INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, ¢-ISSN 1841-9844, 14(2), 141-153, April 2019.

Gene Sequences Parallel Alignment Model Based on Multiple
Inputs and Outputs

X.L. Feng, J. Gao

Xiaolong Feng, Jing Gao*

College of Computer and Information Engineering
Inner Mongolia Agricultural University

Hohhot 010018, China

*Corresponding author: gaojing@imau.edu.cn

Abstract: Bioinformatics computing is a kind of big data processing problem, which
usually has the characteristics of large data scale, large computational load and long
computational time. Therefore, the use of big data technology in bioinformatics
computing has gradually become a research hotspot, and using Hadoop for gene
sequence alignment is one of it. It is a common way to use various tools to complete
a job in the field of Biocomputing. In most studies of parallel alignment of gene
sequences using Hadoop, third-party tools are also needed. However, there are few
methods using Hadoop independently to complete gene sequences alignment. Adding
data processing with other tools to Hadoop workflow not only affects the improvement
of computing performance, but also complicates the application. In this paper, a
parallel alignment model of gene sequences based on multiple inputs and outputs
is proposed, which can independently complete parallel alignment of gene sequences
in Hadoop platform without using other tools. This model not only simplifies the
process flow of gene sequence alignment, but also improves the performance compared
with other methods. This paper describes in detail the method of manipulating gene
sequences with multiple inputs and outputs modes on Hadoop platform and the design
of a computing model based on this method, and proves the superiority of this model
through experiments.

Keywords: Multiple inputs and outputs, MapReduce, gene sequence alignment,
short reads mapping, BWA (Burrows-Wheeler aligner), parallel computing.

1 Introduction

Gene sequence alignment is a time-consuming task in gene sequence analysis. With the
rapid development of gene sequencing technology in terms of capacity and speed, non-parallel
computing method has become a bottleneck in the flow of bioinformatics analysis. It is an urgent
need to design and develop a set of stable, efficient and scalable calculation methods to solve
this problem. Hadoop Distributed Parallel Computing Framework is a solution to this problem,
because it provides a general method for processing large-scale data [17]. It can greatly improve
the performance of large-scale data computing such as gene sequences and improve the scalability
of computing methods [16]. Hadoop is a distributed computing infrastructure released by Apache
Foundation. It is a high fault-tolerant and high throughput open source computing framework
deployable on low-cost hardware platforms. It is very suitable for storage and computation of
applications with large data sets. It provides HDFS distributed file system, YARN resource
scheduling manager and MapReduce computing model [8].

BWA (Burrows-Wheeler aligner) algorithm is a gene sequence alignment algorithm widely
used in bioinformatics analysis. It can map a large number of short reads gene sequences to
large-scale genomes [11|. At present, mature BWA tools are single-machine serial execution or
multi-threaded parallel execution, and scalable distributed parallel computing methods are being

Copyright (©2019 CC BY-NC

142 X.L. Feng, J. Gao

studied. Like many other bioinformatics computations, these BWA parallel computational meth-
ods require multiple tools to perform a data analysis task together. Data needs to be processed
by tools before input and after output. This not only makes the calculation process cumbersome,
but also affects the efficiency of data analysis. Therefore, a parallel computing model running
on Hadoop framework is proposed in this paper, which can independently complete the job of
gene sequence alignment. This model can be used in distributed parallel computing of BWA
algorithm. In this model, the method of data multiple inputs and outputs is used, which meets
the requirement of gene data operation without using other tools. Meanwhile, a MapReduce
computing model matching this data input and output mode is designed, which improves the
parallel computing performance of BWA algorithm. The design of this BWA parallel comput-
ing model considers the following three requirements. Firstly, the model is superior to BWA
algorithm and other BWA-based parallel computing methods in performance and scalability,
including BWA’s own single-machine multi-threaded parallel computing method. Secondly, the
results of the model should be compatible with the traditional bioinformatics analysis process.
Because different versions of BWA tool contain different algorithm and characteristics, and dif-
ferent analysis work depends on different algorithms, so the model should provide a configurable
interface to invoke the desired algorithm, instead of encapsulating only a particular algorithm.
Thirdly, the model should ensure the integrity of functions. Avoid using other tools and interven-
tion in the calculation process, and complete all tasks independently by the model. This allows
users to concentrate on the scientific issues without considering the use and compatibility of
multiple tools. The evaluation of this model should be compared with BWA algorithm and other
parallel computing methods based on BWA algorithm in terms of performance and scalability.
The advantages of the computing model are illustrated by time-consuming, speedup ratio and
parallel efficiency.

2 Research background

BWA is a commonly used gene sequence alignment tool in bioinformatics analysis. It con-
tains three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is suit-
able for sequence mapping whose length is less than 100 bp, and the latter two are suitable for
sequence mapping whose length is longer. BWA-MEM is more efficient than other algorithms in
sequence processing over 100 bp. The BWA mapping is a time-consuming step in gene sequence
analysis, improve the efficiency of mapping has become the key to improve the biological infor-
mation analysis. For this reason, BWA software also provides multithreaded parallel computing
method. But this method is limited to the capacity of single-machine, and does not support
distributed expansion. Therefore, its performance is not very high, especially for large genomes,
which takes a long time for alignment jobs, and it may also fail because of single point failure.

Hadoop is a suitable platform for bioinformatics computing in terms of data scale, job
characteristics and cost of implementation. MapReduce is a programming model suitable for
handling large amounts of semi-structured data sets. The functional programming method of
MapReduce is a simple way for developer. Users can implement parallel execution of computing
tasks by writing the Map and Reduce functions. It provides an abstract parallel programming
interface for operation, and implements the computation and processing of large-scale data in a
simple way. In Map and Reduce functions, users can freely and flexibly add in parallel operation
of data, which facilitates the processing of semi-structured data.

The input of BWA algorithm is usually a sequence file in FASTQ format. It is the result file
of gene sequencing. The sequencing results may be single-end sequence or pair-end sequence for
different sequencing methods [5,13]. The output of BWA algorithm is SAM format file, which
mainly records the location and hit times of short reads sequence mapped to reference sequence.

Gene Sequences Parallel Alignment Model Based on Multiple Inputs and Outputs 143

As to the data format, the input and output data of BWA algorithm are semi-structured data,
which is suitable for MapReduce programming model. However, in the current BWA parallel
computing research, there is no solution to the problem of data unified processing. Data must
be processed by other tools to adapt to MapReduce programming model. If we can design a
MapReduce data input and output method suitable for gene sequence processing, it will be very
convenient for users to use Hadoop for bioinformatics analysis.

3 Literature review

In the research of using Hadoop to improve BWA algorithm, there are three typical rep-
resentatives: BigBWA [1], Halvade [9] and SEAL [15]. BigBWA uses JNI interface to invoke
BWA source code to implement distributed parallel computing of sequence alignment, which
significantly improves the performance of BWA algorithm. The disadvantage is that you need to
use tools to change the original format of input data before computing starts. SEAL implements
MapReduce model of BWA with Python. The disadvantage is that it cannot satisfy all Hadoop
native interfaces, and its running efficiency is lower than that of Java or C'++ applications. This
model only encapsulates a specific version of BWA software and cannot support the application
of new versions, such as BWA-MEM for long sequence alignment. Halvade is a Hadoop-based
gene sequence alignment framework developed with Java. It performs data split and sequence
alignment in Map function, calls different gene analysis programs in Reduce function, and has
many functions. But in data input and distribution, in order not to be restricted by Hadoop’s
specifications, it designed a platform-independent program "Halvade Uploader" to complete data
distribution. Although multi-threading is adopted, it cannot support distributed extension and
is not consistent with the Hadoop platform.

The common feature of these studies is that they all use Hadoop platform to parallelize com-
puting tasks, which greatly improves the performance of BWA algorithm compared with serial
execution. However, in these studies, third-party programs or applications independent of com-
puting platforms are used for data preprocessing or post-processing, which makes the computing
model not uniform as a whole, and also affects the improvement of computing performance to a
certain extent. The reason for this approach is that Hadoop does not provide a way to directly
process gene sequences, while third-party tools can easily cope with it. Taking BigBWA as an
example, input data need to be preprocessed using Python program. It makes the single-end gene
sequence form a single-line structure linked by < sep > markers, such as linel < sep > line2 <
sep > line3 < sep > lined, and pair-end gene sequence form a single-line structure linked by
< part > markers, such as left — end — of — sequencel < part > right — end — of — sequencel.
At the same time, two data files of pair-end sequence are merged into one data file. The reason is
that single file and single-line structure are the most convenient way for Hadoop to read directly.
These additional tags need to be removed when they enter the MapReduce computing model
to be accepted by the alignment algorithm. This increases the overhead of format processing
in computing model. Like input data, BigBWA’s output data also needs to be processed us-
ing Python programs. It merges SAM files on multiple nodes into one result file. The parallel
computing model designed in this paper completes the process of data input, data distribution,
distributed computing and result processing of gene sequence alignment task only with Hadoop
API. In this model, input data need not be pre-processed, and can be directly input by FASTQ
format single-end or pair-end sequence files. The overhead of format processing is also reduced
in MapReduce computing model. Output data merging is also done without tools. Computing
tasks are automatically executed without interference in the process.

144 X.L. Feng, J. Gao

4 Problem descriptions

The task of short sequence alignment is to map a large number of single-end or pair-end short
reads sequences to the reference genome, and then carries out subsequent biological significance
analysis. The input of alignment algorithm is short reads sequence file and reference sequence
file, and the output is mapping result file. The traditional serial alignment algorithm usually
takes a long time because of the huge amount of data. The principle of short sequence alignment
is to find the exact position of each short reads sequence in the reference sequence by global
alignment of each short reads sequence with the reference genome [12]. The principle of gene
sequence alignment based on Hadoop is to distribute short reads sequence data to multiple nodes
of distributed cluster, then map to reference sequence independently on each node and form their
own result files. Finally, the result files on each node are aggregated to form a result file [2]. Short
reads sequence is FASTQ format file. The pair-end sequence consists of left-end and right-end
files. Each file consists of many short reads sequences, each of which has a fixed structure. A
short reads sequence file can be regarded as a set of m sequences, and the left-end sequence can be
described as L{ly,l2,ls,...,1n}, the right-end sequence can be described as R{ri,re,73,...,m}.
Then the pair-end sequence is described as READS{L, R}. Single-end sequence can be regarded
as a special case with only left-end. Reference sequence is a long sequence that stores complete
genetic information, REF represents reference sequence, ALN represents alignment algorithm, S
represents the set of alignment results {s1, s9, s3, ..., S, }. Then the alignment problem discussed
is described as

si = ALN(l;,r;, REF),i=1,2,3..m

In order to distribute parallel execution of alignment tasks, READS set can be divided into
n subsets D{dy,ds,ds, ...,d,} and distributed to n work nodes in the cluster. Each node will be
allocated to k = m/n short reads sequences if equal division of dataset is adopted. Then the
data set on the work node i can be represented as

di={L;Ri},i=1,2,3..n

Li = {l(i—1yht1> Li—1)shg 2> s Lisk }, b = m/n
Ri = {T(i— 1)kt 1> T(i—1)k+2> - Tixk }, kK = m/n

Computing task on node i is represented as s; = ALN(d;, REF). Computing tasks on all
nodes are executable in parallel. When the task is completed, the s; on each node can be merged
into a result file, which is compatible with the traditional biological analysis work.

To implement the distributed parallelization of alignment algorithm, four main problems
need to be solved:

(1) How to input the gene sequence file directly without preprocessing?

(2) How to distribute the sequence in READS set to the work nodes?

(3) How to execute the alignment algorithm?

(4) How to merge the alignment results on the work nodes?

In data input, a single-end sequence can be regarded as a special case of a pair-end sequence.
So the main problem is how to input two or more files with Hadoop APIs without preprocessing.
The change of data input method will lead to the change of subsequent data calculation method,
so it needs to be considered comprehensively. Hadoop provides APIs for multiple data sources to
read at the same time, which can solve this problem. It also needs to design programs to meet
the requirements of gene sequence operation. Gene sequences from different data sources need
to be treated differently in the algorithm. It is necessary to ensure that the left-end sequence
and the right-end sequence of a gene sequence can be recognized and integrated.

Gene Sequences Parallel Alignment Model Based on Multiple Inputs and Outputs 145

If there are m short reads sequences and n work nodes in an alignment job, the task of data
distribution is to distribute m sequences to n work nodes. In order to get higher efficiency, the
data distribution requires minimizing the amount of data movement and keep load balance on
the work nodes. The simple way is to distribute m sequences in full to all work nodes. The
disadvantage of this method is that it takes up a large amount of disk space, has large network
traffic and takes a long time. The advantage of this method is that it does not need to design
a distribution algorithm, and does not need to move data in the process of task execution. The
ideal method is to distribute the necessary sequence to the designated nodes, so as to avoid
moving data during task scheduling. Custom partition in Hadoop, which allows data to be
distributed to designate nodes according to computing requirements, can solve the problem of
data distribution very well.

In the phase of executing alignment algorithm, in order to ensure the compatibility of
alignment results and the integrity of alignment function, the best way is to call the existing
traditional alignment program without changing the source code. Invoking alignment program
on distributed cluster can be implemented by JNI, PIPLE or SHELL. The collection and merging
of result files can be accomplished on HDFS by Hadoop file manipulation.

5 Method

The goal of model design is to design a stable, reliable, efficient and scalable distributed
computing model, so that short sequence alignment algorithm can be distributed and parallel
implemented on Hadoop platform. The model does not need third-party tools to automate
processes, including data input, data distribution, distributed computing and result collection.

The following assumptions are made for the configuration or characteristics of distributed
cluster:

— Computing framework runs in distributed cluster with one name node and several data
nodes with the same capacity.

— Each alignment operation can be independent of other tasks.

— The reference database is pre-deployed to the system, and all alignment tasks can be
performed by any data node.

— Short reads sequence files can be split into multiple sequences and reassembled.

The function of Hadoop platform provides great convenience for designing distributed par-
allel model of alignment algorithm. Considering the characteristics of platform and alignment
job, a computing model is designed as shown in Figure 1. HDFS is used to store input data
and results, which is convenient for data distribution and sharing in Hadoop platform. Before
the job submission, the pre-deployment work should be completed, that is, the reference se-
quence and alignment software should be deployed to each working node in advance, and the
short reads sequence file should be uploaded to HDF'S to facilitate the distributed deployment.
In data input, Hadoop multi-input API is used to read multiple sequence files directly without
data preprocessing. Two or more data files can be stored in HDFS for multiple inputs as shown
in Figure 1, L. and R represent two files of pair-end sequence respectively. Single-end sequence
input is considered as a special case of multiple inputs. In Mapper, left-end or right-end tags are
added for key-value pairs. Then the data is partitioned according to the key of the pair by using
the custom partitioning algorithm, and the partitioned data is distributed to the work nodes
of the cluster. In Reducer, multi-output is used to transfer the partition data to the alignment
algorithm, and the alignment algorithm is invoked on the working node to implement the dis-
tributed computing of each partition. Finally, the results on each node are collected into HDFS
and merged in one file.

146 X.L. Feng, J. Gao

The design of computing model needs to take advantage of the functions provided by the
platform and comply with its programming specifications [20]. Therefore, according to the model
shown in Figure 1, a processing flow is designed, which includes seven steps: pre-deployment,
data input, Mapper processing, data partition, Merge processing, Reducer processing, and result
processing [14], as shown in Figure 2.

Two classes, FileInputFormat and MultipleInputs, are provided in Hadoop API to sup-
port multiple inputs. The former uses unified Mapper processing, while the latter supports
independent Mapper processing. In this paper, the addInput Path method of FileInputFormat
class is used to implement multi-input. By organizing the paths of multiple data files into an
array, and then passing the array as a parameter to the function, the input class can read data
from multiple data sources. The input gene sequence whether left or right, forms a key-value
pair with offset as key and sequence content as value.

In Mapper processing, pair-end sequences are identified as left-end or right-end and labeled,
while single-end sequences are not labeled, such as Algorithm 1. The tags added in Mapper is
the basis for subsequent implementation of data partition constraints and data multiple outputs.
After Mapper processing, the left-end and the right-end of a pair-end sequences form key-value
pairs with the same key. Because a pair-end sequence has the same offset in two files.

Algorithm 1 The Map algorithm

INPUT: (key,value)
OUTPUT: (key,value')
if value stores a pair-end sequence then
if value stores a left-end sequence then
value’ = addTag(value, left-end-tag)
else
value’ = addTag(value, right-end-tag)
end if
else
value’ = value
. end if
. Context.write(key, value')

— =

| reads | | (key,value) (key,value’) Partitions sams [sam |

) O (&
> H
>

I
>

g
>

DO

S4aH

N
S4dH

P

L H
.
LN
>

- ;B - o
— >]]

\ / \ \) \ /
N AN N N
Mapper partitioner Reducer

L/ L N\

Figure 1: MapReduce model for short reads gene sequence alignment

Gene Sequences Parallel Alignment Model Based on Multiple Inputs and Outputs 147

Start)

v

Pre-deployment: Deploy alignment software,
reference sequence and shell script to each work
node, and upload short reads sequence file to HDFS.

v

Data input: Multiple file input to form key-value pairs
with offset as key and sequence content as value.

v

Mapper: Mark input key-value pairs with tags,
double-ended sequences with left-end or right-end
tags, single-ended sequences with no tags.

v

Partition: The input file size is divided into n intervals,
and the partition number is calculated according to
the interval of the key.

Merge: Data shuffling, sorting, grouping, aggregating
values with the same key value into the same set.

v

Reducer: Export all sequences of a data partition by
tags to the local file, and then start the alighnment

script locally.

Result Processing: Collect the result files distributed
on each node, merge them into a single file and
upload to HDFS.

End)

Figure 2: Flow chart of short reads gene sequence parallel alignment

148 X.L. Feng, J. Gao

Partitioner is a means of data distribution provided by Hadoop platform [10]. The partition
classes built in the platform, such as HashPartitioner and BinaryPartitioner, are not suitable
for the distribution of pair-end sequences. The operation of gene sequences has some constraints
on data partitioning, which is not satisfied by Hadoop’s partition classes. It is necessary to
customize partition classes according to the requirements of gene sequence operation.

The constraints of data partitioning include:

- The number of left-end sequences in each partition is the same as that of right-end se-
quences;

- The position of sequences in a partition remains unchanged relative to that in sequence
file;

- The left-end and the right-end of a pair-end sequence must be allocated to the same par-
tition.

Since it has been assumed that the capacity of each work node in the cluster is the same,
data is divided into equal partitions. The partitioning algorithm is shown in Algorithm 2. Firstly,
the intervals of offsets are calculated by the size of sequence file and the number of partitions.
Then partition is calculated with key in (key, value’). Key represents the position of a sequence
in the sequence file. The partition number can be obtained by judging the offset interval of key.
Sequences at the same location of the pair-end sequence have the same key, so they are assigned
to the same partition.

Algorithm 2 The partition algorithm

INPUT: (key, value’)
OUTPUT: partitionNum
LET fileSize <— The size of input file
LET partition Num < 0
LET n <+ The number of nodes
while partitonNum < n do
if key < (partitionNum + 1) fileSize/n then
return partition Num
end if
partition Num—++
: end while
: return n — 1

= =

The Merge phase will shuffle, sort, and group the data in the partition based on the key. The
result of processing is that sequences with the same key are aggregated into the same set. For
a pair-end sequence, a key corresponds to a set containing its left-end and right-end sequence,
and the key-value pair is in the form of (key,value'[]).Moreover, all sequences are ordered in
the partition, which ensures that the relative positions of the sequences in the partition remain
unchanged. Input in reducer is a data partition and aggregated by key. If the input is a single-
end sequence, the sequence in the partition will be written to the local file one by one, and if
the input is a pair-end sequence, it will be identified by tags added in Mapper and output to
different local files in multi-output method, as shown in Algorithm 3. Therefore, the output of
Reduce function to a single-end sequence is a single local file, the content is the data partition
on the node, and the output to a pair-end sequence is two local files.

After the local data file is generated, the sequence alignment task is started in the cleanup
function of Reducer, and the task is executed by shell call. Shell script can be modified at any
time according to the requirement of software version or parameter configuration, which makes

Gene Sequences Parallel Alignment Model Based on Multiple Inputs and Outputs 149

Algorithm 3 The reduce algorithm

1: INPUT: (key,value'[])

2: OUTPUT: left — part;, right — part; OR part;
3: for all value in value'[] do

4: if value stores a pair-end sequence then

5: if value stores a left-end sequence then
6: MutiOutput.write("left-part" ,value)
7 else

8: MutiOutput.write("right-part" ,value)
9: end if

10: else

11: Context.write(value)

12: end if

13: end for

the computing model more flexible. The alignment task is performed in parallel on each node in
the cluster. Start single-end alignment algorithm for single-end sequence and pair-end alignment
algorithm for pair-end sequence on the node. The output is the result of sequence alignment in
the partition on the node. After the alignment is completed, the results are uploaded to HDF'S.
When the alignment task of all nodes has been completed, multiple result files in HDFS are
merged into a unified file, and the process ends.

6 Results and discussion

6.1 Experimental design

The following experiments were designed to verify the performance of our Gene Sequence
Parallel Alignment Model. The gene data were extracted from the 1000 Genome Projects [18].
The 3.3G GRCh38.p12 was taken as the reference genome, while two datasets, ERR000589 and
SRR062634, were selected as the short reads sequence. The specific information of the sequence
is shown in Table 8.

Table 1: Short reads sequence datasets

Tag Name Number of reads | Read length (bp) | Size(GB)
D1 | NA12750/ERR000589 1.2 x 107 51 5.2
D2 | HG00096/SRR062634 6.7 x 10° 200 3.5

As shown in Table 8, dataset D1 is composed of pair-end sequences with a length of 51bp.
It is suitable for BWA backtrack algorithm. Dataset D2 is composed of single-end sequences
with a length of 200 bp. It is suitable for BWA MEM algorithm. The two datasets differ in size,
sequence length, sequencing method and alignment algorithm. In order to verify the universality
and stability of the computing model for different data sets, the choice of experimental data
should be representative [6,7]. Therefore, two data sets with different characteristics are selected
in this experiment. The test cluster is a Hadoop cluster of one name node and eight data nodes.
Each node is a VMware virtual machine with 8-core CPU, 8G memory and 1T hard disk. The
Hadoop uses the version of 2.7.3. The operating system is Red Hat Enterprise Linux 6.5.

e Experiment 1, the BWA mapping was performed with D1 and D2 as inputs. The same
computing tasks were run on Hadoop cluster with 1, 2, 4, 6, and 8 work nodes, respectively.

150 X.L. Feng, J. Gao

The time consumption, speedup and efficiency of each task were measured to evaluate the
model performance.

e Experiment 2, the BWA mapping was performed with D1 and D2 as inputs. The same
computing tasks were run on single node with 1, 2, 4, 6, and 8 threads, respectively. These
time-consuming are compared with those of the same tasks on distributed clusters with 1,
2, 4, 6 and 8 nodes, respectively.

6.2 Results analysis

All tasks were completed smoothly. The experimental results were the same as those of
single-machine operation, but achieved at a much shorter time. Table 2 shows the time con-
sumption, speedup and efficiency of Experiment 1. As shown in Table 2, as the number of nodes
increases, the time consumption of both tasks decreases dramatically. It shows that the model
has good scalability, and the experiment time can be reduced by adding more nodes. The trend
of speedup ratio shows that more nodes can make the acceleration effect more obvious. But it
can’t achieve linear acceleration, as shown in Figure 3. The reason is that when the number
of nodes in the cluster increases, the overhead for cluster management will increase, and the
overhead for computing task scheduling and resource management will also increase, resulting in
a decrease in resource utilization. That’s why the efficiency can’t always be 1 [3,4]. The dataset
D1 has shorter read length and lower computational complexity. Although the total data size
exceeds D2, the speedup ratio is still slightly higher than D2. It is shown that the computing
model has better speedup ratio for data sets with shorter read length. Experiment 1 proves that
the parallel computing model of gene sequence alignment based on multiple inputs and outputs
can greatly reduce the computing time for different data sets and different alignment algorithms,
and has better speedup ratio and parallel computing efficiency.

Table 2: Performance comparison of Hadoop computing model

Number of nodes
1 2 4 6 8
D1 258.8 | 131.1 | 67.8 | 45.3 | 38.5
D2 249.6 | 127.1 | 72.8 | 49.5 | 36.7

Content Dataset

Time consumption (m)

S oo D1 10 | 20 | 38 | 57 | 67
peedup D2 10 | 20 | 34| 50 | 638
Efficiency D1 1.00 | 1.00 | 0.95 | 0.95 | 0.84

D2 1.00 | 1.00 | 0.85 | 0.83 | 0.85

Table 3 shows the time-consuming of Experiment 2. Generally speaking, the execution time
of both methods decreases with the increase of the number of nodes or threads. Figure 4 shows
the trend of time-consuming. As can be seen from the Figure 4, the BWA multithread mode
slows down the time-consuming after the start of four threads. However, Hadoop computing
model still maintains a good reduction in processing time after 4 nodes. Experiment 2 indicates
that the performance of BWA multithread mode is affected by single-node memory and CPU
capacity. It cannot increase the speed of operation by increasing the number of threads blindly,
and it is not scalable. The proposed computing model has good scalability. As long as there are
enough work nodes, the computing time can be reduced to a lower level. Of course, the number
of nodes cannot be increased indefinitely, because increasing the number of nodes will lead to a
decrease in parallel efficiency, and the balance between the number of nodes and efficiency should
be achieved [25].

Gene Sequences Parallel Alignment Model Based on Multiple Inputs and Outputs 151

9

8

7

6
S5 —e—D1
?
g4 —&—D2
v

3 Liner

2

1

0

1 2 4 6 8
Number of nodes

Figure 3: Speedup of Hadoop computing model with dataset D1 and D2

Table 3: Execution time of Hadoop and BWA multiple threads

Number of nodes/threads
1 2 4 6 8
D1 258.8 | 131.1 | 67.8 | 45.3 | 38.5
D2 249.6 | 127.1 | 72.8 | 49.5 | 36.7
D1 258.8 | 154.6 | 127 | 124.6 | 123.8
D2 249.6 | 102.5 | 529 | 53.2 | 518

Method Dataset

Hadoop (m)

Threads (m)

The proposed computing model was further contrasted against several excellent parallel
computing methods, which have been proved as capable of improving the performance of gene
sequence alignment. All the experiments were performed using the same dataset on Hadoop
clusters with different configurations. The grouping experiments were performed at 1, 2, 4, 6 and
8 nodes. Since these algorithms use different computing environments, the time consumption was
not compared in the same dataset. In terms of the speedup ratio of parallel computing (Figure
5), the proposed computing model had certain advantages over the contrastive algorithms. The
results show that gene sequence multiple input and output method both saves the time of data
preprocessing and reduces the burden of MapReduce computing model, improving the efficiency
of parallel computing.

The multiple inputs and outputs method on Hadoop platform can effectively process single-
end and pair-end sequences of gene data, which makes the operation of gene sequences not limited
to single file and avoids the use of third-party tools in parallel computing of gene sequence

300

N
u
o

200

—o—D1 by hadoop
150

—#—D2 by hadoop

100 D1 by threads

Processing time (m)

w
o

—>—D2 by threads

1 2 4 6 8
Number of nodes or threads

Figure 4: Execution time comparison between Hadoop and BWA multiple threads

152 X.L. Feng, J. Gao

8
7
6
g5 —e—SEAL
el
o 4
g, PBWA
w
) o BigBWA
1 F new
0
1 2 4 6 8

number of nodes
Figure 5: Speedup comparison of different parallel BWA

alignment. The parallel computing model of gene sequence alignment based on multi input
and output uses Hadoop API to complete the task of gene sequence alignment, including the
data input, data distribution, distributed computing and result processing, which ensures the
uniformity of application. Experiments show that this computing model makes the task of
gene sequence alignment scalable in distributed cluster. Compared with single node algorithm,
the computing time of the same task is significantly reduced. Compared with multi-threaded
parallel computing mode and other parallel gene data computing schemes, this computing model
has certain advantages.

Funding

This work was supported by National Natural Science Foundation of China project 61462070.

Author contributions. Conflict of interest

The authors contributed equally to this work. The authors declare no conflict of interest.

Bibliography

[1] Abuin, J.M.; Pichel, J.C.; Pena, T.F.; Amiqo, J. (2015). BigBWA: Approaching the
Burrows-Wheeler Aligner to Big Data Technologies, Bioinformatics, 31(24), 4003-4005,
2015.

[2] Almeida, J.S.; Gruneberg, A.; Maass, W.; Vinga, S. (2012). Fractal MapReduce decompo-
sition of sequence alignment, Algorithms for Molecular Biology, 7(1), 1-12, 2012.

[3] Bala, R.J.; Govinda, R.M.; Murthy, C.S.N. (2018). Reliability analysis and failure rate
evaluation of load haul dump machines using Weibull distribution analysis, Mathematical
Modelling of Engineering Problems, 5(2), 116-122, 2018.

[4] Chen, Z.; Hou, Z.W.; Yang, Q.Q.; Chen, X.B. (2018). Adaptive Meshing Based on the
Multi-level Partition of Unity and Dynamic Particle Systems for Medical Image Datasets,
International Journal Bioautomation, 22(3), 229-238, 2018.

[5] Cock, P.J.; Fields, C.J.; Goto, N.; Heuer, M.; Rice, P.M. (2009). The Sanger FASTQ file
format for sequences with quality scores and the Solexa/Illumina FASTQ variants, Nucleic
Acids Research, 38(6), 1767-1771, 2009.

Gene Sequences Parallel Alignment Model Based on Multiple Inputs and Outputs 153

[6] Dai, Y.; Wu, W.; Zhou, H.B.; Zhang, J.; Ma, F.Y. (2018). Numerical Simulation and
Optimization of Oil Jet Lubrication for Rotorcraft Meshing Gears, International Journal of
Simulation Modelling, 17(2), 318-326, 2018.

[7] Dai, Y.; Zhu, X.; Zhou, H. ; Mao, Z. ; Wu, W. (2018). Trajectory Tracking Control for
Seafloor Tracked Vehicle By Adaptive Neural-Fuzzy Inference System Algorithm, Interna-
tional Journal of Computers Communications € Control, 13(4), 465-476, 2018.

[8] Dean, J.; Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clus-
ters. Proceedings of Sixth Symposium on Operating System Design and Implementation
(0OSD2004), USENIX Association, 2004.

[9] Decap, D.; Reumers, J.; Herzeel, C.; Costanza, P.; Fostier, J. (2015). Halvade: scalable
sequence analysis with MapReduce, Bioinformatics, 31(15), 2482-2488, 2015.

[10] Gufler, B.; Augsten, N.; Reiser, A.; Kemper, A. (2012). The Partition Cost Model for
Load Balancing in MapReduce, Cloud Computing and Services Science, Springer New York,
371-387, 2012.

[11] Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM, Genomics, 1-3, 2013.

[12] Li, H. (2009). The Sequence Alignment / Map (SAM) Format, Bioinformatics, 25(1-2),
1653-1654, 2009.

[13] Metzker, M.L. (2010). Sequencing technologies - the next generation, Nature Reviews Ge-
netics, 11(1), 31-46, 2010.

[14] Pandey, R.V.; Schlotterer, C. (2013). DistMap: A Toolkit for Distributed Short Read Map-
ping on a Hadoop Cluster, PLOS ONE, 8(8), 72614, 2013.

[15] Pireddu, L.; Leo, S.; Zanetti, G. (2011). SEAL: a distributed short read mapping and
duplicate removal tool, Bioinformatics, 27(15), 2159-2160, 2011.

[16] Schatz, M.C. (2009). CloudBurst: highly sensitive read mapping with MapReduce, Bioin-
formatics, 25(11), 1363-1369, 2009.

[17] Taylor, R.C. (2010); An overview of the Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics, Bmc Bioinformatics, 11(S12), S1, 2010.

[18] Watson, J.D. (1990). The Human Genome Project: Past, Present, and Future, Science,
248(4951), 44-49, 1990.

[19] Zhang, J.; Wu, Y.Q.; Yi, H.C. (2018). Forward modelling of circular loop source and calcula-
tion of whole area apparent resistivity based on TEM, Traitement du Signal, 35(2), 183-198,
2018.

[20] |Online|. Available: hadoop.apache.org/, Accesed on 20 June 2018.

