

[18] Sabahi, F. (2018). Introducing validity into self-organizing fuzzy neural network applied to
impedance force control, Fuzzy Sets and Systems, 337, 113–127, 2018.

[19] Selmic R. R.; Lewis, F. L. (2000). Deadzone compensation in motion control systems using
neural networks, IEEE Transactions on Automatic Control, 45, 602–613, 2000.

[20] Slotine J. J. E.; Li, W. (1991). Applied Nonlinear Control, Prentice-Hall, Hoboken, NJ,
1991.

[21] Tsai, C.-H.; Chuang, H.-T. (2004). Deadzone compensation based on constrained RBF neu-
ral network, Journal of the Franklin Institute, 341, 361–374, 2004.

[22] Vrkalovic, S.; Lunca, E.; Borlea, I. (2018). Model-free sliding mode and fuzzy controllers
for reverse osmosis desalination plants, International journal of Artificial intelligence, 16,
208–222, 2018.

[23] Wai, R.; Muthusamy, R. (2013). Fuzzy-Neural-Network Inherited Sliding-Mode Control for
Robot Manipulator Including Actuator Dynamics, IEEE Transactions on Neural Networks
and Learning Systems, 24, 274–287, 2013.

[24] Wai, R.; Muthusamy, R. (2014). Design of Fuzzy-Neural-Network-Inherited Backstepping
Control for Robot Manipulator Including Actuator Dynamics, IEEE Transactions on Fuzzy
Systems, 22, 709–722, 2014.

[25] Wen, C.; Zhou, J.; Liu, Z.; Su, H. (2011). Robust Adaptive Control of Uncertain Nonlinear
Systems in the Presence of Input Saturation and External Disturbance, IEEE Transactions
on Automatic Control, 56, 1672–1678, 2011.



710 D.H. Vu, S. Huang, T.D. Tran, T.Y. Vu, V.C. Pham

[26] Wu, Y.; Huang, R.; Li, X.; Liu, S. (2019). Adaptive neural network control of uncertain
robotic manipulators with external disturbance and time-varying output constraints, Neu-
rocomputing, 323, 108–116, 2019.

[27] Ying, H. (2005). Structure and stability analysis of general mamdani fuzzy dynamic Models,
International journal of intelligent systems, 20, 103–125, 2005.

[28] Ying, Z.; Changyun, W.; Yeng Chai, S. (2000). Adaptive backstepping control design for
systems with unknown high-frequency gain, IEEE Transactions on Automatic Control, 45,
2350–2354, 2000.

[29] Zhou, D.; Shi, M.; Chao, F.; Lin, C. M.; Yang, L.; Shang, C.; Zhou, C. (2018). Use of
human gestures for controlling a mobile robot via adaptive CMAC network and fuzzy logic
controller, Neurocomputing, 282, 218–231, 2018.


