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Abstract: In this research 7 parametric classes of normalization functions depending
on 1 or 2 parameters proposed for MCDM problem solution. Monte Carlo experiments
carried out to perform comparative statistical analysis and find optimal parameter
values for the case of Gaussian distribution of decision making matrix elements. Opti-
mal parameter values were ascertained for each normalization method. Normalization
formulas were compared with each other in the sense of their efficiency. Logarithmic
and Max normalization formulas demonstrated highest values of the best alternative
identification. The proposed methodology of determining optimal parameter values
of normalization formulas could be applied by approximation of real data with ap-
propriate probability distributions.
Keywords: normalization methods, multi-criteria optimization, Monte Carlo
method, comparative statistical analysis, SAW.

1 Introduction

Multiple criteria decision making (MCDM) methods deal with ranking of alternatives (projects)
by measurements or evaluations of the projects according to finite number of attributes (criteria).
Ranking results depend on many components of this process, the main of them that influence
finite results are

• data normalization formula,

• weight determination method,

• data aggregation method.

Data normalization is an important part of a decision-making problem, but it is still not given
enough attention in scientific literature. Nevertheless, it was shown in the number of scientific pa-
pers that data normalization method selection often significantly affects the accuracy of MCDM
problem solution. The main topic of existing articles is investigation of various normalization
formulas together with TOPSIS as one of the most popular MCDM method for ranking alter-
natives. Jahan and Edwards [4] proposed the comprehensive systematized review of existing
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normalization methods. Some of them are traditionally used with the certain MCDM meth-
ods, for example, the well known tandem of vector normalization (Van Delft and Nijkamp [17])
and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method
(Hwang and Yoon [3]). The study of Celen [1] revealed that TOPSIS with vector normalization
generated the most consistent results among the most popular four normalization procedures.
Among the linear normalization procedures, max-min and max methods appeared as the possible
alternatives to the vector normalization procedure. A simulation comparison of normalization
procedures for TOPSIS in terms of their ranking consistency and weight sensitivity was carried
out by Chakraborty and Yeh [2]. The study results also justify the use of the vector normalization
procedure for TOPSIS. Influence of normalization tools on COPRAS-G method applied for ma-
terial selection task proposed by Yazdani et al. [19] In the study of Podviezko and Podvezko [13]
it is shown that different types of transformation and normalization of data applied to popular
MCDA methods, such as SAW or TOPSIS may produce considerable differences in evaluation.
Authors stated that attention has to be paid to making a choice of the type of normalization,
which reflects preferences of decision-maker.

Kosareva et al. [7] accomplished comparative statistical analysis of 5 widely used normaliza-
tion methods with SAW method for ranking the alternatives and ternary estimates matrix. It
is notable that results strongly differ for benefit and cost type attributes. Minmax method in
most cases is significantly better than other. In the study of Peldschus [12] the impact of linear,
concave and convex function profiles for mapping on a dimensionless interval (normalization)
was investigated. Review of the normalization methods used in construction engineering and
management, and their applications there are presented by Kaplinski and Tamošaitienė [6]. Mi-
lani et al. [11] examined how different families of norms affect the result of solving engineering
decision problem by entropy and TOPSIS methods. It was verified that the linear optimization
norms cannot affect the rank of alternatives significantly. In contrast, nonlinear norms may yield
some deviations, mainly for alternatives that are inherently close.

Recently, some new normalization formulas were proposed in the literature. Research of
Zavadskas and Turskis [20] is focused on introducing a new logarithmic method for decision
making matrix normalization. Based on Weitendorf [18] and Juttler [5] formulas, Stanujkic
et al. [14] proposed a new normalization procedure. The idea is to use the distance from the
preferred ratings, which respects the decision-maker’s preferences. This procedure, adapted for
negotiations, was integrated with Step-Wise Weight Assessment Ratio Analysis (SWARA) and
Additive Ratio Assessment (ARAS) methods in the research of Stanujkic et al. [15] Data normal-
ization, as well as the measurement scales, inconsistency issues, missing judgement estimation
methods, etc. have been extensively studied in the pairwise comparison matrix (PCM). A com-
prehensive literature review on PCM provided in Kou et al. [8] A group decision-making (GDM)
method for integrating heterogeneous information proposed by Li et al. [9]

The purpose of this study is to propose a new methodology of constructing parametric nor-
malization methods and to carry out their statistical comparative analysis. 7 classes of parametric
data normalization procedures are presented. Some of the proposed normalization methods with
particular parameter values are well known and widespread, other methods aren’t so popular.
Nevertheless, all these methods were not being applied using the wide range of parameter values
so far.

The article is organized as follows. In the Section 2 seven classes of parametric normalization
functions are introduced, their properties and dependency on parameter values are discussed.
Experiment design and detailed description of initial data matrices generation procedure is given
in the Section 3. Monte Carlo experiment results and comparative statistical analysis of normal-
ization methods depending on the parameter values presented in the Section 4. Conclusions and
future research are discussed in the Section 5.
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2 Parametric data normalization methods

In this article Simple Additive Weighting (SAW) method (see Ref. 19) with equal weights is
applied for MCDM problem solution. Let us suppose that the initial data are the results of some
measurements, expert evaluations, etc., and are written inm×n-dimension matrixX = (xij)m×n.
The element xij of decision making matrix is evaluation of alternative i(i = 1, 2, . . . ,m) by the
criterion j(j = 1, 2, . . . , n). Decision making matrix after normalization procedure is noted
as follows: X̃ = (x̃ij)m×n, 0 ≤ x̃ij ≤ 1. Let wj , j = 1, 2, . . . , n be criteria weights satisfying
conditions

∑n
j=1wj , 0 ≤ wj ≤ 1. Then, SAW criteria aggregated value is calculated for each

alternative:

Qi =
n∑
j=1

wj x̃ij , i = 1, 2, . . . ,m.

If Q1 ≥ Q2 ≥ . . . ≥ Qm, then the alternatives are ranked as follows:

altern1 � altern2 � . . . � alternm.

The essence of any normalization procedure is mapping of the real values xij ∈ [mj ,Mj ] ⊂
(−∞,+∞) having certain meaning in the interval [0, 1], which in general case represents these
numbers unevenly. For example, functions xα : [0, 1] → [0, 1] depending on the parameter α
represent half of the maximum values to the 13% of the maximum normalized values, when
α = 0.2, to the 30%, when α = 0.5, 75%, when α = 2 and even 97%, when α = 5 (see Figure 1).

Figure 1: Normalization functions xα : [0, 1]→ [0, 1].

It means that the aggregated values Qi can not only depend strongly and not so much on the
absolute values of xij as on the relationships xi′j < xi′′j . In this research we’ll limit ourselves with
direct optimization, when higher values of criteria are better, omitting inverse optimization, when
lower values are treated as better. So, the only essential requirement for normalization functions
is – they must be monotonously increasing. The other restriction of our research is dealing with
random generation of initial decision making matrix elements that have the Gaussian (normal)
probability distribution.

Practically applied normalization methods can be more complex compared to functions de-
picted in Figure 1 and can therefore have a great deal of influence in alternative comparisons and
decision-making results. Therefore, the literature deals with a large number of normalization
methods, the new methods are developed, their researches and comparisons are carried out.

Denote mj = min
1≤i≤m

xij ,Mj = max
1≤i≤m

xij , j = 1, 2, . . . , n. In the Table 1 we propose 7 classes

of normalization functions [mj ,Mj ] → [0, 1] depending on 2 parameters α ≥ 0 and k ≥ 0.
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These classes describe 7 different normalization approaches. Note, that (1), (6) and (7) methods
depend exclusively on the parameter α, meanwhile the rest (2)–(5) methods are depending on
two parameters α ≥ 0 and k ≥ 0. When α = 1, methods (1), (6) and (7) are known from the
literature and are entitled as: (1) – Minmax normalization, (6) – Logaritmic normalization, (7)
– Max normalization. Plots of functions (1)–(7), when α = 1, k = 1, are given in Figure 2, plots
of functions (1), (6) and (7), when α = 0.5, 2 – in Figure 3). Graphs of functions (2)–(5) with
corresponding parameter values α = 0.5, 2; k = 2, 3, 5 are depicted in Figure 4. In the Table 2
the example of data matrix normalization by methods (1)–(7) is presented when α = 1, k = 1
and initial data matrix is

(xij)(4×4) =


120 1.2 1 4
250 2.5 2 5
3600 36 5 8
6400 64 10 13

 .

The second column elements of matrix (xij) are obtained dividing the first column elements
by 100, while the fourth column elements are calculated by adding constant 3 to the third column
elements. Let us see that data normalization formulas (1)–(5) are invariant with respect to linear
transformation αx+β, formula (7) is invariant with respect to multiplication/division, but does
not preserve addition, while formula (6) does not preserve nor multiplication, neither addition.
All the first 5 methods map the lowest value to 0, and the highest value to 1, method (7) maps
the highest value to 1.

Several questions naturally arise considering this issue. Are the mutual differences between
the results of these methods application for MCDM problem solution significant? What are the
“best” values of parameters α and k? How do the results vary when varying parameter α and k
values? How do the results vary when varying m and n values?

Table 1: Formulas for 7 parametric normalization methods in the case of direct normalization.

Formula
number

Normalization method Direct normalization formula

(1) Minmax normalization
(Weitendorf, 1976)

x̃ij =

(
xij −mj

Mj −mj

)α

(2) Exponential normaliza-
tion

x̃ij = e
−k

Mj − xij
xij −mj

α

(3) Logaritmic maxmin nor-
malization

x̃ij =
1(

1 + k ln

(
Mj −mj

xij −mj

))α
(4) Arctangent normaliza-

tion
x̃ij =

(
2

π
arctan

(
k
xij −mj

Mj − xij

))α

(5) Double exponential nor-
malization

x̃ij =

1− e
−k
(
xij −mj

Mj − xij

)

1 + e
−k
(
xij −mj

Mj − xij

)

α

(6) Logarithmic normal-
ization (Zavadskas and
Turskis, 2008)

x̃ij =

(
ln(xij)

ln(
∏m
i=1 xij)

)α
, xij ≥ 1

(7) Max normalization
(Stopp [16], 1975)

x̃ij =

(
xij
Mj

)α
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Figure 2: Functions (1)–(7), when α = 1, k = 1.

Figure 3: Functions (1), (6) and (7), when α = 0.5 and α = 2.

3 Experiment design

The case under investigation is when the decision making matrix elements are some measure-
ments done with sufficient precision and having Gaussian probability distribution xij ∼ N(µi, σ).
We’ll suppose, that the first row elements of the matrix have at the average higher values than
elements of other rows µ1 > µ2 = . . . = µm. Only such matrices were analysed, for which the
first alternative (first row) has no domination property in comparison with any other alternative,
i.e. when the following conditions are not fulfilled:

(x11, x12, . . . , x1n) � (xi1, xi2, . . . , xin), if x11 ≥ xi1, x12 ≥ xi2, . . . x1n ≥ xin. (8)

If condition (8) is valid, weighted averages Qi =
∑n

j=1wj x̃ij will satisfy inequalities Q1 ≥ Qi
with any values of weights wj . Therefore, the result of all normalization methods will be the
same – the first alternative is better than i-th alternative. So, when random matrices are being
generated, such matrices whose first and any (at least one) i-th row satisfy domination property
(8) are being rejected. As a result, the number of cases of a fair decision has decreased. For
example, the first and the second rows elements of decision making matrix

X(1) =


52.34 66.31 63.38 67.01
48.90 62.05 56.54 53.93
72.05 56.24 61.58 48.05
52.10 65.00 71.95 56.82
77.69 70.34 65.00 55.65


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Table 2: Normalization methods application example when α = 1 and k = 1.

Normalization
method

Normalized matrix x̃ij Formula

(1)


0 0 0 0

0.021 0.021 0.11 0.11
0.55 0.55 0.44 0.44

1 1 1 1

 x̃ij =
xij −mj

Mj −mj

(2)


0 0 0 0

2.8 · 10−21 2.8 · 10−21 0.0003 0.0003
0.45 0.45 0.29 0.29

1 1 1 1

 x̃ij = e
−

Mj − xij
xij −mj



(3)


0 0 0 0

0.21 0.21 0.31 0.31
0.63 0.63 0.55 0.55

1 1 1 1

 x̃ij =
1

1 + ln

(
Mj −mj

xij −mj

)

(4)


0 0 0 0

0.01 0.01 0.08 0.08
0.57 0.57 0.43 0.43

1 1 1 1

 x̃ij =
2

π
arctan

(
xij −mj

Mj − xij

)

(5)


0 0 0 0

0.01 0.01 0.06 0.06
0.55 0.55 0.38 0.38

1 1 1 1

 x̃ij =
1− e

−
(
xij −mj

Mj − xij

)

1 + e
−
(
xij −mj

Mj − xij

)

(6)


0.18 0.02 0 0.18
0.20 0.10 0.15 0.21
0.30 0.41 0.35 0.27
0.32 0.47 0.5 0.34

 x̃ij =
ln(xij)

ln(
∏m
i=1 xij)

(7)


0.02 0.02 0.1 0.31
0.04 0.04 0.2 0.38
0.56 0.56 0.5 0.62

1 1 1 1

 x̃ij =
xij
Mj

satisfy inequalities 52.34 ≥ 48.90, 66.31 ≥ 62.05, 63.38 ≥ 56.54, 67.01 ≥ 53.93,

therefore (52.34, 66.31, 63.38, 67.01) � (48.90, 62.05, 56.54, 53.93) and matrix X(1) is being
rejected. Matrix

X(2) =


57.56 66.42 58.31 55.51
58.51 63.08 67.93 46.31
55.36 57.58 59.16 72.82
38.95 58.40 40.93 57.93
53.68 45.57 70.41 59.98



is appropriate. The results of 7 normalization procedures when α = 1, k = 1 are as follows:

X̃(2)(1) =


0.95 1.0 0.59 0.35
1.0 0.84 0.92 0.0
0.84 0.58 0.62 1.0
0.0 0.62 0.0 0.44
0.75 0.0 1.0 0.52

 , X̃(2)(2) =


0.95 1.0 0.50 0.15
1.0 0.83 0.91 0.0
0.83 0.48 0.54 1.0
0.0 0.54 0.0 0.28
0.72 0.0 1.0 0.39

 ,
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a) Function (2) b) Function (3)

c) Function (4) d) Function (5)

Figure 4: Graphs of functions (2)–(5) with different parameter α and k values.

X̃(2)(3) =


0.95 1.0 0.65 0.49
1.0 0.85 0.91 0.0
0.85 0.65 0.68 1.0
0.0 0.67 0.0 0.55
0.78 0.0 1.0 0.60

 , X̃(2)(4) =


0.97 1.0 0.61 0.31
1.0 0.88 0.94 0.0
0.88 0.60 0.65 1.0
0.0 0.64 0.0 0.42
0.80 0.0 1.0 0.52

 ,

X̃(2)(5) =


1.0 1.0 0.62 0.26
1.0 0.99 1.0 0.0
0.99 0.59 0.67 1.0
0.0 0.66 0.0 0.37
0.91 0.0 1.0 0.49

 , X̃(2)(6) =


0.21 0.21 0.20 0.20
0.21 0.20 0.21 0.19
0.20 0.20 0.20 0.21
0.19 0.20 0.18 0.20
0.20 0.19 0.21 0.20

 ,

X̃(2)(7) =


0.98 1.0 0.83 0.76
1.0 0.95 0.96 0.64
0.95 0.87 0.84 1.0
0.67 0.88 0.58 0.80
0.92 0.69 1.0 0.82

 .

We can see that matrices X̃(2) (1)−X̃(2) (5) mutually differ slightly, meanwhile there are essential
differences between the first 5 matrices and X̃

(2)
(6) − X̃(2) (7). When proper matrix X is

generated and some kind of normalization (1)–(7) is done, SAW criteria aggregated values with
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equal weights are calculated for each row:

Qi =
n∑
j=1

1

n
· x̃ij , i = 1, 2, . . . ,m. (9)

The first alternative is considered to be the best one when Q1 > Q2, Q1 > Q3, . . . , Q1 > Qm.
10 series by 100 experiments were conducted. After 100 realizations of experiments denote ID -
the number of cases, when the first alternative identified as the best one (the number of correct
MCDM problem solutions from 100). Denote also W ID = ID

100 , i.e. the percent of the correct
MCDM problem solutions.

Table 3: Numbers of cases with the best first alternative (ID) for normalization methods (1)–(7),
when α = 1 and k = 1.

(1) 62 54 62 56 58 52 49 58 52 45
(2) 69 60 66 57 56 56 50 57 54 46
(3) 55 50 59 55 51 45 45 57 55 44
(4) 64 56 60 58 56 51 50 57 52 46
(5) 62 56 59 59 53 49 47 53 51 47
(6) 69 66 66 73 63 64 58 64 63 56
(7) 69 65 66 72 63 62 61 65 63 54

Table 3 shows experiment results – how many times after application of methods (1)–(7) with
α = 1 and k = 1 it was found that the best option is the first alternative. Each row contains
results of 10 experiment series for each normalization method.
Next, Monte Carlo experiments were conducted by changing parameters α and k values as follows.
First row elements of matrix X were generated according to the Gaussian distribution with the
average value µ1 = 67 and standard deviation σ = 15, elements of other rows – with the average
values µi = 57, i = 2, 3, . . . ,m and standard deviation σ = 15. Calculations were performed
using the C++ program.

4 Experiment results

4.1 Dependence of the best alternative detection accuracy on parameter α

At the first stage of the experiments we fixed k value at k = 1 and varied α choosing the
individual range for each normalization method. 100 series of 100 experiments were repeated for
each parameter α value and empirical averages W ID = 1

100

∑100
i=1WIDi calculated. The purpose

is to detect α value which maximizes W ID .
In the Table 4 the dynamics ofW ID values depending on α is depicted. 95% confidence intervals
[w1_0.95;w2_0.95] for mean values EW ID are given in the last column of the table. Maximum
values of correct MCDM problem solution empirical averages W ID were achieved for such α
values: α = 2 for methods (1), (3), (4) and (7), α = 0.75 for method (2), α = 4 for method (5),
α = 20 for method (6). The dependence of empirical mean values on α as well as upper and
lower bounds of confidence intervals of the mean values are presented graphically in Figs. 5–6.
For improvement of graphic images, smoothing spline fitting of Table 4 data was produced with
MATLAB.
The question arises: are the detected differences between normalization methods with different
α values statistically significant? Student’s t-tests were applied for testing the hypotheses H0 of
equal average values EWID in the cases of α = 1 and corresponding optimal parameter α values.
Table 5 shows p-values of the respective t-tests. Significant differences in the best alternative
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Table 4: W ID values and confidence intervals for mean values EW ID for 7 normalization methods
at k = 1.

Normalization
method

α W ID [w1_0.95;w2_0.95]

(1) 1 0.4784 [0.4678; 0.4890]
1.25 0.4899 [0.4790; 0.5008]
1.5 0.4998 [0.4885; 0.5111]
2. 0.5015 [0.4911; 0.5119]
3 0.4958 [0.4860; 05055]
4 0,4905 [0.4804; 0.5006]
5 0.4859 [0.4758; 0.4960]

(2) 0.5 0.4952 [0.4854; 0.5050]
0.75 0.4987 [0.4876; 0.5098]
1 0.4936 [0.4836; 0.5036]
1.25 0.4897 [0.4796; 0.4998]
1.5 0.4874 [0.4774; 0.4974]
2 0.4807 [0.4707; 0.4907]

(3) 0.5 0.3438 [0.3342; 0.3534]
1 0.4485 [0.4373; 0.3534]
1.5 0.4859 [0.4758; 0.4597]
2 0.4979 [0.4875; 0.4960]
3 0.4959 [0.4862; 0.5083]
4 0.4919 [0.4821; 0.5017]

(4) 1 0.4751 [0.4643; 0.4859]
1.5 0.4947 [0.4842; 0.5052]
2 0.5009 [0.4904; 0.5114]
3 0.498 [0.4880; 0.5080]
4 0.4929 [0.4827; 0.5031]
5 0.4906 [0.4803; 0.5009]

(5) 1 0.4684 [0.4582; 0.4786]
2 0.4914 [0.4812; 0.5016]
3 0.4951 [0.4845; 0.5057]
4 0.4952 [0.4844; 0.5060]
5 0.494 [0.4834; 0.5046]
6 0.4927 [0.4823; 0.5031]
7 0.4923 [0.4822; 0.5024]

(6) 1 0.5370 [0.5258; 0.5482]
2 0.5396 [0.5287; 0.5505]
3 0.5444 [0.5336; 0.5552]
4 0.5486 [0.5377; 0.5595]
5 0.5508 [0.5401; 0.5616]
10 0.5596 [0.5496; 0.5696]
20 0.5609 [0.5512; 0.5706]
30 0.5523 [0.5420; 0.5626]

(7) 0.25 0.5394 [0.5284; 0.5504]
0.5 0.5400 [0.5290; 0.5510]
0.75 0.5396 [0.5286; 0.5506]
1 0.5403 [0.5293; 0.5513]
2 0.5419 [0.5310; 0.5528]
3 0.5384 [0.5276; 0.5492]
4 0.5340 [0.5232; 0.5448]
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detection accuracy on significance level 0.05 were observed for normalization methods (1), (3)–
(6). Methods (2) and (7) didn’t show significant differences. Consequently, it makes sense using
formulas (1), (3)–(6) with the appropriate optimal parameter α values that differ from α = 1
(see optimal α values in the Table 5), while it makes sense using α = 1 for methods (2) and (7).

1 1.5 2 2.5 3 3.5 4 4.5 5
0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

α

Method 1: dependence of W
ID

 on alpha

 

 
W

ID

w
1_0.95

w
2_0.95

0.5 1 1.5 2
0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

α

Method 2: dependence of W
ID

 on alpha

 

 
W

ID

w
1_0.95

w
2_0.95

0.5 1 1.5 2 2.5 3 3.5 4
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

α

Method 3: dependence of W
ID

 on alpha

 

 

W
ID

w
1_0.95

w
2_0.95

1 1.5 2 2.5 3 3.5 4 4.5 5
0.46

0.47

0.48

0.49

0.5

0.51

0.52

α

Method 4: dependence of W
ID

 on alpha

 

 

W
ID

w
1_0.95

w
2_0.95

1 2 3 4 5 6 7 8 9 10
0.45

0.46

0.47

0.48

0.49

0.5

0.51

α

Method 5: dependence of W
ID

 on alpha

 

 

W
ID

w
1_0.95

w
2_0.95

0 5 10 15 20 25 30
0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

α

Method 6: dependence of W
ID

 on alpha

 

 
W

ID

w
1_0.95

w
2_0.95

Figure 5: Dependence of empirical average accuracy W ID on the parameter α values for (1)–(6)
normalization methods and 95% confidence intervals bounds.

Next, ANOVA procedure was applied to check the hypothesis of equal averages EWID for
7 normalization methods with optimal α values. Procedure results show significant differences
existing between methods. Bonferroni test was chosen for Post Hoc multiple comparisons. It
revealed that there are nor significant differences between averages EWID for (1)–(5) methods,
neither between (6) and (7) methods. However, when comparing any method from the first group
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Figure 7: Mean plot from ANOVA pro-
cedure comparing EWID for optimal α
values corresponding to 7 normalization
methods.

((1)–(5) methods) with any of the methods of the second group ((6)–(7) methods), statistically
significant differences were found. The conclusion can be made that (6) and (7) methods at the
average are more precise than (1)–(5) methods, since the average accuracy EW ID obtained by
(6)–(7) methods is significantly higher than the accuracy of (1)–(5) normalization formulas. In
Figure 7 the mean plot from ANOVA procedure output is represented. EWID for optimal α
values corresponding to 7 normalization methods are depicted.

Table 5: Hypotheses of equal average values EWID testing results for α = 1 and optimal α value
for (1)–(7) normalization methods for the first experiment.

Normalization
method

Optimal
α value

H0 p-value

(1) 2 EW ID α=1 = EW ID α=2 0.002
(2) 0.75 EW ID α=1 = EW ID α=0.75 0.499
(3) 2 EW ID α=1 = EW ID α=2 0.000
(4) 2 EW ID α=1 = EW ID α=2 0.001
(5) 4 EW ID α=1 = EW ID α=4 0.000
(6) 20 EW ID α=1 = EW ID α=20 0.002
(7) 2 EW ID α=1 = EW ID α=2 0.838

Table 6: W ID values, corresponding optimal α values and t-test results for (1)–(7) normalization
methods for the second experiment.

Normalization
method

Optimal
α
value

W ID H0 p-value

(1) 2 0.6967 EW ID α=1 = EW ID α=2 0.000
(2) 0.75 0.6966 EW ID α=1 = EW ID α=0.75 0.594
(3) 2 0.6959 EW ID α=1 = EW ID α=2 0.000
(4) 2 0.701 EW ID α=1 = EW ID α=2 0.000
(5) 3 0.6879 EW ID α=1 = EW ID α=3 0.002
(6) 10 0.7775 EW ID α=1 = EW ID α=20 0.003
(7) 1 0.7631 - -
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Table 7: Recommended normalization formulas (1)–(7) with optimal α values and k = 1.

x̃ij =
(
xij−mj
Mj−mj

)2
(1)

x̃ij = e
−
(
Mj−xij
xij−mj

)
(2)

x̃ij = 1(
1+ ln

(
Mj−mj
xij−mj

) )2 (3)

x̃ij =
(

2
π arctan

(
xij−mj
Mj−xij

) )2
(4)

x̃ij =

 1−e
−
(
xij−mj
Mj−xij

)

1+e
−
(
xij−mj
Mj−xij

)
4

(5)

x̃ij =

(
ln(xij)

ln(
∏m
i=1 xij)

)20

, xij ≥ 1 (6)

x̃ij =
xij
Mj

(7)

Due to randomness of the experiments we observe some variability in the obtained results:
optimal α value for (5)-th normalization method changed from 4 to 3, for (6)-th method – from
20 to 10, for (7)-th method – from 2 to 1. However, t-test didn’t detect significant differences
between EWID at the mentioned α levels. ANOVA results and conclusions also are the same.
So, the conclusions remained unchained – it is recommended to use optimal α values, which
differ from 1 for normalization methods (1), (3)–(6) and apply α = 1 for methods (2) and (7).
Moreover, (6) and (7) normalization formulas lead to significantly higher average accuracy of
best alternative detection. The results of the experiments revealed that it is reasonable to use
normalization formulas with α values specified in the Table 7.

To evaluate the stability of obtained results, Monte Carlo experiments were repeated with
other values of decision making matrices. The elements of matrix X were generated as follows:
x1j ∼ N(67, 15), xij ∼ N(52, 15), i = 2, 3, . . . ,m. As the differences µ1 − µi increased, it is
natural to expect that the best alternative detection accuracy will be higher than in the previous
experiment. The results of the second experiment are shown in the Table 6. They essentially
confirmed results of the first experiment.

4.2 Dependence of the best alternative detection accuracy on parameter k

Data normalization formulas (2)–(5) are depending on both parameters α and k. So, it
is interesting to reveal whether EWID change significantly while changing k. Calculations were
carried out with few values of parameters α, and for each fixed α for few values of k. The elements
of matrix X were generated as follows: x1j ∼ N(67, 15), xij ∼ N(57, 15), i = 2, 3, . . . ,m. 100
Monte Carlo experiments were repeated for each parameter values combination and empirical
mean values W ID calculated. Then maximum value of W ID was detected for some optimal
parameter k value. Calculation results for normalization formulas (4) and (5) are presented in
the Table 8. Maximum W ID values and corresponding parameter α and k values are as follows:
normalization method (2) – W ID = 0.511, α = 0.75, k = 1; (3) – W ID = 0.505, α = 2, k = 1; (4)
– W ID = 0.516, α = 2, k = 1; (5) – W ID = 0.509, α = 1, k = 0.5. In Figure 8 the dependence
of average accuracy W ID on k = 1 is depicted. For normalization formulas (2)–(4) optimal
parameter k value is 1, only for method (5) optimal value differs from 1 (k = 0.5).

Next, t-test was applied for testing the hypothesesH0 of equal average values EWID for k = 1
and corresponding optimal parameter k values. The difference between EWID with parameters
α = 1, k = 0.5 and EWID with parameters α = 1, k = 1 is significant at significance level 0.05.
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Figure 8: Dependence of empirical average accuracy W ID on parameter k values for (2)–(5)
normalization methods.

Table 8: W ID calculated by varying α and k values for normalization methods (4) and (5).

Method (4)
α
k

0.5 0.75 1 1.5 2 3

0.1 0.497 0.486 0.500 0.482 0.486 0.479
0.2 0.510 0.494 0.500 0.496 0.484 0.479
0.5 0.475 0.500 0.501 0.509 0.495 0.497
1 0.422 0.460 0.486 0.502 0.516 0.506
2 0.353 0.399 0.435 0.478 0.488 0.504
5 0.303 0.317 0.358 0.381 0.401 0.449
10 0.285 0.297 0.307 0.324 0.345 0.378

Method (5)
α
k

0.5 0.75 1 1.5 2 3

0.1 0.487 0.482 0.479 0.485 0.484 0.485
0.2 0.497 0.483 0.479 0.486 0.484 0.483
0.5 0.483 0.502 0.509 0.504 0.497 0.498
1 0.423 0.466 0.482 0.489 0.494 0.494
2 0.339 0.385 0.411 0.442 0.454 0.473
5 0.296 0.302 0.318 0.339 0.354 0.381
10 0.287 0.278 0.290 0.299 0.296 0.323
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So, it is recommended to use α = 1, k = 0.5 for normalization method (5):

x̃ij =
1− e

− 1
2

(
xij−mj
Mj−xij

)

1 + e
− 1

2

(
xij−mj
Mj−xij

) ,

whereas for methods (2)–(4) it is reasonable to use k = 1 with respective optimal α value (see
relevant formulas in Table 7).

5 Conclusions and future research

The purpose of this article is to analyze some parametric normalization formulas and establish
how various data normalization methods and parameter values affect the accuracy of MCDM
problem solution. 7 data normalization methods were investigated (see formulas (1)–(7)). Some
of them with certain parameter values are generalizations of the well known normalization meth-
ods. Data matrices were randomly generated according to Gaussian probability distribution.
In all conducted Monte Carlo experiments decision making matrices were generated with the
first alternative as the best one. Then the alternatives were ranked by the SAW method overall
aggregated value with equal weights. The measure of identification accuracy is the percentage
of correct identifications of the best alternative. The results of experiments are as follows.

1. Identification accuracy obtained by methods (6)–(7) is significantly higher than the accu-
racy for normalization methods (1)–(5).

2. Variation of parameter k revealed that for normalization method (5) it is reasonable to use
combination of parameters α = 1, k = 0.5, whereas for methods (2)–(4) it is reasonable to
use k = 1 with respective optimal α value (see relevant formulas in Table 7).

3. Optimal α value have some “degrees of freedom”, for example, it is possible to choose
another optimal value α = 10 instead of α = 20 for normalization formula (6), since there
isn’t significant difference between identification accuracy at these values.

4. This research is accomplished in the special case when elements of decision matrix have
Gaussian distribution. If we possess more information, we can apply the same methodology
by approximating real data with appropriate probability distributions.

5. Parameters of initial decision making matrix were chosen so that identification of the best
alternative would be higher than 50%. Experiments revealed that identification accuracy
is higher with the bigger number of criteria n, and is lower with fewer alternatives m.
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