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Abstract: Methods based on Rapidly-exploring Random Trees (RRTs) have been
widely used in robotics to solve motion planning problems. On the other hand, in the
membrane computing framework, models based on Enzymatic Numerical P systems
(ENPS) have been applied to robot controllers, but today there is a lack of planning
algorithms based on membrane computing for robotics. With this motivation, we
provide a variant of ENPS called Random Enzymatic Numerical P systems with
Proteins and Shared Memory (RENPSM) addressed to implement RRT algorithms
and we illustrate it by simulating the bidirectional RRT algorithm. This paper is an
extension of [21]a. The software presented in [21] was an ad-hoc simulator, i.e, a tool
for simulating computations of one and only one model that has been hard-coded.
The main contribution of this paper with respect to [21] is the introduction of a novel
solution for membrane computing simulators based on automatic programming. First,
we have extended the P-Lingua syntax –a language to define membrane computing
models– to write RENPSM models. Second, we have implemented a new parser based
on Flex and Bison to read RENPSM models and produce source code in C language
for multicore processors with OpenMP. Finally, additional experiments are presented.
Keywords: Membrane Computing, RENPSM, robotics, RRT, P-Lingua.
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1 Introduction

Robots are machines oriented to objectives equipped with actuators, sensors and computation
units acting under physical constraints. Regardless of their morphology, they should accomplish
tasks by acting in the real world. This is one of the main reasons by which robot motion
planning is an eminent research area in robotics [8, 11, 21]. In general terms, the problem
of motion planning can be defined in the configuration space of a robot as follows: Given a
start configuration state, a goal configuration state, a geometric description of the robot, and a
geometric description of the environment, find a path that moves the robot gradually from start
to goal.

A configuration state is a specification of the positions of all robot points relative to a fixed
coordinate system. This is usually expressed as a vector of positions and orientations, for ex-
ample, a rigid-body robot in a 2D world can be expressed as a vector (x, y, θ) representing the
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center (x, y) of the robot in a fixed coordinate system and its yaw angle θ, i.e, the heading angle
of the robot. Since the shape of the robot is described, all of its points are then known.

Several constraints can be added to this problem, the most common is to reach the goal while
never touching any obstacle in the environment. Others can also be added, for example, a social
robot could restrict configuration states in order to guarantee the human comfort.

The configuration space of a robot can also be constrained by the type of movements the
robot can perform. In this sense, nonholonomic robots are those that cannot instantly modify its
direction without employing rotation in-place. On the other hand, holonomic robots can do it
(assuming zero mass). For example, a holonomic robot in a 2D world can move along the x axis
and the y axis, as well as modify its yaw angle if needed. But a nonholonomic robot can only
move forward/backward and/or modify its yaw angle. This is the typical case of dual-wheeled
mobile robots and cars.

Classical path planning algorithms have been widely adapted and applied to the problem of
motion planning with constraints in robots, for example, in [26], an application of the Dijkstra
algorithm for robot path-planning was presented. In such solutions, the general problem is
usually divided into two smaller problems: the global path planning problem, as described above;
and the local path planning, where the robot tries to connect two consecutive states in real-time
considering features not included in the global plan as, for example, dynamic obstacles. The
accumulated error during the local planning conducts to periodically recompute the global plan.
For this reason, the computational complexity of global planners is a critical point regarding
to real-time constraints. Many efforts have been made to provide good global planners. For
example: in [25], a search algorithm, called D∗, was presented for path planning in real-time
environments. In [15], a variant of the classical search algorithm A∗ is applied to grids with
blocked and unblocked cells. In [12], a tool for global path planning, called Rapidly-Exploring
Random Trees (RRT), was presented.

The class of RRT algorithms for global path planning is based on the randomized exploration
of the configuration space before moving the robot by building a tree in memory where nodes
represent states that can be reached by the state of the corresponding parent in a fixed amount
of time, furthermore each edge contains a velocity reference to reach the state in the child node
from the state in the parent node. It is currently one popular method in robot motion planning
due to its good properties. The computed RRT can be used together with search algorithms
or, as presented in [13], the RRT generation algorithm can be used by itself as a path planning
algorithm, where two RRTs are built simultaneously, one beginning from the initial configuration
and another one beginning from the ending configuration (bidirectional RRT).

In order to follow the path in safe manner, a local planner module should be executed
considering dynamic obstacles. Finally, each motor of the robot must be able to reach and
maintain velocity references for fixed periods of time. This is the function of a type of software
called controller on-board of the robot. Thus, robot control [1] is the branch of robotics dedicated
to the study and practice of controlling robots.

Robot controllers are usually based on common silicon microprocessors, but in the recent
years, some classes ofmembrane systems [16] have been in use for modelling them [18] [19] [20] [29].
Membrane systems are models of computation based on the structure and functions of the living
cells. In a membrane system, there are objects being evolved inside compartments according
to rules applied in a non-deterministic, maximally parallel way. They have been used as a new
technique to attack the P versus NP problem [22], and several applications have been also stud-
ied: stochastic P systems for modelling biological phenomena [24], probabilistic P systems for
modelling real ecosystems [2], spiking neural P systems incorporating fuzzy reasoning, for fault
diagnosis and learning [27], and others.

With respect to robot control, numerical P systems (NPS) were used for modelling and sim-
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ulating robot controllers [20], although the initial application of NPS was related to economical
processes [17]. A variant called enzymatic numerical P systems (ENPS) [18] was introduced and
applied to the distributed control of a swarm of mobile robots. Indeed, reactive and proportional-
integral-derivative (PID) dual-wheeled robot controllers have been successfully designed and sim-
ulated by means of ENPS, as well as software simulation tools [29]. This variant has been also
used [19] to address robot localization problem [8], where the robot must know its position in the
environment by using sensors.

In [21], following [23], a new variant of ENPS called random enzymatic numerical P sys-
tems with proteins and shared memory (RENPSM, for short) was introduced. New syntactical
ingredients were included to fit the requirements of the RRT algorithm:

• Random numbers: The algorithm uses a randomized method to explore the physical space,
therefore random numbers must be generated.

• Shared memory : The algorithm is parallelized using processes sharing common variables,
and a distinguished membrane, called shared memory, is included. At any instant, each
membrane can read from or write to it.

• Proteins: In order to synchronize the sequential execution of the algorithm, proteins are
used.

This paper is an extension of [21]. The software presented in [21] was an ad-hoc simulator,
i.e, a tool to simulate computations of one and only one model that has been hard-coded. Ad-hoc
simulators can be optimized for specific hardware architectures, but they are less debug-friendly
than generic simulators, since changes in the model imply changes in the source code of the
simulator. On the other hand, P-Lingua [3, 7, 33] is a language to define membrane computing
models, there are several simulators based on P-Lingua, most of them are implemented in the
pLinguaCore library [33] in Java language. In this paper, we provide a novel approximation
taking the advantages of ad-hoc and generic simulators by using automatic programming. We
have implemented a tool for parsing P-Lingua files defining RENPSM models and generating
source code in C and OpenMP for ad-hoc simulators. Thus, we have a flexible way to debug
since we are using a language to define the models instead of hard-coding them in the source code.
Moreover, the generated source code is able to run on multicore processors by using OpenMP.
Furthermore, additional virtual experiments are presented in this paper.

This paper is structured as follows. In the next section, some notions about robot path
planning are introduced. In Section 3, the rapidly-exploring random trees (RRTs) are described
with some details. Section 4 is devoted to introduce random enzymatic numerical P systems with
proteins and shared memory. In Section 5, a RENPSMmodel for the bidirectional RRT algorithm
is described. In Section 6, the original software presented in [21] based on C++ and ROS [30]
is explained, including some experimental results. In Section 7, the new software presented in
this paper is introduced, including an extension of the P-Lingua syntax for RENPSM, as well as
additional experiments. Finally, conclusions and future work are drawn.

2 Robot path planning

In general terms, robot path planning can be solved by applying a solution based on three
modules:

• Global planner : It receives the desired ending configuration of the robot, its safety radius
and current localization, as well as the precomputed position of the static obstacles in
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the environment and current information of sensors and odometry. The current dynamic
obstacles detected by the sensors are added to the static ones in order to generate a more
descriptive information of the environment. The odometry is used to obtain the current
velocity of the robot when kinodynamic constraints are considered. Then, the global plan-
ner computes a plan from the starting configuration xinit to the desired final configuration
xend of the robot. The plan is represented as a sequence of local goals {gi|1 ≤ i ≤ n},
where g1 = xinit and gn = xend. Each goal can be reachable from the previous goal con-
sidering the constraints of the problem, i.e, avoiding static obstacles, nonholonomic and
kinodynamic constraints, etc. RRT algorithms and other similar algorithms can be used
for this task.

• Local planner : It receives the sequence of local goals generated by the global planner, as
well as the current information of sensors, localization and odometry, then it sends velocity
references to the controller in order to command the robot along the path. Several algo-
rithms such as the dynamic window approach [5], pure pursuit [4], and potential fields [10]
algorithms, among others and variants, can be used.

• Controller : It receives velocity references from the local planner and manages the power
of the motors to fit each reference and maintain it constant or accelerate or reduce it until
the next one.

In Figure 1, it is represented the general robot path planning cycle. First the robot computes
a global plan from its current pose to the desired ending pose; if the plan can be generated,
i.e, the robot could reach the destination considering all the constraints, then the local planner
receives a sequence of intermediate goals and sends velocity references to the PID controller in
order to follow the path in a safe manner until reaching the destination; if some error occurs,
for example, a dynamic obstacle is too close to the next local goal or the robot is too far from
the next local goal (considering a predefined threshold), then the global plan is recomputed from
the current robot position. Notice that if there is a dynamic obstacle too close to the ending
configuration, then the global plan cannot be found.

3 Rapidly-exploring Random Trees

An RRT [12] is a randomized tree structure for rapidly exploring in memory a state space X
from an initial state xinit. It can be successfully used for nonholonomic and kinodynamic global
path planning in robotics [13].

Nodes in an RRT represent possible reachable states, for mobile robots in a 2D world which
is given by (x, y, θ) where (x, y) are the Cartesian coordinates of the robot position and θ is the
heading angle. However, the heading angle can be omitted in order to reduce the size of the tree.

It is assumed that a fixed obstacle region Xobs ⊆ X must be avoided, so the nodes of the
RRT are states in Xfree, the complement of Xobs in X.

Edges in an RRT represent transitions between reachable states, each of which is labelled
with the velocity reference u that the robot should execute for a fixed period of time ∆t in order
to change the corresponding states. For a mobile robot in a 2D world, the velocity reference
can be represented by the pair of linear and angular velocities (v, ω) to be sent to the controller.
On the other hand, if θ has been omitted, the edges in the RRT are labelled with instant linear
velocities. Thus, a holonomic robot can reach a state x1 from another state x0 connected by an
edge labelled with u by applying x1 = x0 + u ·∆t. In the case of nonholonomic robots, the local
planner should select the best sequence of motions in order to approximate x1, for example, if
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Figure 1: Robot path planning cycle

the robot can rotate in-place, a naive solution is to perform a rotation in-place before developing
the motion in a straight line.

Algorithm 1 GENERATE_RRT
Require: xinit,K, ρ,∆t,X,Xobs, dmin
1: Vτ ← {xinit}; Eτ ← ∅;
2: for k = 1 to K do
3: xrand ← RANDOM_STATE(X);
4: EXTEND(τ, xrand, ρ,∆t,Xobs, dmin);
5: end for
6: return τ = (Vτ , Eτ )

Algorithm 1 is an iterative method to generate an RRT using the function EXTEND defined in
Algorithm 2, where:

• xinit is the initial state.

• K is the number of iterations to build the RRT.

• ρ is a prefixed distance metric.

• ∆t is a fixed amount of time for transitions.
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Algorithm 2 EXTEND
Require: τ, x, ρ,∆t,Xobs, dmin
1: xnear ← NEAREST_NEIGHBOR(x, τ);
2: if DISTANCE(x, xnear) ≥ dmin then
3: u← SELECT_INPUT(x, xnear);
4: if ¬ COLLISION(xnear, u,∆t,Xobs) then
5: xnew ← NEW_STATE(xnear, u,∆t);
6: Vτ ← Vτ ∪ {xnew}
7: Eτ ← Eτ ∪ {(xnear, xnew)}
8: if DISTANCE(x, xnew) < dmin then
9: return Reached ;

10: else
11: return Advanced ;
12: end if
13: else
14: return Trapped ;
15: end if
16: else
17: return Trapped ;
18: end if

• X is the state space.

• Xobs is the obstacle state space.

• dmin is the minimum distance threshold according to ρ in order to include a new node in
the RRT.

• τ = (Vτ , Eτ ) is the RRT generated.

• RANDOM_STATE(X) is a function to get a random state from X

• NEAREST_NEIGHBOR(x, τ) is a function to get the closest node to x in τ according to
ρ.

• DISTANCE(x, xnear) is a function to get the distance of x to xnear according to ρ.

• SELECT_INPUT(x, xnear) is a function to get the velocity input that should be com-
manded to the robot in order to achieve state x from xnear.

• COLLISION(xnear, u,∆t,Xobs) is a function returning true if a collision could be produced
moving the robot from state xnear by applying the input u for ∆t time considering the
obstacles in Xobs.

• NEW_STATE(xnear, u,∆t) is a function to get a new state xnew by applying the input u
to the robot for ∆t time starting at state xnear.

The function EXTEND tries to add a new node to the RRT τ considering a reference x.
If the function fails, then it returns Trapped ; if the new node is closer than dmin to x, then it
returns Reached ; and if the new node is far from x considering dmin, then the function returns
Advanced. Figure 2 describes a RRT generated after 5000 iterations by using Algorithm 1 with
the Euclidean distance and omitting the heading angle.
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Figure 2: RRT generated after 5000 iterations

In [13], a bidirectional RRT algorithm was introduced for path planning. The main idea of
this algorithm is to create two RRTs: τa starting at xinit and τb starting at xend. If τa and τb are
connected in a prefixed number K of iterations, then a path is returned; otherwise the function
returns failure.

Algorithm 3 GENERATE_PATH
Require: xinit, xend,K, ρ,∆t,X,Xobs, dmin
1: Vτa ← {xinit}; Eτa ← ∅;
2: Vτb ← {xend}; Eτb ← ∅;
3: for k = 1 to K do
4: xrand ← RANDOM_STATE(X);
5: if EXTEND(τa, xrand, ρ,∆t,Xobs, dmin) 6= Trapped then
6: if EXTEND(τb, xnew, ρ,∆t,Xobs, dmin) = Reached then return PATH(τa, τb);
7: end if
8: end if
9: SWAP(τa, τb);

10: end for
11: return Failure

Algorithm 3 is the bidirectional RRT algorithm presented in [13], where:

• xinit is the initial state.

• xend is the ending state.

• τa = (Vτa , Eτa) is an RRT starting at xinit.

• τb = (Vτb , Eτb) is an RRT starting at xend.

• PATH(τa, τb) is a function to compute a path from the initial node of τa to the initial node
of τb. Both RRTs must be connected.

• SWAP(τa, τb) is a procedure to interchange the values of τa and τb.
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The rest of variables have the same meaning than the variables used in Algorithms 1 and 2.
In this paper we propose the Algorithm 4 as a parallel version of the bidirectional RRT

algorithm, where τa and τb are built at the same time.

Algorithm 4 GENERATE_PATH_PARALLEL
Require: (xinit, xend,K, ρ,∆t,X,Xobs, dmin
1: Vτa ← {xinit}; Eτa ← ∅;
2: Vτb ← {xend}; Eτb ← ∅;
3: for k = 1 to K do
4: xrand,a ← RANDOM_STATE(X);
5: xrand,b ← RANDOM_STATE(X);
6: loop
7: resulta = EXTEND(τa, xrand,a, ρ,∆t,Xobs, dmin);
8: resultb = EXTEND(τb, xrand,b, ρ,∆t,Xobs, dmin);
9: end loop

10: if resulta 6= Trapped then
11: if EXTEND(τb, xnew, ρ,∆t,Xobs, dmin) = Reached then return PATH(τa, τb);
12: end if
13: end if
14: if resultb 6= Trapped then
15: if EXTEND(τa, xnew, ρ,∆t,Xobs, dmin) = Reached then return PATH(τa, τb);
16: end if ;
17: end if ;
18: end for;
19: return Failure

4 Random enzymatic numerical P systems with proteins and
shared memory

In this section a variant of enzymatic numerical P systems incorporating new features is
presented, in order to simulate RRT algorithms.

A random enzymatic numerical P systems with proteins and shared memory (RENPSM, for
short) of degree (p, q), p, q ≥ 1 is a tuple (H,µ, P,Emem, Emem(0),
{Ph(0), V arh, V arh(0), P rh) | h ∈ H},R, ha, hb), where:

1. H = {1, . . . , p · q} ∪ {v,mem}, mem /∈ {1, . . . , p · q}, v /∈ {mem, 1, . . . , p · q}, is the set of
labels of the system;

2. µ is a dynamic membrane structure (rooted tree) initially consisting of one skin membrane
with label v including two inner membranes labelled respectively with ha ∈ {1, . . . , p · q}
and hb ∈ {1, . . . , p · q}, ha 6= hb, in such manner that along the computation only child
membranes of ha and hb will be created with labels in {1, . . . , p · q}. In Figure 3, it is
represented the initial membrane structure;

3. mem is the label of a distinguished component (the shared memory of the system);

4. P is a finite set of objects, called catalyzer proteins, and Ph(0) is the protein initially
associated with region labelled by h;
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5. Emem is a finite set of variables, called enzymes, disjoint with V armem, and Emem(0) is
the initial values of the enzymes;

6. V arh, h ∈ H, is a finite set of variables xj,h associated with region labelled by h (a mem-
brane or the shared memory), its values are natural numbers and the value of xj,i at time
t ∈ N is denoted by xj,i(t);

7. V arh(0) is a vector that represents the initial values for variables in V arh;

8. P rh, h ∈ H, is a finite set of programs associated with region labelled by h, having the fol-

lowing syntactical format F (x1,h, . . . , xkF ,h)
e(F );α(F )−−−−−−−−−−−−−→ c1|v1, . . . , cnF |vnF , where:

– F (x1,h, . . . , xkF ,h) is a computable function (the production function),
being x1,h, . . . , xkF ,h ∈ V arh;

– c1|v1, . . . , cnF |vnF is the repartition protocol associated with the program,
being c1, . . . , cnF natural numbers specifying the proportion of the current production
distributed to variables v1, . . . , vnF ∈ V arh∪V arpar(h)∪V arch(h), where par(h) is the
parent of h and ch(h) is the set of child of h in µ;

– e(F ) ∈ Eh is an enzyme and α(F ) ∈ P is a protein, both of them associated with
program F , if no enzyme or protein is used in a program then it will be omitted;

9. R is a finite set of rules of the following form:

– Protein evolution rules: [α→ α′ ]h, where h ∈ H,α ∈ P and α′ ∈ P .
– Writing-only communication rules between the shared memory and the membranes

(h , Xh /Yh,mem , mem)Wα

where Xh ∈ V arh, Yh,mem ∈ V armem, α ∈ P in such manner that there is, at most,
one rule for each membrane h ∈ {1, . . . , p · q}. Variables Yh,mem, Yh′,mem should be
different for two membranes h, h′.

– Reading-only communication rules between the shared memory and the membranes:

(h , Xh /Ymem , mem)Rα

where Xh ∈ V arh, Ymem ∈ V armem, α ∈ P . Variable Ymem is the same for each
h ∈ {1, . . . , p · q}.

– Membrane creation rules:[ [
X1,h , X2,h, , . . . , Xn,h

]
h

]
h′

; α

where h, h′ ∈ {1, . . . p · q · r} are different, α ∈ P and X1,h , . . . , Xn,h ⊆ V arh.

The term region h (h ∈ H) is used to refer to membrane h in the case h ∈ {1, . . . , p · q}∪{v},
as well as to refer to the shared memory in the case h = mem.
Next, we describe the semantics of RENPSHs. A configuration of a RENPSH at any instant t
is described by the current membrane structure µ, together with proteins and all values of the
variables and enzymes associated with all regions.
The initial configuration is (µ,Emem(0), {Ph(0), V arh(0)|h ∈ H}), where µ = [[ ]ha [ ]hb ]v. We
will call µa (resp. µb) to the membrane structure rooted in membrane ha (resp. hb).
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Figure 3: The initial membrane structure with a representation of the shared memory.

A program F (x1,h, . . . , xkF ,h)
eF ;pF−→ c1|v1, . . . , cnF |vnF associated with a region is applicable to a

configuration Ct at moment t, if the value of e(F ) at that instant is greater than
min{x1,h(t), . . . , xkF ,h(t)} and protein α(F ) is inside the region h of Ct. When applying such a
program, variables associated with Ct are processed as follows: first, the value F (x1,h(t), . . . , xkF ,h(t))
is computed as well as the value

q(t) =
F (x1,h(t), . . . , xkF ,h(t))

c1 + · · ·+ cnF

This value represents the unary portion at instant t to be distributed among variables v1, . . . , vnF

according to the repartition expression. Thus, q(t) · cs is the contribution added to the current
value of vs (1 ≤ s ≤ nF ), at step t + 1. So, vs(t + 1) = vs(t) + q(t) · cs and vs(t) become zero,
i.e, it is assumed that variable vs is "consumed" when the production function is used and other
variables retain their values. Each program in each membrane can only be used once in every
computation step, and all the programs are executed in parallel.

A protein evolution rule [α→ α′ ]h is applicable to a configuration Ct at moment t if protein
α is in membrane h of Ct. When applying such a rule the protein α in h evolves to protein α′ in
h. These rules are applied in a maximal manner.

A writing-only communication rule between the shared memory and the membranes,

(h , Xh /Yh,mem , mem)Wα

,
is applicable to a configuration Ct at moment t if protein α is in membrane h of Ct. When

applying such a rule the value Xh(t) is assigned to the variable Yh,mem(t + 1) of the shared
memory, that is Yh,mem(t+ 1)← Xh(t) . These rules are applied in a maximal manner.

A reading-only communication rule between the shared memory and the membranes,

(h , Xh /Ymem , mem)Rα

is applicable to a configuration Ct at moment t if protein α is in membrane h of Ct. When
applying such a rule the value Ymem(t) is assigned to the variable Xh(t+ 1) of membrane h, that
is Xh(t+ 1)← Ymem(t). These rules are applied in a maximal manner.

A membrane creation rule
[ [X1,h , . . . , Xn,h ]h ]h′ ; α is applicable to a configuration Ct at moment t if protein α is in

membrane h′ of Ct. When applying such a rule, a new membrane labelled by h is created in such
manner that h′ is the parent of h and the set of its variables is V arh = {X1,h , . . . , Xn,h}.

Given a random enzymatic numerical P system with proteins and shared memory Π, we say
that configuration Ct at time t yields configuration Ct+1 in one transition step if we can pass from
Ct to Ct+1 by applying in parallel each program in each membrane only once, and by applying the
rules in a maximal parallel way following the previous remarks. A computation of Π is a (finite
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or infinite) sequence of configurations such that: (a) the first term is the initial configuration
of the system; (b) for each n ≥ 2, the n-th configuration of the sequence is obtained from the
previous configuration in one transition step; and (c) if the sequence is finite (called halting
computation) then the last term is a halting configuration (a configuration where no rule of the
system is applicable to it). All the computations start from an initial configuration and proceed
as stated above; only halting computations give a result, which is encoded by the objects present
in the output region iout associated with the halting configuration. If C = {Ct}t<r+1 of Π (r ∈ N)
is a halting computation, then the length of C, denoted by |C|, is r. For each i (1 ≤ i ≤ q), we
denote by Ct(i) the finite multiset of objects over Γ contained in all membranes labelled by i at
configuration Ct.

5 Simulation of one iteration of the bidirectional RRT algorithm
for path planning

The input of the bidirectional RRT algorithm generating a global path for a robot trajectory
consists of the following parameters (xinit, xend,K, ρ,∆t,X,Xobs, dmin), where:

– xinit is the initial state.

– xend is the ending state.

– K is the number of iterations to find the path.

– ∆t is a fixed amount of time for transitions.

– X is the state space.

– Xobs ⊆ X is the obstacle state space.

– dmin is the minimum distance threshold according to some distance metric ρ in order to
include a new node in the RRT.

For mobile robots in a 2D environment, the state space is given by (x, y, θ), i.e, the Cartesian
coordinates (x, y) and the heading angle θ of all the possible robot poses. However, the angle θ
has been omitted in this solution to reduce the size of the problem and the state space is given
by (x, y) considering the Euclidean distance as distance metric. In this case, a holonomic robot
can follow the RRT by performing motions in straight line, otherwise a nonholonomic robot can
include rotations in-place. Moreover, any state or position (i, j) ∈ {0, . . . p − 1} × {0, . . . q − 1}
in an Euclidean space constrained by a rectangle of p width and q height distance units can be
encoded by the natural number j ·p+i+1. In such a manner, given a natural number n encoding
a state (i, j), the following holds: i = rm(n− 1, p) and j = qt(n− 1, p).

One iteration of the parallel bidirectional RRT algorithm defined in Algorithm 4 will be
simulated by a RENPSM of degree (p, q)

Π = (H,µ, P,Emem, Emem(0),

{(Ph(0), V arh, V arh(0), P rh) | h ∈ H},R, ha, hb)
defined as follows:

– H = {1, . . . , p · q} ∪ {v,mem}, v /∈ {1, . . . , p · q}, mem /∈ {1, . . . , p · q}.

– µ = [[ ]ha [ ]hb ]v with ha ∈ {1, . . . , p · q}, hb ∈ {1, . . . , p · q} and ha 6= hb. We call µa to the
membrane structure rooted on ha and µb to the one rooted on hb.
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– P = {αi | 1 ≤ i ≤ 18}, and Ph(0) = {α1}, for each h ∈ H.

– Emem = {FlagAmem, F lagBmem, p · q + 1} and Emem(0) = {p · q + 1}.

– The set of variables is:

– V arh = {X1,h, X2,h, Y1,h, Y2,h, Z1,h, Z2,h, Dh}, for each h, 1 ≤ h ≤ p · q.

– V armem = {X1,mem, X2,mem, X3,mem, X4,mem}∪
{Y1,mem, Y2,mem, Y3,mem, Y4,mem}∪
{Z1,mem, Z2,mem, Z3,mem, Z4,mem}∪
{U1,mem, U2,mem, U3,mem, U4,mem}∪
{Amem, Bmem, NAmem, NBmem, Haltmem}∪
{Ah,mem, Bh,mem | 1 ≤ h ≤ p · q}.

– Initially, all variables in V arh(h 6= ha ∧ h 6= hb) and all variables in V arha and V arhb
different to Y1,h, Y2,h, are equal to zero. Besides, initially the tuple (Y1,ha , Y2,ha) (resp.
(Y1,hb , Y2,hb)) provides the position of the initial state of the robot ha (resp. the
position of the final state of the robot hb).

– If the value of variable Haltmem is equals to 1, then the computation stops.

• Next, the finite set of programs Prh and the set of rules R of the system are defined
according to the requirements to simulate the bidirectional RRT algorithm.

• In order to synchronize the sequence of an iteration, for each h ∈ H the protein evolution
rules [αi → αi+1 ]h, for 1 ≤ i ≤ 17, and [α18 → α1 ]h are considered.

• Four random numbers are generated in the shared memory:
Production function : F (X1,mem) =
Random(i, 0 ≤ i < p)
Repartition protocol : 1|X1,mem

Protein : α1
Production function : F (X2,mem) =
Random(i, 0 ≤ i < q)
Repartition protocol : 1|X2,mem

Protein : α1
Production function : F (X3,mem) =
Random(i, 1 ≤ i < p)
Repartition protocol : 1|X3,mem

Protein : α1
Production function : F (X4,mem) =
Random(i, 1 ≤ i < q)
Repartition protocol : 1|X4,mem

Protein : α1
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• Each membrane h ∈ µa will read the random numbers X1,mem, X2,mem. Each membrane
h ∈ µb will read the random numbers X3,mem, X4,mem .

(h , X1,h /X1,mem , mem)Rα2
: h ∈ µa

(h , X2,h /X2,mem , mem)Rα2
: h ∈ µa

(h , X1,h /X3,mem , mem)Rα2
: h ∈ µb

(h , X2,h /X4,mem , mem)Rα2
: h ∈ µb

• For each membrane h ∈ {µa, µb}, the distance Dh between its position (Y1,h, Y2,h) and
the position given by the generated random numbers (X1,h, X2,h) is computed. For the
remaining membranes, Dh = p · q + 1.

Production function : F (X1,h, X2,h, Y1,h, Y2,h) ={ √∑2
j=1(Xj,h − Yj,h)2 if h ∈ {µa, µb}

p · q + 1 if h /∈ {µa, µb}
Repartition protocol : 1|Dh

Protein : α3

• Each membrane h writes its value Dh to the shared memory.
(h , Dh /Ah,mem , mem)Wα4

: h ∈ µa

(h , Dh /Bh,mem , mem)Wα4
: h ∈ µb

• The minimum of all distances Ah,mem is computed in the shared memory.

– Production function: F (A1,mem, . . . , Ap·q,mem) = min{A1,mem, . . . , Ap·q,mem}
– Repartition protocol: 1|Amem
– Protein: α5

• The minimum of all distances Bh,mem is computed in the shared memory.

– Production function: F (B1,mem, . . . , Bp·q,mem) = min{B1,mem, . . . , Bp·q,mem}
– Repartition protocol: 1|Bmem
– Protein: α5

• Variable (enzyme) FlagAmem is set to zero if Amem ≤ Threshold.

– Production function: F (Amem) =

{
0 if Amem ≤ Threshold

p · q + 1 otherwise
– Repartition protocol: 1|FlagAmem
– Protein: α6

• Variable (enzyme) FlagBmem is set to zero if Bmem ≤ Threshold.
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– Production function: F (B,mem) =

{
0 if Bmem ≤ Threshold

p · q + 1 otherwise

– Repartition protocol: 1|FlagBmem
– Protein: α6

• The label neara, corresponding to the closer membrane to the randomly generated point
for µa, is obtained.

– Production function: F (A1,mem, . . . , Ap·q,mem) = arg-min{A1,mem, . . . , Ap·q,mem}
– Repartition protocol: 1|NAmem
– Protein: α7

– Enzyme: FlagAmem

• The label nearb, corresponding to the closer membrane to the randomly generated position
for µb, is obtained.

– Production function: F (B1,mem, . . . , Bp·q,mem) = arg-min{B1,mem, . . . , Bp·q,mem}
– Repartition protocol: 1|NBmem
– Protein: α7

– Enzyme: FlagBmem

• The position of membrane neara is computed.
Production function : F (NAmem) = rm(NAmem − 1, p)
Repartition protocol : 1|Y1,mem
Protein : α8

Enzyme : FlagAmem
Production function : F (NAmem) = qt(NAmem − 1, p)
Repartition protocol : 1|Y2,mem
Protein : α8

Enzyme : FlagAmem

• The position of membrane nearb is computed.
Production function : F (NBmem) = rm(NBmem − 1, p)
Repartition protocol : 1|Y3,mem
Protein : α8

Enzyme : FlagBmem
Production function : F (NBmem) = qt(NBmem − 1, p)
Repartition protocol : 1|Y4,mem
Protein : α8

Enzyme : FlagBmem
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• The unitary vectors are created in the shared memory.

Production function :
F (X1,mem, X2,mem, Y1,mem, Y2,mem) =

X1,mem−Y1,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U1,mem

Protein : α9

Enzyme : FlagAmem

Production function :
F (X1,mem, X2,mem, Y1,mem, Y2,mem) =

X2,mem−Y2,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U2,mem

Protein : α9

Enzyme : FlagAmem

Production function :
F (X3,mem, X4,mem, Y3,mem, Y4,mem) =

X3,mem−Y3,mem√∑4
j=3(Xj,mem−Yj,mem)2

Repartition protocol : 1|U3,mem

Protein : α9

Enzyme : FlagBmem

Production function :
F (X3,mem, X4,mem, Y3,mem, Y4,mem) =

X4,mem−Y4,mem√∑4
j=3(Xj,mem−Yj,mem)2

Repartition protocol : 1|U4,mem

Protein : α9

Enzyme : FlagBmem

• Variable (enzyme) FlagAmem is set to zero if there is collision for µa.

– Production function: F (Y1,mem, Y2,mem, U1,mem, U2,mem) =
0 if COLLISION(Y1,mem, Y2,mem,

U1,mem, U2,mem)
p · q + 1 otherwise

– Repartition protocol: 1|FlagAmem
– Protein: α10

– COLLISION is a function returning true if there are static obstacles in a linear
trajectory starting at (Y1,mem, Y2,mem) and applying a motion (U1,mem, U2,mem) for
∆t time.

• Variable (enzyme) FlagBmem is set to zero if there is collision for µb.

– Production function: F (Y3,mem, Y4,mem, U3,mem, U4,mem) =
0 if COLLISION(Y3,mem, Y4,mem,

U3,mem, U4,mem)
p · q + 1 otherwise
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– Repartition protocol: 1|FlagBmem
– Protein: α10

– COLLISION is a function returning true if there are static obstacles in a linear
trajectory starting at (Y3,mem, Y4,mem) and applying a motion (U3,mem, U4,mem) for
∆t time.

• Positions of new membranes are computed in the shared memory.
Production function :
F (Y1,mem, U1,mem) = round(Y1,mem + U1,mem ·∆t)
Repartition protocol : 1|Z1,mem

Protein : α11

Enzyme : FlagAmem
Production function :
F (Y2,mem, U2,mem) = round(Y2,mem + U2,mem ·∆t)
Repartition protocol : 1|Z2,mem

Protein : α11

Enzyme : FlagAmem
Production function :
F (Y3,mem, U3,mem) = round(Y3,mem + U3,mem ·∆t)
Repartition protocol : 1|Z3,mem

Protein : α11

Enzyme : FlagBmem
Production function :
F (Y4,mem, U4,mem) = round(Y4,mem + U4,mem ·∆t)
Repartition protocol : 1|Z4,mem

Protein : α11

Enzyme : FlagBmem

• The membranes labelled by NAmem and NBmem will read the positions corresponding to
the new membranes from the shared memory.

(NAmem , Z1,NAmem /Z1,mem , mem)Rα12

(NAmem , Z2,NAmem /Z2,mem , mem)Rα12
(NBmem , Z1,NBmem /Z3,mem , mem)Rα12

(NBmem , Z2,NBmem /Z4,mem , mem)Rα12

• A child membrane with position (Z1,NAmem , Z2,NAmem) is created in µa.

X1,h X2,h

Y1,h Y2,h
Z1,h Z2,h

Dh


h


NAmem

Being h = Z2,NAmem · p+ Z1,NAmem + 1.
This rule is mediated by protein α13.
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• A child membrane with position (Z1,NBmem , Z2,NBmem) is created in µb.

X1,h X2,h

Y1,h Y2,h
Z1,h Z2,h

Dh


h


NBmem

Being h = Z2,NBmem · p+ Z1,NBmem + 1.
This rule is mediated by protein α13.

• Each membrane in µa reads the position of the new membrane created in µb
(h , X1,h /Z3,mem , mem)Rα14

: h ∈ µa

(h , X2,h /Z4,mem , mem)Rα14
: h ∈ µa

• Each membrane in µb reads the pose of the new membrane created in µa
(h , X1,h /Z1,mem , mem)Rα14

: h ∈ µb

(h , X2,h /Z2,mem , mem)Rα14
: h ∈ µb

• For each membrane h ∈ {µa, µb}, the distance Dh between its position (Y1,h, Y2,h) and the
position given by the new membrane in the other membrane structure is computed. For
the remaining membranes, Dh = p · q + 1.



Production function : F (X1,h, X2,h, Y1,h, Y2,h) ={ √∑2
j=1(Xj,h − Yj,h)2 if h ∈ {µa, µb}

p · q + 1 if h /∈ {µa, µb}
Repartition protocol : 1|Dh

Protein : α15

• Each membrane h writes its value Dh to the shared memory.
(h , Dh /Ah,mem , mem)Wα16

: h ∈ µa

(h , Dh /Bh,mem , mem)Wα16
: h ∈ µb

• The minimum of all distances Ah,mem is computed in the shared memory.

– Production function: F (A1,mem, . . . , Ap·q,mem) = min{A1,mem, . . . , Ap·q,mem}
– Repartition protocol: 1|Amem
– Protein: α17

• The minimum of all distances Bh,mem is computed in the shared memory.

– Production function: F (B1,mem, . . . , Bp·q,mem) = min{B1,mem, . . . , Bp·q,mem}
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– Repartition protocol: 1|Bmem
– Protein: α17

• If Amem ≤ dmin or Bmem ≤ dmin then the RRTs have been connected and the computation
must halt.

– Production function: F (Amem, Bmem) ={
1 if Amem ≤ Threshold ∨Bmem ≤ Threshold
0 otherwise

– Repartition protocol: 1|Haltmem
– Protein: α18

6 A simulator based on C++ and ROS

A C++ simulator has been developed within the ROS [30] framework. It can be downloaded
from https://github.com/RGNC/renpsm. The experiments have been conducted by using a
dual-wheeled nonholonomic robot (the Pioneer 3-DX) in two virtual environments. The software
is composed by three modules:

• MobileSim module [31]: It receives the static information about the map, as well as motion
commands (v, ω) and generates the wheels odometry and information related to sensors
(laser rangefinder for obstacle detection). It moves the simulated robot in the virtual
environment.

• RENPSM module: It receives the information about the map, as well as the information
about odometry and sensors and the goal of the robot. It computes a bidirectional RRT
by using a RENPSM simulator and finally it sends a sequence of motion commands to the
MobileSim module.

• RVIZ module [32]: This module is used for visualization. It receives the static information
about the map, as well as all the information generated by the MobileSim module and
several visual markers generated by the RENPSM module. It shows to the user all the
information in real-time by using a 3D representation of the environment and the robot.

We have used two virtual environments, Figures 4 and 5 show the corresponding RVIZ visu-
alization for each one before starting the robot motion, i.e, after generating the bidirection RRT
by using the RENPSM module. Figure 6 is a second simulation for environment 2.

The first environment has been used for experimental validation of the RENPSM model by
generating several simulations and comparing the resulting RRT visualizations with the ones
generated with a conventional RRT software.

The second environment has been used for benchmarking, generating 1435 simulations by
fixing the starting point and the goal of the robot and measuring the cost in distance of the
generated path. The results are shown in Table 1.

We have measured the cost of an optimal path generated by hand (about 10m) and, as
expected, the cost of the best path generated by the bidirectional RRT is larger than the optimal
cost, since the algorithm generates the first feasible path that can be found.
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Figure 4: RVIZ visualization of a simulation in environment 1

Figure 5: RVIZ visualization of a simulation in environment 2

7 Generation of ad-hoc RENPSM simulators with P-Lingua

P-Lingua is a language to define membrane computing models [3,7,14,33], allowing to write
definitions in a friendly way, as its syntax is close to standard scientific notation. In this section,
we present an extension of P-Lingua for RENPSM. A parser based on Flex and Bison [35, 36]
has been implemented to generate ad-hoc simulators for the defined models by using automatic
programming. The source code of the simulators is generated in C language and OpenMP [37],
providing multi-threading simulators for multicore processors. Finally, some experimental results
are presented.

7.1 Extension of P-Lingua for RENPSM

New syntactic ingredients have been included to define models based RENPSM:

• The first line of a P-Lingua file defining a RENPSM model must be @model<renpsm>

Table 1: Benchmarking results

Min. cost 11.77 m
Max. cost 17.96 m
Average cost 13.42 m
Standard deviation 0.795 m
Experiments 1435
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Figure 6: A second simulation in environment 2

• The initial membrane structure is defined as a two level cell-like membrane structure:

@mu = [[]′h1[]′h2...[]′hN]′v

where h1, h2,...,hN and v are numeric labels in N. The label 0 is used the shared
memory. P-Lingua variables can optionally be used instead of literals.

• Each RENPSM variable includes at least one index. The last index of each variable is
the label of the compartment containing the variable. For instance, the variable X1,mem

is written X{1,0}. For the sake of simplicity, indexes will be omitted in the rest of this
section.

• Proteins are written as common objects in P-Lingua.

• Production rules are written in the next manner:

X < −func(param1, param2, ..., paramN), protein?enzyme

where X is a RENPSM variable; func is a production function with parameters
param1, param2, ..., paramN, protein is an optional protein related to the rule and enzyme
is an optional enzyme. There are a fixed set of production functions that can be used. In
this paper, we have implemented the functions for the model in Section 5. More functions
could be implemented in C language. The rule will be executed if the protein is present
and the enzyme has a value greater than zero.

• Reading-only and writing-only communication rules are respectively written as follows:

X < −Y, protein?enzyme

Y < −X, protein?enzyme

where X is a variable in the membrane structure, Y is a variable in the shared memory,
protein is an optional protein related to the rule and enzyme is an optional enzyme. The
rule will be executed if the protein is present and the enzyme has a value greater than zero.

• Membrane creation rules are written as follows:
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[[]′h1]′h2, protein?enzyme

where h1, h2 are labels that can be given by numeric literals, P-Lingua variables or even
RENPSM variables; protein is an optional protein related to the rule and enzyme is an
optional enzyme. The rule will be executed if the protein is present and the enzyme has a
value greater than zero.

• Protein evolution rules are written in the next manner:

[p1 < −p2]′h

where p1 and p2 are proteins and h is the label of a compartment, given by a numeric
literal or a P-Lingua variable.

• We have created an special iterator x in H to iterate all the membrane labels in the tree
structure rooted at H (with a depth-first order).

• Other ingredients of P-Lingua, such as modules, indexes, iterators and comments can be
used as usual in this extension.

The whole P-Lingua file defining the model presented in 5 can be downloaded from
https://github.com/RGNC/renpsm_openmp/blob/master/birrt_renpsm_test1.pli.

7.2 A parser to generate ad-hoc RENPSM simulators

A parser based on Flex and Bison [35,36] has been implemented and can be downloaded from
https://github.com/RGNC/renpsm_openmp.

The website includes instructions for compiling and running the experiments in this paper.
The parser reads a P-Lingua file and generates a command-line ad-hoc simulator tool that accepts
a PGM file defining the obstacles and generates another PGM file printing the generated RRT
over the obstacles image. The source code of the simulator tool is generated in C with OpenMP,
the command-line syntax for the generated simulator is:

./simulator [-t threads] [-s steps] [-d] [-r seed]
[-m obstacles.pgm] [-o output.pgm]
Where:

• -t threads is the number of threads to be used. Default is 4. If 1 thread is set, the
simulator will be sequential.

• -s steps is the maximum number of computational steps to simulate. The simulator stops
if the variable Haltmem is set to 1 or the number of steps is reached. Default is 1048576
steps.

• If -d is set, debug information will be prompted.

• -r seed defines the pseudo-random number generator seed. If no seed is configured, an
arbitrary seed based on the current clock time will be used.

• -m obstacles.pgm is the PGM file defining the obstacle grid for the collision function.

• -o output.pgm is the PGM file to print the output RRT over the obstacle image.
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(a) (b)

(c) (d)

Figure 7: Example outputs for environment 1: (a) Example output 1; (b) Example output 2; (c)
Example output 3; (d) Example output 4

(a) (b) (c) (d)

Figure 8: Example outputs for environment 2: (a) Example output 1; (b) Example output 2; (c)
Example output 3; (d) Example output 4

7.3 Experimental results

We have used the same two environments presented in Section 6. The environment 1 is
defined with the files: birrt_renpsm_test2.pli; office.pgm.

The environment 2 is defined with the files: birrt_renpsm_test1.pli; map.pgm.
Each environment uses a PGM file in gray scale for obstacle definition, where each pixel

represents a region of 5 cm2 in the real world. Each environment also uses a P-Lingua file with
identical P system definition but different initial parameters p, q, x0, y0, x1, y1. The problem is
to find a RRT representation to navigate from (x0, y0) to (x1, y1) in the environment of p pixels
length and q pixels height given by the corresponding PGM file.

In Figures 7 and 8 there are four example outputs for each environment using the correspond-
ing generated ad-hoc simulator with 8 threads and arbitrary pseudo-random number generator
seeds based on the CPU clock time.

8 Conclusions

This paper deals with an algorithm belonging to a family widely used to solve the problem
of motion planning in robots, e.g., the RRT algorithms. Such class of algorithms are based on
the randomized exploration of the configuration space. This paper is an extension of [21]. In
such a work, a variant of Enzymatic Numerical P systems, called random enzymatic numerical
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P systems with proteins and shared memory (RENPSM, for short) was introduced. Besides, a
simplified version of the standard bidirectional RRT algorithm was described by a RENPSM
system capturing the semantics of the new variant, where maximal parallelism is used.

The main contribution of this paper with respect to [21] is to provide a novel approximation
for software simulation by using automatic programming. We have implemented a tool for
parsing P-Lingua files defining RENPSM models and generating source code in C and OpenMP
for ad-hoc simulators. Thus, we have a flexible way to debug since we are using a language
to define the models instead of hard-coding them in the source code. Moreover, the generated
source code is able to run on multicore processors by using OpenMP.

Three main challenges are planned as future work. First, to provide a formal verification of
such RENPSM systems, in the sense that they in fact simulate the RRT generation algorithm.
The second challenge is to move to the RRT* algorithm [9], a variant of the initial algorithm
that is able to approximate optimal motion planning with enough iterations. Finally, to provide
real-life robot path planning experiments, by using a nonholonomic robot with kinodynamic and
environment constraints.

We also propose to apply the simulation techniques introduced in this paper to other types
of P systems walking towards a more generic software tool based on P-Lingua and automatic
programming for generation of optimized ad-hoc simulators.
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