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Abstract: In this article we continue the study started in [8] to use Riesz MV-
algebras for IoT devices signals processing. The Shepard local approximation opera-
tors introduced in [8] were defines such that to approximate single variable functions.
In real industrial usage, the signals coming from IoT devices may be influenced by
mode than a parameter, and thus we introduce generalized Shepard local approxima-
tion operators that can approximate multi-dimensional functions and some numerical
experiments are considered.
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1 Introduction

With the aim to provide new mathematical tools that are useful to develop algorithms that
are suitable for IoT devices signals processing, in [1] were introduced Shepard local approximation
operators that can approximate one-dimension functions. Since in real industrial applications,
the IoT devices signals are not depending on one single parameter, there is a real need to intro-
duce generalized Shepard local approximation operators that can approximate multi-dimensional
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functions. This new approximation operators can be later used to develop software algorithms
that act as input validators for industrial automated control systems [10,11] based on the Riesz
MV-algebra structure of the IoT devices signals [8].

In 1958, multivalued algebras, shortly named MV-algebras, were introduced by Chang |2, 3|
as the algebraic structures corresponding to the oo - valued Lukasiewicz logic.

Definition 1. An MV-algebra is a structure A = (A, ®, —=,04) if and only if the following axioms
are fulfilled:
(A,®,—,04) is an abelian monoid,

—\ﬁx:x’
@ 04 = 04,
“(rz@y) Dy=—(ydx) D

In an MV-algebra A, the constant 14 and the binary operations ® and & can be defined as
follows:
14 =-0A4,

rOy=-("1®y),
TOyY=x0 Y.

Also we can define a distance function d : A x A — A as follows:
d(z,y) = (r0y) ® (YO ).

This distance as it is defined is a metric and plays a very important role in image and signal
processing.

By introducing an additional external operation, in 2003, was defined the concept of Vectorial
MV-algebras [6], shortly named VMV-algebras. Let consider an MV-algebra A and an external
operation defined as follows:

o: R, xA— A

Definition 2. The MV algebra A is an VMV-algebra if and only if the following axioms are
fulfilled:
lex=ux,Vre A,

(a+b)ex=aex@®bex,Vrec AandVa,be Ry,
ae(bez)<(a-b)ex,Vre AandVa,bec Ry,
dlaez,aey) <aed(x,y),Vr,y € Aand Va € Ry.
VMV-algebras inspired new algebraic structures, MV-modules [4] and Riesz MV-algebras [1].

Definition 3. An MV-algebra A is a truncated MV-module over the unital latticeal ring (R, v)
if there is defined an external operation e : Ry x A — A, such that the following properties are
fulfilled for Vo, 8 € Ry and Vz,y € A.

(a+p)e x=ae zd[e

ae(z@y)=aerxdaey, ifxr <y,
ae(fex)=(a-pB)e z, if a,f € [0,v].
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If property

ver =z,
is also fulfilled, then A is an unital MV-module over unital ring (R, v).

Definition 4. If an MV-algebra is a truncated unital module over (R, 1), it is a Riesz MV-
algebra.

Theorem 5. In any Riesz MV-algebra, the following properties are fulfilled [4]:
ae(Ber)<(a B)er,
dlaezr,aey) < aed(ry),
Oex =0,
ae( =0,
r<y=>o0exr<aey,
a<f=aer<feu,
ae(zdy)<aerdaey,
for any x,y € A and o, B € R,

It was also proved that any Riesz MV-algebra is an VMV-algebra, but the reciprocal state-
ment isn’t true, but the set of values of IoT devices signals can be organized as Riesz MV-
algebras [8].

In [1] was proved that Riesz MV-algebras are algebraic and topological structures for data
processing, because:

Theorem 6. Any method developed in the classical numerical analysis is applicable in Riesz
MV-algebras if the Riesz MV-algebras operations are used.

Based on this statement, in [8] were introduced Shepard local approximation operators on
Riesz MV-algebras, to approximate one-dimension functions. Were considered a Riesz MV-
algebra A and a function f : [0,n] — A and a Shepard kernel [9], which is a strictly decreasing
function K : [0,1] — R4. Also, was considered the set

B(z,r) ={y €[0,n]| |z —y| <r} (1)

Definition 7. A Shepard local approximation operator, is a function S : [0,n] — A defined as

follows:
()

|x—a4)

x; €B(z,r) ( T

S(f7 l‘) = ®zi€B(x,r) ) of (xl)

where & and e are the Riesz MV-algebra operations.
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2 Generalized Shepard local approximation operators for IoT de-
vices signal processing
We us consider a Riesz MV-algbra A and a function f : [0,n,] x [0,n,] X ... X [0,n,,] — A.

In this generalized situation, in the definition 1 of the set B the distance has to be replaced by
a norm. The norms we consider in the numerical experiments are:

]| = \/C% +cE+ ...+ (euclidean norm)
2]l = max ([e1] , [ez] , ..., [em]) (supremum norm)
lz|| = |e1| + |e2| + ... + |cml] (I* norm)

where © = (¢1,¢2,...,¢m) € [0,n,] X [0,1,] X ... X [0, 7).
Considering this, we can define the generalized Shepard local approximation operators as
follows:

Definition 8. A generalized Shepard local approximation operator, is a function Sg : [0,n,] X
[0,7,] X ... X [0,n,,] = A defined as follows:
K (”x_$i”)
T

llz—zi|]
z,€Bg(x,r) K ( r

Sg (fa :E) = @ziEBg(m,r) > of (xl)

where & and e are the Riesz MV-algebra operations and
By (w,7) = {y € [0.n,] x [0,n,] % . X [0,m] | & = ] < 7}. (2)

In [1] was considered that the set of possible values for IoT devices signals is the interval
[0,2¢ — 1], where ¢ is the number of bits used to store these values. In [10] was proved that the
structure ([0,2¢ — 1], @, —,0) is a MV-algebra, if the following definitions are used:

T®Y =gy min(2" — 1,z +y),

ﬁl’zdef2t—1—x,

Vz,y € [0,28 —1].
In [11] was proved that if we consider the external operation e : Ry x [0,2! — 1] — [0,2! — 1],
defined as follows:
aexr =gef min(2' — 1,a e ),

Va € Ry and Vz € [0,2! — 1], the structure ([0,2! — 1], @, —,0, e) is a vectorial MV-algabra
and is easy to see that this is also a Riesz MV-algebra, as mentioned in [8].

If we use the above definition of @ and e operations and the formula of the general Shepard
local approximation operator from Definition 8, we can define an algorithm that can be used to
fill in the missing data of signals received from IoT devices.

In [1] were considered the following types of kernels:

K(u) = —5 (Shepard kernel)
K(u) = e, (Exponential kernel)

. 2)
K(u) = <s1n(q7ru)> , (Shepard-Jackson kernel)

sin (mu)
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where A is a parameter that can influence the performance of obtained results, and ¢ is the
degree of the Shepard-Jackson kernel. Also in [1]| was determined by numerical experiments that
the best results are given by Shepard and exponential kernels, thus only these will be considered
in the following numerical experiments.

Let now consider an industrial rectangle shape grid of IoT sensors that collect temperature
of an environment. The temperatures collected at a certain moment can be represented by a
two-dimension function

f:10,n1] x [0,n2] — [0,2" —1].

In the formula of Definition 8, x; = (¢;,,¢;.) are the sensors located on row ¢;. and column
¢i, have transmitted data and x = (¢, ¢.) is the sensor located in row ¢, and column ¢, that was
not transmitted data.

The fill in algorithm has the following steps:

1. A kernel has to be selected;
2. The parameter A is set;

3. The radius r, that influence how many received values are considered in the approximation
of missing values, is set;

4. A grid traversing method is selected and each missing value is approximated.

3 Numerical results

In the approximation process, there is also the possibility to use the previously new approx-
imated values or to ignore them. Also to reduce the computational complexity, we replace the
ball defined in 2 with a square having the side length 2r 4+ 1 and we used the supremum norm.

A grid of 31 x 31 sensors was considered, and we assumed that the collected values should
be f(z) = (CT;CC) : sin(ﬂ(c’gcc)). It was considered a continuous function, because one of the
purposes of this algorithm is to be used to approximate missing values collected by the new
fiber optic Bragg grating sensors system designed to monitor the ethanol fermentation during
the bioethanol and wine production. This new fiber optic Bragg grating sensor system was
developed using financing through grant PN-III-P2-2.1-PED-2016-1955.

The approximation error was determined using the formula

P= > |f(@)-Se(f,2),

z€[0,n1] % [0,n2]

because we are interested in the overall error cumulated error.

3.1 Experiment 1

In this experiment we assume that we received only data transmitted by sensors that are
located on rows and columns that are both even numbers. Several parameterizations are consid-
ered. After running the tests, we get the approximation errors listed as follows:
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Parametrization Shepard kernel FExponential kernel

r=2A=2 48.1403 74.1296
r=2,A=10 36.3588 36.3465
r=2,A=20 36.3587 36.3587
r=3,A=2 58.0658 183.302
r=3,A=10 36.3588 42.9482
r=3,A=20 36.3587 36.5376
r=5A\=2 68.9431 476.092
r=>5A=10 36.3588 110.7
r=5\=20 36.3587 54.642
r=10,A=2 80.0381 1431.53
r=10,A=10 36.3588 463.169
r=10,A =20 36.3587 237.138

3.2 Experiment 2

In this experiment we assume that we couldn’t receive data transmitted by sensors that are
located on rows and columns that are both odd numbers. Same parameterizations like in the
previous experiment are considered. After running the tests, we get the approximation errors
listed as follows:

Parametrization Shepard kernel FExponential kernel

r=2,A=2 15.1187 20.5379
r=2A=10 13.1902 13.2046
r=2,A=20 13.1902 13.1902
r=3,A=2 18.6535 58.1864
r=3,A=10 13.1902 14.2934
r=3,A=20 13.1902 13.2233
r=5\A=2 21.7479 152.12

r=>5A=10 13.1902 33.5822
r=25A=20 13.1902 16.5552
r=10,A=2 24.8594 455.862
r=10,A =10 13.1902 146.969
r=10,A =20 13.1902 74.6371

4 Conclusion

Nowadays, industrial information systems are depending on signals received form IoT devices.
There can be several problems in acquiring data from these IoT devices, problems that can led
to missing values. Without a complete set of data, the automation of processes isn’t possible or
is not satisfying enough. The algorithm proposed in this paper has the role to fill in the missing
values of signals sent by IoT devices. As mentioned in [8], for industrial usage of the algorithm,
this methods should be further developed to determine the proper set of parameters for each of
the kernels, based on the particularities of the industrial processes handled and on the amount
of missing values. Depending on the constrains of the real processes that have to be modeled,
other error measures can be considered as well.
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