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Abstract: In this paper, a comparison of various transformation techniques, namely
Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete
Walsh Hadamard Transform (DWHT) are performed in the context of their applica-
tion to voiceless consonant modeling. Speech features based on these transformation
techniques are extracted. These features are mean and derivative values of cepstrum
coe�cients, derived from each transformation. Feature extraction is performed on the
speech signal divided into short-time segments. The kNN and Naive Bayes methods
are used for phoneme classi�cation. We consider both class�cation accuracies and
computational time. Experiments show that DFT and DCT give better classi�cation
accuracy than DWHT. The result of DFT was not signi�cantly di�erent from DCT,
but it was for DWHT. The same tendency was revealed for DCT. It was checked with
the usage of the ANOVA test that the di�erence between results obtained by DCT
and DWHT is signi�cant.
Keywords: Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT),
Discrete Walsh Hadamard Transform (DWHT), cepstrum coe�cients.

1 Introduction

The state-of-the-art methods applied to speech technology are mostly based on the extraction
of features and machine learning. A wide range of speech signal features was conceived and
used for classi�cation tasks [19], speech recognition [9], emotional speech recognition [17, 28],
phoneme modeling [10], and speech analytics tasks [2]. There are also other approaches employed
for processing speech signals, where feature extraction process is discarded. For example, the
use of fuzzy logic [29, 30] applied to speech technology, speci�cally to voice activity detection
(VAD), speech segmentation, and coding, cannot be disregarded in this aspect. Moreover, very
intense activities connected to the usage of resources for large-scale deep learning analysis applied
to speech recognition or emotional speech recognition may be observed in the last few years
[15,24,32]. However, when we are talking about speech analytics and modeling, speech synthesis
or audio-visual speech recognition, the progress in these �elds is below expectations. Secondly,
this research area requires a di�erent approach, a thorough analysis of individual spoken elements
needs to be performed as there is basic knowledge still missing in this context.

The phoneme mathematical models, utilized as tools for describing speech, are of great im-
portance not only for speech synthesis. The need for research on phoneme models of speech is
justi�ed by its numerous possible uses. The following can be named: speech recognition, helping
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with pronunciation and learning foreign languages (a comparison of phoneme utterances and its
model enabling to demonstrate di�erences of pronunciation), studies in linguistics, medical �eld
(e.g. disturbances in speech present in stroke and neurodegenerative diseases, disorder in one or
more prosodic functions, de�cits in speech production, etc.). In some of the envisioned appli-
cations the obtained results can be a part of a larger multimodal Human-Computer Interaction
system consisting of three modalities: vocal, facial and gesture based recognition.

The object of this research is the consonant phoneme signals which are more di�cult for
analysis, modeling and classi�cation tasks as those of vowels and semivowels. The character of
the consonant signals is consonant-dependent and varying. Stop consonants can be considered
as quasiperiodic signals in noise, while fricative consonants as aperiodic signals. We can also
divide those phonemes into two sets: voiced and voiceless sounds [6]. This means that the vocal
folds are apart while saying these sounds. In speech processing, sounds can be represented as a
source-�lter model [22]. The �lter represents the vocal tract, which is excited with a source. A
source is a pulse sequence for the voiced sounds and noise for the unvoiced sounds. A commonly
used technique for separating source and �lter in a speech signal is cepstral analysis [14]. The
cepstrum is widely used in speech processing [8, 16].

In all the areas mentioned above automatic feedback for systems and applications is also of
importance, thus in a given methodology both feature extraction and machine learning should
be applied. To create a mathematical model of a phoneme, it is important to �nd a suitable
parametric description of speech. The speech signal is converted to the appropriate space domain
and preprocessing is carried out. The two main domains of analysis are time and frequency. The
�rst of them shows the time varying character of the signal, the second mirrors how the energy
of the signal is contained within the frequency range. In the frequency domain, parameters are
often based on the Fourier spectrum. In this paper, we perform a comparative experiment based
on DFT (Discrete Fourier Transform), DCT (Discrete Cosine Transform) and DWHT (Discrete
Walsh Hadamard Transform). The results returned by this study should enable us to verify which
transformation method along with feature extraction work better when such a methodology is
applied to check phoneme modeling precision.

The relationship between the performance of transformation techniques in the context of
feature vectors derivation has been investigated by many researchers, in various speech classi�-
cation tasks. In the paper of Velican et al. [33], a comparison of DWHT and DCT as feature
selection tools in the case of identifying rhotacism is performed. The experiment result shows
that classi�cation rate in the case of DWHT is better than the rate obtained with DCT. In the
paper of Kekre and Kulkarni [7] a comparison of the performance DCT and DWHT for various
feature vector sizes with and without overlap based on speech utterances is given for speaker
identi�cation. The results show that DCT performs better than DWHT. The comparison of
two fundamentally di�erent approaches the Fast Fourier Transform (FFT) and Hilbert-Huang
Transform (HHT) is given in paper of Donnelly [4]. The behavior and �exibility of these two
transforms are examined for a number of di�erent time domain signal types.

The targeted consonant phonemes are also more susceptible to noise than vowels mainly due
to their lower intensity. This means that in many conditions they may easily be masked by
signals interfering with speech. That is why it is important to �nd optimized feature vectors
that will perform in both quiet and noise conditions. This paper deals with a domain-dependent
analysis and classi�cation of consonant phonemes utilizing the cepstrum analysis. The feature
vectors consist of cepstrum coe�cients derived from the Fourier, Cosine and Walsh Hadamard
transforms.
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2 Transformation techniques

Let x(k) is a signal with length K, where K is an integer power of 2 (k = 1, . . . ,K). The
frequency domain representation shows how the energy of this signal is contained within the
frequency range. The techniques of signal transformation from time to the frequency domain are
given in this section.

2.1 Discrete Fourier transform

Fourier analysis is based on decomposing signals into sinusoids [26]. DFT is a family member
of this analysis used with digital signals. The transform decomposes the signal x(k) into the
sequence of complex numbers y(1), ..., y(K) according to the formula:

y(k) =

K∑
n=1

x(n)e
(−2πj)
K

(n−1)(k−1) (1)

where the symbol j denotes the imaginary unit.
To convert signal data from the frequency to the time domain the Inverse Discrete Fourier

Transform (IDFT) is applied. The IDFT is de�ned as follows:

x(k) =
1

K

K∑
n=1

y(n)e
2πj
K

(n−1)(k−1) (2)

The result of IDFT will be used in the construction of the signal cepstrum.

2.2 Discrete Walsh-Hadamard transform

DWHT is a non-sinusoidal technique that represents a signal as a set of orthogonal rectangular
waveforms. The transform is given by the formula:

y(k) =
K∑
n=1

x(n)WK(k, n) (3)

The basis function is described as follows:

WK(k, n) =

L−1∏
l=1

(−1)nlkM−1−l (4)

where L = log2K, nl is the lth bit in the binary representation of n [27].
As we see from Eq. (4), DWHT takes the binary value 1 or -1. The Inverse Discrete Walsh

Hadamard Transform (IDWHT) is de�ned as follows:

y(k) =
1

K

K∑
n=1

x(n)WK(k, n) (5)

The only di�erence between DWHT and IDWHT (see Eq. (3) and Eq. (5)) is a constant
divisor.
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2.3 Discrete Cosine transform

DCT decomposes a signal into cosine functions. The transformation has several standard
variants. These variants and the mathematical properties of DCT are presented in works of Rao
and Yip, Oppenheim et al. [18, 23]. In this paper, the Discrete Cosine transform of the signal
x(k) is computed according to the formula:

y(k) =

√
2

K
β(k)

K∑
n=1

x(n)cos(
π(2n− 1)(k − 1)

2K
) (6)

where coe�cient β(k) is de�ned as follows:

β(k) =

{
1√
2
, if k = 1

1, if k 6= 1
(7)

The formula of the Inverse Discrete Cosine Transform (IDCT) is given below:

x(k) =

√
2

K

K∑
n=1

β(k)y(n)cos(
π(n− 1)(2k − 1)

2K
) (8)

DCT and other transformation techniques analyzed in this Section are orthogonal transforms.
Therefore, they can be computed using the fast algorithms.

3 Feature extraction

All the N samples of the analyzed phoneme are collected into a vector:

x =
[
x(1), x(2), . . . , x(N)

]
(9)

The phoneme signal is divided into short-time frames, the length of which is M samples. A
process of dividing a signal into frames is typical for the speech signal analysis. To each of these
frames, a window function w(n) is used. Due to the window procedure, a part of the signal data
is lost. Therefore, an overlap of segments is utilized. How much should the segments overlap can
be seen in [5].

Denote by L the number of the overlapped samples. Then the number of intervals can be
obtained by the following formula:

P =

[
N −M
M − L

]
+ 1 (10)

where [α] stands for an integer part of the real number.
Then the phoneme signal can be written as the following matrix:

X =


w(1)× x(1) . . . w(M)× x(M)

w(1)× x(M − L+ 1) . . . w(M)× x(2M − L)
. . . . . . . . .

w(1)× x
(

(P − 1)× (M − L+ 1)
)

. . . w(M)× x
(

(P − 1)× (2M − L)
)
 (11)

The calculation procedure of the cepstrum coe�cients constitutes a part of the algorithm pre-
pared. The consecutive steps of the algorithm are listed below:

Step 1. The selected transform is applied to each row of the matrix X.
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Step 2. The absolute values are taken out.
Step 3. The logarithm is calculated.
Step 4. The inverse transform is applied.
Consequently, we obtain the matrix of the cepstrum coe�cients:

C =


c11 . . . c1M

c21 . . . c2M

. . . . . . . . .
ck1 . . . ckM

 (12)

The mean values of the columns of the matrix C are calculated. All the obtained values are
collected into a vector c:

c =
[
c(1), c(2), . . . , c(M)

]
(13)

The mean cepstrum values given in Eq. (13) are used as representative features.
In order to determine whether a function is increasing or decreasing, additionally the �rst-

order delta derivatives are calculated. The �rst-order dynamic coe�cients are calculated from
the static cepstrum coe�cients using the following regression formula:

dm =

∑N
n=1 n(cex(m+ n)− cex(m− n))

2
∑N

n=1 n
2

(14)

where

cex =

[
0, . . . , 0,︸ ︷︷ ︸

M

, c(1), . . . , c(M), 0, . . . , 0︸ ︷︷ ︸
M

]
(15)

m = 1...M , N is the regression window size.

4 Classi�cation methods

A vast literature on the application of machine learning to the classi�cation task exist. Re-
searchers developed many approaches to the problem of classi�cation, including methods for
inducing rule sets, models in the form of a tree structure, linear discriminants, statistical learn-
ing algorithms, and arti�cial neural networks [24]. In an experiment, we use two classical machine
learning algorithms to compare classi�cation rates. First of them is the Naive Bayes classi�cation
method, based on Bayes theory [11]. This algorithm is widely used because it often outperforms
more sophisticated classi�cation methods. It falls into the statistical learning algorithms and
provides the probability of each attribute set belonging to a given class.

The second classi�cation algorithm used in this experiment is k -Nearest Neighbors (kNN),
based on Euclidean distances between the elements of the test dataset and elements of the
training dataset [13]. The number of nearest neighbors is set by performing preliminary tests.

5 Experimental results

The experiment was performed on Lithuanian speech recordings, created during the project
LIEPA (Services controlled by the Lithuanian Speech) [20]. The database consists of 100 hours
of words, phrases and sentences recordings, di�erent speakers, both male and female voices and
is adapted for scienti�c research. In the present experiment, we consider the extracted consonant
phonemes from this database for our analysis. The phonemes are the following: /t/, /k/, /s/,
/S/. The �rst two (/t/ and /k/) are called stop consonants because the air in the vocal tract is
stopped at some period. An example of the phoneme /t/ signal is given in Figure 1.
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Figure 1: The plot of the consonant phoneme /t/

The next two phonemes (/s/ and /S/) are called fricative consonants, which are produced
when the air is squeezed out through a small hole in the mouth. An example of a phoneme /S/
signal is given in Figure 2. The audio data used in the analysis are wav �les with the following

Figure 2: The plot of the consonant phoneme /S/

parameters: sampling frequency: 22 kHz, quanti�cation: 16 bits, the number of channels is 1.
The feature extraction procedure proposed in Section 3 involves several steps. First of all,

the signal pre-processing is carrying out. Then the signal is converted to the appropriate space
domain and the extraction of features is performed. In this experiment, signal pre-processing is
performed using the following parameters: the input signal is divided into frames of 512 samples,
and then for each frame, the Hamming window is chosen. The overlap of 50% is used. Therefore,
the number of cepstrum coe�cients is equal to the number of coe�cients of transformation (i.e.
512). An observation reveals that only part of them is useful for separation of the consonant
classes. That is why only the �rst 12 coe�cients were selected as representative features. In
Figure 3, DFT cepstrum is shown. It can be seen from Figure 3 that the cepstrum coe�cients
present di�erences between consonant classes, this is especially visible in the case of the �rst four
coe�cients.

It was checked in further analyses that cepstra of both DWHT and DCT followed the same
trend. The plots of these cepstra are shown in Figures 4 (DWHT-based) and 5 (DCT-based).

Additional 12 features are derived from computing the �rst order derivatives.
In the experiment, 480 utterances (120 for each phoneme) were considered. These phonemes

were cut out of the recordings of 15 speakers (9 females and 7 males). We extracted parameters
for all these phonemes. The data are divided into two segments: one employed to teach a model
and another one utilized to test this model. The test set for models is constructed of 10%
randomly selected phonemes.

Due to the fact that the set of samples is not very big, and it is important to estimate the
true error rate of a given classi�er, an experiment was repeated 50 times for each case and the
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Figure 3: The cepstrum coe�cients obtained by DFT (the solid line�consonant phoneme /t/,
the dotted line�consonant phoneme /S/)

Figure 4: The cepstrum coe�cients obtained by DWHT (the solid line�consonant phoneme /t/,
the dotted line�consonant phoneme /S/)

arithmetic mean was calculated. A comparison of the performance of two selected classi�cation
methods averaged for all speakers, males and females separately is given in Table 1.

In order to determine whether the di�erences between the means of the three parametrization
techniques are statistically signi�cant, the one-way analysis of variance (ANOVA) test is used.
The test signi�cance level α equals to 0.05. We state a null hypothesis (H0) that in each case both
samples are from populations with the same means. The decision rule to reject this hypothesis
is as follows:

reject H0 if F > Fcritical(1− α) (16)

where F is the test statistic calculated as the ratio of the di�erence between the means over a
distribution of their data points, and Fcritical is the critical value taken from the F distribution
table [3]. The results of ANOVA test are given in Table 2.

The obtained F values (see Table 2) are compared with the critical value for F distribution.

Figure 5: The cepstrum coe�cients obtained by DCT (the solid line�consonant phoneme /t/,
the dotted line�consonant phoneme /S/)
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Table 1: The classi�cation accuracy [%] for 4 consonant classes

k -Nearest Neighbors Naive Bayes
DWHT DFT DCT DWHT DFT DCT

All
Mean 82.67 85.13 86.04 87.00 90.50 89.42

Std.Dev. 5.97 4.89 4.44 4.16 4.00 4.41

Male
Mean 86.71 90.71 90.86 96.29 98.14 98.29

Std.Dev. 11.55 7.53 8.29 5.25 3.77 3.40

Female
Mean 76.94 79.56 81.88 84.38 87.06 87.81

Std.Dev. 6.05 6.35 6.19 4.77 4.93 4.86

Table 2: The result of ANOVA test for kNN and Naive Bayes

k -Nearest Neighbors Naive Bayes
DWHT/
DFT

DWHT/
DCT

DFT/
DCT

DWHT/
DFT

DWHT/
DCT

DFT/
DCT

All
F -value 5.07 10.28 0.963 18.42 7.95 1.66
p-value 0.026581 0.001815 0.328837 0.000042 0.005826 0.201148

Male
F -value 4.21 4.25 0.008 4.13 5.11 0.039
p-value 0.042865 0.041988 0.928349 0.044831 0.026022 0.842655

Female
F -value 4.48 16.28 3.40 7.68 12.75 0.59
p-value 0.036904 0.000109 0.068158 0.006691 0.000553 0.445528

In the experiments performed, the obtained F is signi�cant at a given level if it is equal to or
greater than 4.03 (Fcritical = 4.03). According to these assumptions, the di�erences between
DWHT and DFT as well as di�erences between DWHT and DCT are statistically signi�cant.
Meanwhile, the di�erences between DFT and DCT are not statistically signi�cant.

The experiments were performed using MATLAB on a Laptop with IntelR CoreTM i5-6200U
2.20 GHz CPU and 8 GB of RAM. The computation time is given in Table 3. From this table
we see, that the computational time of kNN is much smaller than Naive Bayes.

We also compare the results obtained on Lithuanian consonants with the classi�cation ef-
fectiveness collected from the literature for other languages (see Table 4). Obviously, such a
comparison cannot be performed straightforward as the studies recalled here concern di�erent
languages and also a variety of features and classi�cation methods as well as they are researched
for di�erent purposes (e.g. speech recognition, clean and telephone speech di�erentiation, speech
productionÂ models and mechanisms, pathology disorder, etc.). Thus data contained in Table
4 may serve only to a limited extent when comparing algorithmic performances.

Though di�erent classi�cation methods are employed in the studies recalled, we see that our
results are consistent with the results of other researchers, however they are dependent more on
the vector feature content than on the type of a classi�er.

Table 3: Computational time [s] for the classi�ers

k -Nearest Neighbors Naive Bayes
DWHT DFT DCT DWHT DFT DCT

All 0.1464 0.1456 0.1457 2.5672 2.5742 2.5599
Male 0.0270 0.0270 0.0270 1.8016 1.7982 1.8021
Female 0.0908 0.0902 0.0899 2.2227 2.1915 2.1928
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Table 4: Consonants classi�cation performance in literature

Reference Dataset Parameters Classi�cation
technique

Overall classi�-
cation accuracy

Thasleema
and
Narayanan,
2018 [31]

Malayalam
(India)
(unaspirated,
aspirated,
nasal,
approximants,
fricatives)

Normalized
Wavelet
Hybrid Feature
(NWHF) vector
based on Wavelet
Transform

k -Nearest
Neighbors
(kNN),
Arti�cial Neu-
ral Network
(ANN),
Support Vec-
tor Machine
(SVM)

From 34.2% to
60.2% for kNN,
from 45.9% to
63.7% for ANN
and 55.4% to
79.9% for SVM
(depending on the
mother wavelet)

Korvel and
Kostek,
2017 [9]

MODALITY
database
(English stop
consonants)

Descriptors coming
from music infor-
mation retrieval

k -Nearest
Neighbors
(kNN)

73%

Lee and
Choi, 2012
[12]

TIMIT
database
(American
English)

Mel-frequency cep-
stral coe�cients
(MFCCs), �rst and
second derivatives
plus acoustic
parameters such as
band-limited RMS
energy, amplitude
of the �rst
harmonic and peak
normalized cross
correlation values
(PNCC)

Gaussian mix-
ture models
(GMMs)

Depending on
the type of
consonants, i.e.:
stops, fricatives,
and, a�ricates
classi�cation
accuracies are as
follows: 82.2%,
80.6%, and 78.4%
respectively

Ali et al.,
2001 [1]

American En-
glish stop
consonants

The acoustic-
phonetic
characteristics

The authors
proposed clas-
si�cation sys-
tem combining
the voicing
detection and
the place of
articulation
detection

86%

Pruthi
and Espy-
Wilson,
2003 [21]

TIMIT
database
(Nasals and
semivowels)

The acoustic
parameters which
include F1 measure,
a pick onset/o�set
measure, an energy
ratio, and a formant
density measure

Support Vec-
tor Machine
(SVM) based
classi�ers

Accuracies of
88.6%, 94.9%
and 85.0%
were obtained
for prevocalic,
postvocalic and
intervocalic sono-
rant consonants,
respectively
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6 Conclusions

In the paper, we have compared the performance of DFT, DWHT and DCT for voiceless
consonant (/t/, /k/, /s/, /S/) classi�cation. In order to evaluate the classi�cation accuracy,
two methods, namely kNN and Naive Bayes were used. The analyses were performed for the
whole group of speakers, and for male and female speakers separately. The highest classi�cation
accuracy for all speakers (86.04%) has been achieved for features based on DCT technique, in the
case of kNN method. While for Naive Bayes classi�er, the highest accuracy for all speakers was
equal to 90.50% for DFT. In the cases of the analysis of male and female recordings separately, the
highest accuracies have been achieved for features based on DCT technique for both classi�ers.
These accuracies are as follows: for kNN classi�er the highest accuracy for male group was equal
to 90.86%, for female group � 98.29%, while for Naive Bayes classi�er the highest accuracy for
male group was equal to 81.88%, for female group � 87.81%.

The employment of one-way analysis of variance (ANOVA) test for results of both selected
classi�cation methods revealed the same tendency for di�erent groups of speakers and di�erent
classi�ers: the di�erence between results, obtained by DFT and DCT is not signi�cant, mean-
while di�erence between results, obtained by DWHT and the other two transformations (DFT
and DCT) is signi�cant.

A comparison of the results obtained on Lithuanian consonants with other results in the
literature was also performed. A literature review shows, that our results are consistent with
those of other researchers.

It is important to mention that our primary intention was not to obtain high classi�cation ac-
curacy, but the goal was to determine which transformation method returns better results when
applying a given feature vector and a regular machine learning algorithm. This is important in the
context of the feedback needed on phoneme modeling precision to verify the model consistency
with the initial phoneme target. As seen from observations the created feature vector is not
complete as the accuracy obtained is not fully satisfying. Therefore, in the future research,
we will investigate the possibility of extending the created feature vector with additional signal
descriptors applicable to short-segmented speech units. In addition, more e�ective classi�cation
algorithms based on the weighted features are to be considered. Finally, some additional tests
should be executed on the same feature vectors but taking into account the phoneme neighbors
and also presence of noise.
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