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Abstract: This paper establishes a novel reliability assessment method for industrial
control system (ICS). Firstly, the qualitative and quantitative information were inte-
grated by evidential reasoning(ER) rule. Then, an ICS reliability assessment model
was constructed based on belief rule base (BRB). In this way, both expert experience
and historical data were fully utilized in the assessment. The model consists of two
parts, a fault assessment model and a security assessment model. In addition, the
initial parameters were optimized by covariance matrix adaptation evolution strategy
(CMA-ES) algorithm, making the proposed model in line with the actual situation.
Finally, the proposed model was compared with two other popular prediction methods
through case study. The results show that the proposed method is reliable, efficient
and accurate, laying a solid basis for reliability assessment of complex ICSs.
Keywords: Belief rule base (BRB), industrial control system (ICS), evidential rea-
soning (ER), reliability assessment, covariance matrix adaptation evolution strategy
(CMA-ES) algorithm.

1 Introduction

The industrial control system (ICS) integrates computer technology, communication and
the control theory [9]. It is widely used in infrastructure industries like power transmission,
water supply, oil and gas transportation, etc. In the ICS, each controller regulates multiple
components. The fault or intrusion of one component will threaten the security of the entire
system. Once the ICS fails, the user will not only lose monitoring and control, but also suffer
from facility damage, economic losses and even casualties. Therefore, it is of great significance
to accurately assess the reliability of the ICS, especially in complex applications [12].

The existing ICS reliability assessment methods are mainly based on knowledge, model or
data [18]. The knowledge-based methods include fault mode, effects, and criticality analysis
(FMECA) [10], fault tree [8], decision tree [1], and risk analysis [15]. These approaches mainly
rely on qualitative or quantitative knowledge. The model-based methods, namely, open-switch
fault diagnosis [20], signal-based coding [11] and processing fault diagnosis [12], can diagnose the
faults of different systems according to the actual industrial processes. However, it is difficult
to build effective models for large-scale ICSs. The data-based methods emerge due to the pro-
liferation of industrial data collection techniques, such as distributed control system (DCS) and
supervisory control and data acquisition (SCADA). Relying on historic process data, many data-
based methods are suitable for ICS fault detection, e.g. Shewhart individuals control chart [5],
Hotelling’s T-squared (T 2) control chart [2], quality control chart [17], principal component anal-
ysis (PCA) [16], and knowledge discovery in databases (KDD) [19].
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Each type of the above methods has its defects. For knowledge-based methods, the experts
are often unable to obtain the accurate qualitative knowledge, owing to the complexity of the
ICS and the numerous factors [13]. The model-based methods depend heavily on specific samples
and cannot be extended easily to general cases. Neither can they use qualitative or quantitative
data. The data-driven methods work well in reliability assessment of accurate data samples,
but perform poorly in differentiating normal data from abnormal data [14]. What is worse, the
ICS data cannot be acquired under certain conditions. To sum up, the existing methods cannot
effectively utilize all the various uncertain information in the ICS, including expert knowledge
and historical data. It is imperative to develop an approach to assess ICS reliability against these
semi-quantitative data.

To solve the above problems, this paper integrates qualitative and quantitative information
by evidential reasoning (ER) rule, and then establishes an ICS reliability assessment model based
on belief rule base (BRB), which is a powerful nonlinear strategy for uncertainty problems [6] [22].
In this way, both expert experience and historical data were fully utilized in the assessment. Fi-
nally, the initial parameters were optimized by covariance matrix adaptation evolution strategy
(CMA-ES) algorithm, making the proposed model in line with the actual situation [7].

The remainder of this paper is organized as follows: Section 2 analyzes the reliability of the
ICS; Section 3 sets up a BRB-based model and applies it to assess the ICS reliability; Section 4
compares the proposed model with two other methods through a case study on a tobacco factory;
Section 5 wraps up this paper with several meaningful conclusions.

2 Problem overview

2.1 ICS structure
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Figure 1: Typical SCADA structure

Consider SCADA as a typical ICS, the structure of SCADA is illustrated in Figure 1 [21].
In the control center, there are a human-machine interface (HMI), an engineering workstation, a
data historian, a master terminal unit (MTU) and a communication router. All these components
are connected via a local area network (LAN). Among them, the HMI mainly displays the data
collected from the site, while the MTU stores and processes input and output data. In the wide
area network, the information is transmitted between the control center and the field sites via
power line, radio, microwave, cellular or satellite. On the field sites, there are multiple distributed
remote terminal units (RTUs) or programmable logic controllers (PLCs), which control local
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processes. The ICS can collect various data, analyze the trend and issue alarms when parameters
exceed the allowable range.

According to the struture of SCADA, the main components of ICS can be divided into three
types as shown in Table 1 [3].

Table 1: The type of main components in ICS

First level Second level Third level

ICS components

Hardware components

PLC
RTU
HMI
MTU

Other hardware

Software components

OS(Operation system)
DB(Data base)

Software of SCADA system
Software of PLC
Other software

Communication Profinet
Communication routers

Modem
Other communication components

2.2 The framework for ICS reliability assessment

The accuracy of ICS reliability assessment hinges on the clear identification of various influ-
encing factors. In fact, these factors can be divided into internal factors and external factors. As
shown in Table 1, the internal factors are the faults of the system components, including soft-
ware fault, hardware fault and communication fault, while the external factors include network
attacks and human errors, both of which directly bears on the system security. Therefore, the
ICS reliability can be assessed from both the fault and security of the system.

On this basis, the framework of ICS reliability assessment was constructed. As shown in
Figure 3, the framework consists of three layers: the target layer, the criteria layer and the plan
layer. The target layer is the reliability assessment; the criteria layer encompasses fault assess-
ment and security assessment; the plan layer contains various antecedent attributes that affect
the criteria layer.

2.3 Process of ICS reliability assessment

Firstly, the fault and security attributes of the ICS were integrated by the ER rule for fault
and security analyses. Based on the analysis results, the BRB was adopted to establish a model
and CMA-ES for training. Finally, the ICS reliability assessment model was obtained. The
specific steps are presented in Figure 4 below.

2.4 Mathematical description

Let FA, SC and FR be the fault assessment result, security assessment result and final
result of ICS reliability assessment, respectively. The set of antecedent attributes C1 and that
C2 for fault assessment and security assessment can be respectively expressed as:

C1 =
{
c1

1, c
1
2, · · · c1

n

}
(1)
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Figure 2: Relationship between influencing factors and ICS reliability
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Figure 3: Framework of ICS reliability assessment

C2 =
{
c2

1, c
2
2, · · · c2

m

}
(2)

where c1
i and c2

i are the i-th antecedent attribute for fault assessment and security assessment,
respectively.

Then, the fault assessment result and security assessment result can be respectively obtained
by:

FA = ER1

(
C1, t1

)
(3)

SC = ER2

(
C2, t2

)
(4)

where ER1(•) is the relationship between the leading attribute and the fault assessment result;
t1 is the set of parameters for ER1(•) ; ER2(•) is the relationship between the leading attribute
and the security assessment result; t2 is the parameters of ER2(•). On this basis, the BRB-based
ICS reliability assessment result can be obtained by combining the fault and security assessment
results:

FR = BRB(FA, SC, t) (5)

where BRB(•) is the conversion from fault and security assessment results to reliability assess-
ment result; t is a set of parameters.

3 Construction of BRB-based ICS reliability assessment model

As mentioned before, the first step of ICS reliability assessment is to clearly identify all the
faults in the system components. After all, the fault of one component will threaten the security
of the entire system. Moreover, the ICS reliability assessment must consider both quantitative
data (e.g. system duration, fault frequency and PLC fault tolerance) and qualitative data (e.g.
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Figure 4: The process of ICS reliability assessment

terminal controllability, communication stability). The former can be collected by data monitor-
ing system, while the latter require expert interpretation. If the two types of data are uncertain,
it is impossible to assess the ICS reliability in an accurate manner.

Considering the excellent performance of the ER and the BRB for uncertainty problems,
the author decided to set up a multi-layer ICS reliability assessment model, optimize the model
with the historical data of the BRB, and integrate multiple attributes with the ER rule. The
proposed model contains a fault assessment model and a security assessment model. Besides,
the parameters was trained by the CMA-ES algorithm, such that the assessment indices are in
line with the actual situation.

3.1 Fault assessment attributes

Reliability is defined as the ability or possibility to perform a specified function without
failure within a specified time and under specified conditions. The reliability of the system can
be evaluated by mean time to repair, failure rate and mean time to failure [22].

In our framework of ICS reliability assessment, the fault assessment covers three aspects. For
each attribute, the weight t is the most important parameter in the ER process. The antecedent
attributes of fault assessment are listed in Table 2.

3.2 Security assessment attributes

The ICS security is partially affected by network attacks. The common attacks include virus
and trojan attack, DoS attack, detection attack, U2R attacks and R2L attack. Specifically, the
virus and trojan attack destroys the ICS or steals system data with a malicious program; the
DoS consumes an excessive amount of ICS resources, making services unavailable; the detection
attack scans the ICS network and unlocks the hidden security dangers; the U2R attack acquires
the rights of the ICS superuser through manipulation of the ICS vulnerabilities; the R2L attack
remotely gains unauthorized access to the ICS. The different attacks pose varied levels of threats
and brings diverse damages to the ICS. Therefore, the attack type, continuous attack time,
attack frequency and attack severity were selected as the antecedent attributes of the security
assessment.

The ICS security is also affected by human errors like mis-operation, unauthorized entry, etc.
Hence, the occurrence frequency and severity of such errors were also taken as the antecedent
attributes of the security assessment. Table 3 lists all the antecedent attributes of the security
assessment.
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Table 2: The antecedent attributes of fault assessment

First level Second level Third level

The Fault Reliability
of ICS

Hardware
Reliability of ICS

The Rate of Failure
(c1

11)(t111 = 0.15)
MTTF( Mean Time to Failure

(c1
12)(t112 = 0.2)

MTTR(Mean Time to Repair)
(c1

13)(t113 = 0.15)
MPMT(Mean Preventive Maintenance Time)

(c1
14)(t114 = 0.1)

MPBF(MeanTime Between Failure)
(c1

15)(t115 = 0.1)
The Failure Severity

(c1
16)(t116 = 0.15)

The Failure Tolerance
(c1

17)(t117 = 0.15)

Software Reliability of
ICS(c1

2)(t2 = 0.15)

MTTF( Mean Time to Failure )
(c1

21)(t12 = 0.2)
MTTR( Mean Time to Repair )

(c1
22)(t122 = 0.2)

The Fluency of Software
(c1

23)(t123 = 0.3)
MPBF(Mean Time Between Failure)

(c1
24)(t124 = 0.15)

The Rate of Failure
(c1

25)(t125 = 0.15)

Communication
Reliability of ICS

The Rate of Lost
(c1

31)(t131 = 0.2)
The Packet Loss Rate

(c1
32)(t132 = 0.3)

MTTF( Mean Time to Failure )
(c1

33)(t133 = 0.2)
The Failure Severity

(c1
34)(t134 = 0.2)
Delay rate

(c1
35)(t135 = 0.15)

3.3 ER rule process

ER rule is developed as a multi-criteria decision analysis (MCDA) approach on the basis
of belief decision and D-S theory [22]. Compared to the D-S theory of evidence, the calculation
process of the ER rule is linear. The ER rule can be implemented in the following steps:

Assume that there are P basic attributes {c1, · · · ci, · · · cP } of a general attribute C in a
two-level hierarchy, and {t1, · · · , ti, · · · tp} denotes the weights of the basic attributes, where
0 ≤ ti ≤ 1 . There are M assessment grades.

Step 1. Convert the belief of each assessment level into belief. The conversion is shown in
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Table 3: The antecedent attributes of security assessment

First level Second level Third level Forth level

The Security
Reliability of ICS(CS)

Security Event
(c2

1)(t21 = 0.5)

The type of attacks
(c2

11)c2
11 = 0.2)

Virus and trojan attack
(c2

111)(t2111 = 0.3)
U2R attacks

(c2
112)(c2

112 = 0.2)
R2L attack

(c2
113)(c2

113 = 0.2)
Dos attack

(c2
114)(c2

114 = 0.3)
Continuous attack time

(c2
12)(t212 = 0.2)

The frequcy of attacks
(c2

13)(t213 = 0.3)
The Severity of attacks

(c2
14)(t214 = 0.3)

Error Operatio
(c2

2)(t22 = 0.5)

The Rate of events
(c2

21)(t221 = 0.5)
The Severity of attacks

(c2
22)(t222 = 0.5)

Figure 5, where Qi,j represents the basic probabilistic set relative to the j-th assessment level
Qi,Θ is the rest of probabilistic set of the unassigned to any resultaccording to the i-th attribute,
Qi,Θ denotes unallocated basic probability mass relative to the in significant degree of the i-th
basic attribute, Qi,Θ represents the unassigned basic probability mass with respect to the incom-
pleteness of the i-th basic attribute.

 

Figure 5: The conversion process

Step 2. Combine the first i-th attributes through the ER, and the detailed process can be
describe as Figure 6.

where QI(i+1),j represents the probability set of the j-th evaluation grade after the combi-
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Figure 6: The combination process

nation of the first i-th basic attributes, and KI(i+1) can be calculated by:

KI(i+1) =
1

1−
∑N

k=1

∑N
j=1
j 6=k

PI(i),kPi+1,j

(6)

Step 3. Determine the belief of the j-th assessment level and the belief of the unassigned
attributes by:

β̂j =
QI(M),j

1−QI(M),Θ

(j = 1, 2, · · · , N) (7)

β̂	 =
Q̃I(M),Θ

1−QI(M)Θ

(8)

Compute the belief of the assessment results after determining all attributes:

βi,j =
Ci,j+1−U(ci)
Ci,j+1−Ci,j

(Ci,j+1 ≤ U (ci) ≤ Ci,j+1)

βi,j+1 = 1− βi,j
βi,k = 0(k = 1, · · · , N, k 6= j, j + 1)

(9)

where U (ci) is the value of attribute ci and ci,j is the j-th reference value of ci .
The ER rule can be described as an attribute fusion process. Based on the original data on

the ICS, the various attributes should be mixed and then partially allocated to the third layer.
Then, the assessment level of second layer attributes should be determined according to the
third layer attributes, and that of first layer attributes according to the second layer attributes.
Finally, the attributes of the three layers were integrated again by the ER rule, yielding to final
ICS assessment result.

3.4 The reliability model based on BRB

The assessment results fused by ER rule should be graded according to the safety assessment
result and fault assessment result, because the ICS reliability is an integration of fault and
security. Then, the fused results will be taken as the input of the BRB model. As shown in
Table 4, there are five reliability levels in FA and SC :

C1 ∈ {TW,B,G,E, TB} (10)
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Table 4: Reliability level for ICS

Reliability Level The level of fault
assessment (FA)

The level of security
assessment (SC)

The level of Final
result (FR)

1(The worst) TW TW TW

2(Bad) B B B

3(Good) G G G

4(Excellent) E E E

5(The best) TB TB TB

C2 ∈ {TW,B,G,E, TB} (11)

where C1 is the reliability level of FA ; C2 is the reliability level for of SC . The final result FR
can be described as:

FR = (FR1, FR2, FR3, FR4, FR5) = ({TW,B,G,E, TB}) (12)

The reliability of Rk can be expressed as:
if FA = C1

k and SC = C2
k , then FR = {(SC1, t1,k) , · · · , (SC5, t5,k)} with a rule weight θk

and attribute weights ρc1 and ρc2 .
The BRB model have 25 rules in the initial case. The initial belief of the rules was deter-

mined by reliability assessment. If the fault assessment or security assessment are the worst (
TW ), it is impossible to guarantee the data accuracy in the ICS, i.e. the assessment result must
the worst ( TW ). For example, the reliabilities of R5, R10 , R15 , R20 , R25 can be expressed as:

IfFAisTWandSCisTW, theFRis{(TW, 1), (B, 0), (G, 0), (E, 0), (TB, 0)}
IfFAisBandSCisTW, theFRis{(TW, 1), (B, 0), (G, 0), (E, 0), (TB, 0)}
IfFAisGandSCisTW, theFRis{(TW, 1), (B, 0), (G, 0), (E, 0), (TB, 0)}
IfFAisEandSCisTW, theFRis{(TW, 1), (B, 0), (G, 0), (E, 0), (TB, 0)}
IfFAisTBandSCisTW, theFRis{(TW, 1), (B, 0), (G, 0), (E, 0), (TB, 0)}

(13)

3.5 The reasoning process of BRB model

To obtain the stability of the ICS, the BRB model was derived by the ER method through
the following steps:

Step 1. Calculate the matching degree of the antecedent attribute of the training sample to
a rule:

aki =



Al+1
i − ai(t)
Al+1
i −Ali

k = l

ai(t)−Ali
Al+1 −Ali

k = l + 1

0 k = 1, · · · ,K(k 6= l, l + 1)

(14)

where aki is the i-thantecedent rule; ai(t) is the i-th attribute in the data; Ali and A
l+1
i are the

reference value of the l-th and ( l + 1 ) - thantecedent attributes, respectively; k represents the
number of belief rules.

Step 2. Compute the weight of the k-th rule from the matching degree tki :

tk =
θk
∏M
i=1

(
aki
)δi∑K

l=1 θl
∏M
i=1

(
ali
)δi (15)
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where ρi is the i-thantecedent attribute.
Step 3. Integrate the rules and generate belief of different outputs by the analytic synthesis

algorithm of the ER which was described in Chapter 3.3.
Step 4. Generate the final output according to the belief of different outputs:

FAactual =
N∑
n=1

Cntn (16)

3.6 CMA-ES optimization of the BRB

The BRB was optimized under following three constraints: rule weight, attribute weight and
rule. The rule weight constraint, reflecting the relative importance of the rule, can be expressed
as:

0 ≤ θk ≤ 1, k = 1, 2, . . . L (17)

The attribute weight must be normalized to [0, 1]:

0 ≤ ρn ≤ 1, n = 1, . . . , Tk (18)

Similarly, the rule must be normalized to [0, 1]:

0 ≤ ρn ≤ 1, n = 1, . . . , Tk (19)

where ti,k is the belief of the k-th rule. The value of ti,k=1 if the modified rule can be fully
executed and smaller than one if otherwise:

N∑
i=1

ti,k ≤ 1, k = 1, 2, . . . , L (20)

outputestimated =

N∑
n=1

p (SCi) ti (21)

Next, the BRB parameters should be trained by the objective function to reduce the error
between the assessed and actual outputs. Here, the error is measured by the mean square error
(MSE):

MSE (θk, ti,k, ρn) =
1

T

T∑
i=1

( output estimated − output actual)
2 (22)

The objective function and constraints of the BRB parameter training can be expressed as:

min MSE (θk, ti,k, ρn)
0 ≤ θk ≤ 1
0 ≤ ρn ≤ 1, n = 1, . . . , Tk
0 ≤ ti,k ≤ 1, i = 1, . . . , N, k = 1, 2, . . . L∑N

i=1 ti,k ≤ 1

(23)

The parameter training with the L-CMA-ES consists of four steps:
Step 1. Parameter initialization. The initial mean0 is equal to the initial parameter Ω0,and

Ω is:

Ω = {θ1, . . . , θL, β1,···, . . . , βN,, δ1, . . . , δTk} (24)
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where the initial value of each parameter is given by the expert.
Step 2. Population sampling. Taking the central solution as the central expectation of the

solution space, a normal distribution population is generated as:

Ωg+1
q ∼ meang + ηgN (0,Cg) (q = 1, · · · , n) (25)

where Ω0 is the first solution in the solution space; Ωg+1
q is the q-th solution in the solution space,

g is the number of iterations; mean is the mean distribution, i.e. the central expectation; η is
the step size; C is the covariance matrix of the population.

Step 3. Selection and recombination. The candidate solution in the solution space are
screened by leaky bucket mechanism. After the candidate solutions satisfying the constraints
are obtained, the solutions of the child populations will be selected in the population according
to the adaptive function. Then, the central expectation in the population moves towards the
local optimal solution, and guides the evolution of the population. When the previous optimal
solution population ε is obtained, the population’s expectations can be updated by:

meang+1 =
ε∑
i=1

γiΩ
g+1
i,µ

(
ε∑
i=1

γi = 1

)
(26)

where ε is the number of child populations; γ is individual weight (the total weight is 1); µ is
the size of the parent population; Ωi:µ means the i-th candidate solution is obtained from the
parent population µ in the (g + 1)-th iteration according to the fitness value.

After recombination, the central region of the population will move towards the child pop-
ulations, such that the candidate solution is more accurate than the parent population.

Step 4. Update of covariance matrix. In the next iteration, the optimal solution needs to be
found based on the covariance matrix. During the iteration process, the transformation of the
covariance matrix varies with the length and orientation of the long axis of the elliptical distri-
bution of the population. The change in orientation reflects the trend and direction of evolution,
while the change in length represents the scope of the population search. The covariance matrix
should be updated by:

Cg+1 = (1− a1 − aε)Cg+a1p
g+1

(
pg+1

)T
+aε

ε∑
i=1

γi


(

Ωg+1
i,µ −meang

)
ηg


(

Ωg+1
i,µ −meang

)
ηg

T

(27)
where ai and aε is the total learning rate; p is the evolution path (initial value=0). Then, the
evolution path should be updated as:

pg+1 = (1− ap) pg +

√√√√ap (2− ap)

(
s∑
i=1

γ2
i

)−1
meang+1 −meang

ηg
(28)

where ap ≤ 1 is the retrospective period of the evolution path. The step η should be updated as:

ηg+1 = ηg exp

aη
dη


∣∣∣|pg+1

η

∣∣∣ |
E||N(0, I)||

− 1

 (29)

where dη is the damping coefficient; E||N(0, I)|| is the expectation of the Euclidean paradigm
||N(0, I)||; I is the vector of the unit matrix; aηis the look back window; pη is the conjugate
evolution path (initial value=0). The conjugate evolution path should be updated as:



430 Y.H. Wang, P.L. Qiao, Z.Y. Luo, G.L. Sun, G.Z. Wang

pg+1
η = (1− aη) pgη +

√√√√aη (2− aη)

(
ε∑
i=1

γ2
i

)−1

C(g)− 1
2
mg+1 −mg

ηg
(30)

The above formula(27-30) should be executed repeatedly until reaching the accuracy re-
quirement. Then, the optimal solution should be outputted, and serve as the model inputs after
training.

4 Case study

4.1 The assessment grades of the attributes

Since the ICS reliability is affected by external and internal factors, this section designs
simulation experiments involving both internal faults and external security incidents. The ex-
periments were carried out in the actual industrial control environment. The faults and incidents
were selected and rated empirically by experts. Some of them are quantitative information, and
some are qualitative. Both internal faults and external security incidents were divided into four
levels according to the actual situation (Table 5). The dataset was derived from the log events
of a Chinese tobacco factory, which were recorded over 100 days by a PLC-controlled device in
SCADA system.

Table 5: The levels of internal faults

Worst Bad Good Best
c1

11(times/day) 15 10 5 0
c1

12(hours) 3 12 21 30
c1

13(minutes) 60 40 20 10
c1

14(minutes) (minutes) 60 40 20
c1

15(hours) 3 12 21 30
c1

16 Given by Experts
c1

17 Given by Experts
c1

21(hour) 3 12 21 30
c1

22(minutes) 1 40min 20min 10
c1

23 Given by Experts
c1

24(hour) 3 12 21 30
c1

31(times/ day) 5 3 1 0
c1

32(%) 10 5 3 0%
c1

33(hour) 10 20 30 40
c1

34 Given by Experts
c1

35(seconds) 1s 0.3s 0.1s 0.01s

4.2 Internal and external reliabilities based on ER rule

The original data were fused by the ER algorithm, using the attributes and reference levels
in Table 5-6. The fusion follows the process detailed in Section 3. According to the ER algorithm,
the author obtained quantitative observation data for 30 days, which reflect the internal reliability
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of the ICS. The daily observation data are shown in Figure 7. It can be seen from Figure 7 that
the internal reliability of the ICS fluctuated violently, indicating a high frequency of system faults,
while the external reliability changed less significantly, which reflects the moderate frequency of
external attacks.

Table 6: The levels of external security incidents

Worst Bad Good Best
c2

111 Given by Experts
c2

112 Given by Experts
c2

113 Given by Experts
c2

114 Given by Experts
c2

12(minutes) 20 10 5 0
c2

13(times/day) 5 3 1 0
c2

14 Given by Experts
c2

21(times/day) 5 3 1 0
c2

22 Given by Experts

 

Figure 7: Internal reliabilities for 30 days

4.3 Model construction

The proposed method (BRB) was contrasted with two prediction models, i.e. back prop-
agation neural network (BP) and Markov prediction model (MM). For consistency, the initial
parameters of all three methods were trained by the CMA-ES algorithm. The BP is a popular
data-based prediction model. This model takes Gaussian functions as training neurons, and
adopts radial basis function kernels in the middle layer for nonlinear transform of input parame-
ters. Compared with traditional neural networks, the BP enjoys a small scale and fast operation,
thanks to the limited number of intermediate layers.

The MM is a typical semi-quantitative assessment model based on bayesian decision theory.
It bears high resemblance to the proposed BRB model. The high accuracy and efficiency have
earned it immense popularity.

The initial weights and levels of belief rules are listed in Table 7. The initial parameters
of the two contrastive algorithms are given in Table 8. The input parameters of the CMA-ES
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Figure 8: External reliabilities for 30 days

Table 7: Initial weights and levels of belief rules

Rule Rule Weight SC(t) SC1, SC2, SC3, SC4, SC5=TW, B, G, E, TB
1 1 TW (SC1, 1), (SC2, 0), (SC3, 0), (SC4, 0), (SC5, 0), (SC, 0)

2 1 B (SC1, 0), (SC2, 1), (SC3, 0), (SC4, 0), (SC5, 0), (S, 0)

3 1 G (SC1, 0), (SC2, 0), (SC3, 1), (SC4, 0), (SC5, 0), (SC, 0)

4 1 E (SC1, 0), (SC2, 0), (SC3, 0), (SC4, 1), (SC5, 0), (SC, 0)

5 1 TB (SC1, 0), (SC2, 0), (SC3, 0), (SC4, 0), (SC5, 1), (S, 0)

Table 8: The initial parameters of the two contrastive methods

Comparison Initial
parameters

MM Initial probability vector = [0.2,0.2,0.2,0.2,0.2];
Initial probability transition matrix =

[1,0,0,0,0;0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1];

BP Input neuron: 3;Output neuron: 1;
Sliding window size: 3

Table 9: The input parameters of the CMA-ES algorithm

The semantic Initial parameters

value

m0 = O0; σ0 = 0.5;λ = 13; τ = 6; a1 = 0.0031; aτ = 0.0066;
p0
ψ = 0;

aψ = 0.147; p0
σ = 0; aσ = 0.1813; dσ = 1.1813; e = 0.6;

Loop = 100;

algorithm are displayed in Table 9.

4.4 Simulation and result analysis

Ten rounds of validations were performed to verify the effectiveness of our method. The
exact range of the result was determined through interval estimation.The 100 reliability values
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Figure 9: The results of round 1
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Figure 10: The results of round 5
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Figure 11: The results of round 10

were divided into 10 groups. The first 9 groups were adopted as the training data, and the rest
as the test data. The results of the first, fifth and tenth round of training are presented in Figure
9, 10 and 11, respectively.

Table 10: The MSEs after round 10

Rounds 1 2 3 4 5
BRB 4.676e−5 3.097e−5 1.345e−4 0.987e−4 1.362e−4

MM 0.963e−2 6.698e−3 2.322e−2 6.342e−2 3.987e−2

BP 2.547e−3 3.147e−3 6.357e−3 7.214e−3 1.365e−2

Rounds 6 7 8 9 10
BRB 7.321e−4 8.541e−5 1.247e−4 6.218e−5 1.361e−4

MM 0.897e−2 3.657e−3 3.465e−2 7.645e−2 1.644e−2

BP 1.247e−2 4.365e−3 4.514e−3 5.987e−3 7.365e−3

Table 10 lists the MSEs between the predicted results and the actual results of the three
methods after round 10.

Table 11 provides the overall MSEs and the interval estimation results of the three methods
after round 10. The interval estimation results refer to the mean estimation interval at the
confidence level of 95%.
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Table 11: The results of overall MSEs and the interval estimation after round 10

MSE Interval estimation (95%)
BRB 2.36 e−4 [2.12 e−4, 3.87 e−4]
MM 2.16 e−4 [1.37 e−2, 3.98 e−2]
BP 6.37 e−3 [3.780 e−3, 8.98 e−3]

The above results show that the proposed BRB model, the MM and the BP respectively
controlled the MSE on the order of 1,000th, 100th and 1,000th. Thus, our model reduced the
error by 100 times from the level of the MM. Moreover, our model achieved a small and acceptable
error range. Thus, the proposed method is reliable and efficient, in addition to its good prediction
accuracy.

5 Conclusions

Considering the internal and external influencing factors of ICS reliability, this paper puts
forward a new ICS reliability assessment model based on the BRB. The ICS reliability assess-
ment was divided into internal fault assessment and external security assessment, making the
assessment more objective. The BRB can process semi-quantitative information in our samples,
which contain both quantitative data and qualitative knowledge. In this way, the model can
be trained well with sufficient samples. The initial training parameters were optimized by the
CMA-ES algorithm, aiming to improve the accuracy of model inputs. Finally, the proposed
model was compared with two other popular prediction methods through case study. The re-
sults show that the proposed method is reliable, efficient and accurate, laying a solid basis for
reliability assessment of complex ICSs.
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