
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 13(4), 503-520, August 2018.

A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm

I.D. Mironescu, L. Vinţan

Ion Dan Mironescu*
Lucian Blaga University of Sibiu, Romania
*Corresponding author: ion.mironescu@ulbsibiu.ro

Lucian Vinţan
Lucian Blaga University of Sibiu, Romania
lucian.vintan@ulbsibiu.ro

Abstract: In this paper, we presented a further development of our research on
developing an optimal software-hardware mapping framework. We used the Petri Net
model of the complete hardware and software High Performance Computing (HPC)
system running a Computational Fluid Dynamics (CFD) application, to simulate
the behaviour of the proposed diffusive two level multi-objective load-balancing algo-
rithm. We developed an meta-heuristic algorithm for generating an approximation of
the Pareto-optimal set to be used as reference. The simulations showed the advan-
tages of this algorithm over other diffusive algorithms: reduced computational and
communication overhead and robustness due to low dependence on uncertain data.
The algorithm also had the capacity to handle unpredictable events as a load increase
due to domain refinement or loss of a computation resource due to malfunction.
Keywords: Petri Net simulation, High Performance Computing, load balancing,
diffusive algorithm, multi-objective optimisation

1 Introduction

1.1 The problem

The main problem approached through our research is how we can optimally distribute the
computational effort on an application among the multiple processing units (PUs) of a High Per-
formance Computing (HPC) machine. Computational Fluid Dynamics (CFD) applications [8],
which are the focus of our research, perform alternatively intensive computation and communi-
cation (data exchange) steps for a high number of points of a discretized computational domain.
The hardware on which these applications run is a collection of computing nodes connected
through a hierarchical communication network. Each node has a heterogeneous collection of
processing units with different processing speed communicating through a hierarchy of global
and local memories. Shorter computation time, lower energy consumption and an equilibrated
load are all important for the application user and for the hardware operator. Therefore, this
represents a multi-objective optimization problem.

1.2 State of the art

Taking into account that the computation platform and the application have many param-
eters, each one with many distinct discrete values, the load-balancing problem is a NP-hard
one [7]. This type of application needs a large-scale distributed computing system. As the un-
derlying numerical method is an approximation method, the computational load can be known
completely only at computation time. To handle this problem’s particularities, modern solutions
use metaheuristic [3], distributed [16] and dynamic load balancer [17]. The scale of the system

Copyright ©2018 CC BY-NC



504 I.D. Mironescu, L. Vinţan

and the heuristic behaviour of the used algorithm make modelling and simulation indispensable
in the development and assessment of a load balancer algorithm. The modern tools for modelling
and simulation of computing systems are using the discrete event formalism [5] [9] [22]. From the
current existing methods, Petri Nets presents the advantage of having graphical representation
and sound formal definition [2]. The graphical representation facilitates rapid development of
models and expressive simulation. The formal definition allows formal verification of the resulted
models.

2 The proposed high performance computing system

In this research, we continue and complement our work presented in [20]. The hardware we
consider in our approach is a cluster of heterogeneous nodes, implementing a High Performance
Computer System (HPC). For the simulations, we modelled the nodes of this HPC after those
of an existing system, the COKA cluster [25]. A node from COKA has two CPU sockets and
eight PCIe slots. The CPU sockets are occupied by Intel Xeon E5 2630v3 CPUs with 8 cores.
Nvidia K80 GPU boards, each having two GPU processors, occupy the PCIe slots. The CPUs
and GPUs are communicating through the PCIe bus. Four GPU cards are sharing the same bus
to a CPU socket. Each node has two network interfaces – one on each socket; they connect each
node to an Infiniband (IB) interconnection network with a fat tree topology. We selected this
model because performance and energy consumption models and measurements were presented
in [4] for the same class of application we use.
The software runtime allowing the transparent and distributed use of the hardware resources has
a two level architecture. The internode level is implemented in the CHARM++ framework [14].
The CHARM++ runtime supports the transparent, asynchronous, message based communication
among chares distributed on the system nodes. Chares are the basic entities at this level and
follow the Actor paradigm. The heterogeneous node level is managed with the support of the
StarPU framework [1]. In this framework, the application is represented as a Directed Acyclic
Graph of tasks. The tasks are dispatched to the processing units by a scheduler component
that uses a scheduling/load balancing algorithm. Required memory transfers and dependencies
between tasks are managed transparently.
The application we designed implements the Lattice Boltzmann Method (LB) CFD numerical
method [8]. The computation in LB is an iterative process. In each iteration, for each point of
the discrete computational space, two consecutive computational steps are performed: collision
(only local data to the point is used) and propagation (data from neighbours is needed). The
distributed character of the computation is implemented through domain decomposition. At the
upper level (CHARM++) the workload is distributed / redistributed among the nodes. The
global domain is divided in subdomains. Each subdomain is distributed to a chare, which will
manage it until the end of computations. The chare divides the subdomain in blocks, creates
for each the corresponding tasks and feeds them to the lower level (StarPU); this dispatches the
task on PU and executes them.

3 Proposed load balancer

The proposed load balancing algorithm described in [20] and schematically presented in figure
1 has two levels, corresponding to the software architecture levels. At the CHARM++ level, the
load distribution is performed by the chares. In the first iteration, one of the chares receives
the domain and starts, as initiator, a negotiation process with other nodes; the negotiations
are following the Contract Net Protocol [24]. In each negotiation round the initiator selects its



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 505

neighbours from the nodes bidding to its announcement; the initiator then sends to its neighbours
bigger subdomains to be further redistributed. The process continues recursively with each
responder becoming initiator until no node responds to the call. The resulting neighbourhood
relation will be kept until the computation ends and each node will communicate only with its
neighbours implementing thus the diffusive character of the algorithm [12]. After receiving its
subdomain, each node’s chare decomposes it in blocks and creates tasks for the next level. At
the StarPU level, the local scheduler dispatches the tasks received from the node’s chare to the
queues of the node’s PUs.
We developed a scheduler based on the dequeue model data aware sorted decision (dmdasd)
scheduler [15] with some adaptations. The scheduler is using a cost function representing a
weighted sum of the three optimization objectives. The function has the following form:

fobj = α · tcomputation + β · Ecomputation + γ · Load (1)

where fobj is the scheduling function, tcomputation is the estimated computation time , Ecomputation
is the estimated energy consumption, Load is the estimated queue load. The weighting coeffi-
cients must satisfy the normalisation (equilibrium) relation α+β+γ = 1. The scheduler estimates
the values of the objective function for each PU; it sends the task for computing the block to
the PU with the lowest value of the objective function. Our variant includes a supplementary
border queue, priority based dispatching and work stealing. Exterior blocks are placed in the
border queue based on assigned priority, but they can be transferred to another node if this
becomes idle and requests ghost border zones [18]. When all PUs become idle, StarPU signals to
the node’s chare the end of computation for the current iteration. Then, the chare demands the
ghost border zones from its neighbours and its frequency is lowered. If the neighbour responds
with a ghost border zone, the computation continues normally; if it responds with a bigger mem-
ory zone, the load is redistributed and the neighbour frequency is raised. The receiving chare
integrates the new memory zone in its subdomain. If the neighbour is not responding in a pre-set
time, it is considered malfunctioning; its subdomain is recovered from backup by its neighbours
and recomputed.

Charm++

StarPU StarPU StarPU

CPU1 GPU1CPU2 CPU1 CPU2 CPU1 GPU2GPU1

Scheduler

Q

u

e

u

e

Q

u

e

u

e

Q

u

e

u

e

CPU1 CPU2 GPU1

Q

u

e

u

e

Border

Q

u

e

u

e

Q

u

e

u

e

CPU1 CPU2

Q

u

e

u

e

Border

Q

u

e

u

e

Q

u

e

u

e

CPU1 GPU1

Q

u

e

u

e

Border

Q

u

e

u

e

GPU2

Scheduler Scheduler

chare 1
chare 2

chare 3

1

2

3

4

5

node 1 node 2 node 3

Figure 1: Scheme of the load balancing two level architecture: 1) distribution; 2) task creation;
3) scheduling; 4) work stealing; 5) redistribution



506 I.D. Mironescu, L. Vinţan

4 Modelling of the system

4.1 Underlying mathematical model

The execution of the HPC application on the given hardware architecture was modelled as
a combination of atomic computation and communication steps. These steps can be performed
concurrently on the available units. We adopted from literature the models for the time and the
energy needed to perform these steps on a given PU [4] [21]. The computation is divided in two
phases: collision and propagation. On the CPU, the unit optimally processed by each core is
the 1024x1024 sites block. The time of performing the computation for this number of sites in
the collision phase (tcol_CPU , in s) depends on the clock’s frequency (f, in MHz) through the
formula:

tcol_CPU (f) =
1380

f
, (2)

The energy used in this phase (Ecol_CPU , in J) is related to the clock’s frequency (f, in MHz)
through the following relations:

Ecol_CPU (f) = Pcol_CPU (f) · tcol_CPU (f) (3)

Pcol_CPU (f) = 30 + 0.0062 · f1+0.2, [W ] (4)

The time needed to perform the propagation phase for the same block (tprop_CPU ) is independent
of the frequency:

tprop_CPU (f) = 0.15s (5)

The energy used by the CPU in the propagation phase Eprop_CPU is related to the clock’s
frequency (f, in MHz) through the following relations:

Eprop_CPU (f) = Pprop_CPU (f) · tprop_CPU (6)

Pprop_CPU (f) = 30 + 0.055 · f1+0.2, [W ] (7)

The GPU processes in one step a block of 8192x1024 sites. The time needed by the GPU in the
collision phase (tcol_GPU , in s) depends on the clock’s frequency (f, ’in MHz) by the expression:

tcol_GPU (f) =

{ 71.4
f f < 650MHz

0.033 f ≥ 650MHz
(8)

The energy used in this phase (Ecol_GPU , in J) is given by the following formulas:

Ecol_GPU (f) = Pcol_GPU (f) · tcol_GPU (f) (9)

Pcol_GPU (f) =

{
42.5 + 0.109f f < 650MHz
42.5 + 0.109f + +0.005e0.0099f f ≥ 650MHz

(10)

where (Pcol_GPU ) is the power (in W) required for the collision step on the GPU. For the
propagation phase on the GPU, the time needed (tprop_GPU , in s) is:

tprop_GPU (f) =

{ 27.2
f f < 800MHz

0.085 f ≥ 800MHz
(11)

The energy used for the propagation phase (Eprop_GPU , in J) is calculated on the basis of the
power required (Pprop_GPU , in W) with the relation:

Eprop_GPU (f) = Pprop_GPU (f) · tprop_GPU (f) (12)



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 507

Pprop_GPU (f) = 42.94 + 0.096f (13)

The blocks to be processed are in the main memory. Time and energy for accesses to the local
memory of the PUs are included in the models presented above. In order to be processed by
the GPUs, blocks must be transferred from the main memory (host memory) to the GPU’s local
memory (device memory). The results should be transferred back from device to host memory.
In order to model these transfers over PCIe, we used the model described in [23]; this model
adapts the latency (L), overhead (o), short message gap (g), long message gap (G) model to the
host-device communication over the PCIe bus. The expression of the transfer time from host
to device (thd) as a function of the number of transferred bytes (B) is given by the following
formula:

thd(B) = Lhd + ohd +Ghd ·B + ghd (14)

With the values from [23], the expression (14) is:

thd(B) = 0.009420 + 8.318392E − 008B + 0.002503, [ms] (15)

The energy used for the host-device transfer (Ehd(B), in J) is:

Ehd(B) = PPCI · thd(B) (16)

PPCI is the power consumed on the PCIe Bus; PPCI = 25W [26].
The transfer time from device to host (tdh) is given by the formula:

tdh(B) = Ldh + odh +Gdh ·B + gdh (17)

With the values from [23] the expression is:

tdh(B) = 0.009023 + 7.924734E − 008B + 0.002674, [ms] (18)

The energy used for the host-device transfer (Edh(B)) is:

Edh(B) = PPCI · tdh(B) (19)

For the network, the LoOgGP model proposed in [19] was used. This model introduces a second
overhead (O) supplementary to the latency (L), overhead (o), short message gap (g), long message
gap (G) parameters; O is linearly dependent on data size. The transfer time between two nodes
over IB (tIB) for B bytes is then:

tIB(B) = LIB + oIB +OIB ·B +GIB ·B + gIB (20)

With the values from [19], tIB(B) is (in ms):

tIB(B) = 181.5 + 34.7 + 1.88B + 37.9B + 1.88 (21)

4.2 Reference model

As reference we developed a model estimating the time and the energy needed to perform
one iteration for a given system configuration. A system configuration specifies: the number
NN of nodes and for each node i with 0 ≤ i < NN : the number of PUs of each type (nCPU (i)
and nGPU (i)); the clock frequencies of each PU(fCPU (j, i) ,0 ≤ j < nCPU (i) and fGPU (k, i)
,0 ≤ k < nGPU (i)); the number of blocks allocated to each node NB(i). The time of computing
a block on the CPU j of the node i (tCPU (j, i)) is:

tCPU (j, i) = tcol_CPU (fCPU (j, i)) + tprop_CPU (fCPU (j, i)) (22)



508 I.D. Mironescu, L. Vinţan

where tcol_CPU and tprop_CPU are calculated with the formulas (2), respectively (5). The energy
is given by the following formula:

ECPU (j, i) = Ecol_CPU (fCPU (j, i)) + Eprop_CPU (fCPU (j, i)) (23)

where Ecol_CPU and Eprop_CPU are calculated with the formulas (3) , respectively (6). If the
GPU is alone on the link to the host memory, the total time of computing eight blocks (BlGPU =
8 ·BlCPU bytes) on the GPU k of the node i (tGPU (k, i)) is:

tGPU (k, i) = thd(BlGPU ) + tcol_GPU (fGPU (k, i)) + tprop_GPU (fGPU (k, i)) + tdh(BlGPU ) (24)

where thd and tdh are the transfer times from host to device and from device to host, respectively,
given by equations (14) and (17), tcol_GPU and tprop_GPU are the times for computing in collision
and in propagation phase respectively, calculated with the formulas (8) and (11). The energy
used to compute eight blocks on the GPU k of the node i (EGPU (k, i)) is given by the following
equation:

EGPU (k, i) = Ehd + Ecol_GPU (fGPU (k, i)) + Eprop_GPU (fGPU (k, i)) + Edh (25)

where the computation energies Ecol_GPU and Eprop_GPU are calculated with the formulas (9)
and (12) and the transport energies Ehd and Ehd are calculated with the formulas (16) and (19).
Therefore, for the maximal time needed for the computation on the GPU (tmax_GPU ), we derived
the formula for the case that m GPUs are sharing the same link to memory:

tmax_GPU = (m mod 2) · thd(BlGPU ) + floor(
m

2
) · thd(2 ·BlGPU ) + tcol_GPU (fGPU (k, i))

+ tprop_GPU (fGPU (k, i)) + ((m− 1) mod 2) · tdh(2 ·BlGPU ) + (m mod 2) · tdh(BlGPU )
(26)

With these considerations, if we denote with NBO(i) the number of blocks which completely
occupy the units of the node i, with q the quotient of NB/NBO(i) and with r the reminder of
NB/NBO(i), the time to compute NB blocks on node i is given by the following formula:

t(NB, i) = (q + 1) ∗max(tCPU (j, i), tmax_GPU ), j = 1, nCPU (i) (27)

The energy is given by the equation:

E(NB, i) = q ∗ (

nCPU (i)∑
j=1

ECPU (j, i) +

nGPU (i)∑
k=1

EGPU (k, i)) +

r
8∑

k=1

EGPU (k, i)

+
r mod 8∑
j=1

ECPU (j, i) +

nCPU (i)∑
j=(r mod 8)+1

ECPUidle(j, i) +

nGPU (i)∑
k= r

8
+1

EGPUidle(k, i) (28)

where ECPUidle(j, i) is the energy consumed by the CPU j of the node i in idle mode and
EGPU (k, i) is the energy consumed by the GPU k of the node i in idle mode.
The CPU and GPU idle energies are calculated with the equations:

ECPUidle(j, i) = PCPUidle · tCPUidle(j, i) (29)

EGPUidle(k, i) = PGPUidle · tGPUidle(k, i) (30)



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 509

The CPU and GPU idle times are given by the formulas:

tCPUidle(j, i) =

{
t(NB, i)− (q + 1) · tCPU (j, i) ifj ≤ r mod 8
t(NB, i)− q · tCPU (j, i) ifj > r mod 8

(31)

tGPUidle(k, i) =

{
t(NB, i)− (q + 1) · tGPU (k, i) ifk ≤ r

8
t(NB, i)− q · tGPU (k, i) ifk > r

8

(32)

We considered PCPUidle = 30 W and PGPUidle = 42 W, the free coefficients from equations (4)
and (10).
After all PUs have terminated their local computation, the exchange phase takes place. In this
phase, each node transfers the border zones to its neighbours. The averaged dimension (dbord)
of the border zone for a subdomain with NB blocks is:

dbord(NB) = 4 ·
√
NB · 1024 · wbord · dsite, bytes (33)

where wbord is the border width (stencil dimension for the computation of one site) and dsite is
the dimension in bytes of the data for one site. The average is computed considering the square
with the equivalent number of blocks. Considering a duplex channel of communication, the time
for the node i to be ready for the next iteration (titer(i)) is the time needed to compute the NB

blocks and the time to transfer the border zones:

titer(NB, i) = t(NB, i) + tIB(dbord(NB)) (34)

The energy consumed for this is:

Eiter(NB, i) = E(NB, i) + EIB(dbord(NB)) (35)

An iteration is finished when all nodes have completed their transfers. The performance ob-
jectives of the whole system for a given distribution of blocks NB(i), 1 < i ≤ NN are: a) the
time of computation for one iteration (titer) (Eq. 36); b) the energy of computation for one
iteration(Eiter) (Eq. 37), with the idle energy Eidle given in (Eq. 38); c) the load imbalance
Li = 1− Lb where the load balancing Lb is given by (Eq. 39) as defined in [27] . We used Li in
order to perform the multi-criterial minimisation for all the objectives, as Lb is an objective to
be maximized.

titer = max
i∈[0...NN−1]

titer(NB(i), i) (36)

Eiter =

NN−1∑
i=0

Eiter(NB(i), i) + Eidle (37)

Eidle =

NN−1∑
i=0

(titer − titer(NB, i)) · (
nCPU (i)∑
j=1

PCPUidle) +

nGPU (i)∑
k=1

PGPUidle) (38)

Lb =

AV G
i∈[0..NN−1]

titer(NB(i), i)

titer
(39)



510 I.D. Mironescu, L. Vinţan

4.3 Petri Net model

The system was modelled using the Petri net formalism. Specifically, Extended Petri Nets
were used [2]. The modelling and simulation were performed using the Snoopy tool [9]. Hardware
and software components were modelled as described in [20]. Each PU is represented by a token;
this token is initially located in the idle place and travels to the other places representing points of
the computation reached by the PU. The process of computation is represented by two transitions
corresponding to the two phases: propagation and collision. Each of the computation phases
introduces a time delay and an energy consumption; to model them, we implemented in the net
the relations described in Section 4.1. The frequency of each PU is modelled by tokens residing
in the Frequency place; this place is connected to the transitions representing each of the two
computing phases, collision and propagation, through a read arc. In this way, transition’s delay
and number of generated tokens are expressed as function of the number of frequency tokens. The
process of modifying the frequency of PU for Dynamic Voltage and Frequency Scaling (DVFS)
is simulated by increasing or decreasing the number of tokens in the frequency place. In the
CPU model, each transition corresponds to the computation of an elementary block. The delay
of the transitions corresponds to the time given by the formulas (2) for collision and (5) for
propagation. For the GPU model, each transition corresponds to the computation of eight blocks
representing a GPU block. The delay corresponds to the time obtained with the formulas (8) for
collision and (11) for propagation. The transition for each computing phase produces tokens that
accumulate in an Energy place. The number of produced energy tokens depends on the number
of frequency token through the formulas (3) for collision on CPU, ((6) for propagation on CPU,
(9) for collision on GPU and respectively (12) for propagation on GPU. By counting the tokens
in the Energy place, the energy consumed by each computational process can be evaluated.
The PUs, global memories and network interfaces are connected through a simplified model of
the PCIe bus. The tokens flowing through this part of the model represent data packets. Each
component connected to the bus can gain the exclusive access to the bus by putting a token
in a place which inhibits the transition for other units connected to the bus. The values of the
coefficients from the formulas (15) and (18) were used as timing values for the transitions of the
CPN model. Overhead (o) is used for the transition representing the preparing of the message.
This transition needs a CPU core token in the idle place. Latency (L) is used as a delay in the
next transition modelling the transport on the PCI. The bandwidth for a large message (G) is
used to calculate the passing rate through the transition. The bandwidth for short messages (g)
is used for the transition enabling sending of a new data stream. The transition delay simulates
the bus contention. The specific mainboard architecture is also considered; it has a separate
link to each processor. In this way, only half of the GPU boards from a node shares the same
host-device link.
For the network simulation, the values of the parameter from the formula (21) were used for the
transitions delays. The two overheads (o, O) were used in the transmission preparing transition,
which also consumes a CPU core token from the idle state. The two gaps (g, G) were used in
the transmission transition simulating the network bandwidth and contention.
The application is composed of the scheduler net, which connects to the StarPU run time net,
and the load balancer, which connects to the Charm++ runtime. We re-used the Charm++
structure presented in [20]. Details of the scheduler for one PU are presented in Figure 2. The
scheduling is done by computing an objective function for each PU. The next arriving task is
dispatched to the PU with the minimal value for the objective function. The computation of the
objective function is implemented through a net simulating the addition of values through the
accumulation of corresponding number of tokens. For each PU, one such net was build. This net
has an accumulator place for each optimisation criteria. The place contains the current value



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 511

of the criteria for the PU. For each task in the waiting queue and for each PU, a number of
tokens are generated for energy consumption, completion time and load. The number of tokens
corresponds to the estimated values of the criteria for the task execution on the PU. These tokens
are transferred to an estimation place. An amount equal to the tokens for the current values is
also transferred in the same place. This gives the estimation of the cumulative values for energy,
completion time and load after the task execution on the given PU. All estimated values are
connected to a cumulative transition. This transition functions like a minimum operator. It
transfers tokens until the place with the smallest number of tokens becomes empty. The empty
place activates the scheduling transition. The transition transfers the task token from the waiting
queue to the corresponding PU queue. The accumulator places of the selected PU are then
updated with the number of tokens corresponding to the scheduled task. If a frequency change
takes place, the computational speed and the energy used by the PU are changing, meaning that
the estimation for the completion time and energy for the tasks still in queue are not accurate any
more. The number of tokens in energy and completion time accumulators places are increased
correspondingly. In addition, if a task is transferred from queue to execution, a token is removed
from the load accumulator place. By explicitly modelling the scheduling process, it is possible
to model the incurring overhead. Each operation corresponding to a computational process is
represented through a transition. The transition is enabled only if a token for a CPU core is
present in the idle core place; it consumes this token and returns it to the idle place only after
the processing time passed.

READY 

TASK

FREQUENCY

PU1

TERMINATED

 TASK

IDLE

PU1

 

ASSIGNED

TASK

LOAD

 PU1
TIME

TASK
ENERGY

TASK

ENERGY

 PU1

TIME

 PU1

ENERGY

ESTIMATION TIME

ESTIMATION

LOAD

ESTIMATION

OBJECTIV FUNCTION

 ESTIMATION

sum sum sum

ponderated

 sum

comparison

assigning

update
update

update

schedule 

on PU1

collision

propagation

from PU2

DVFS

Figure 2: Schematics of the scheduling function for a PU

5 Simulation

5.1 Computing system modelled

We modelled a system with 16 nodes. To give relevance to the computational case, each
node was configured differently from the other in respect to the available CPUs and GPUs. This
configuration becomes relevant in the context of the partition of computing resources among
different applications [10] or in the context of temporary or permanent resource unavailability.
In both cases, even if the nodes are identical at start, the resources available to an application
differ from a node to the other. The configuration for each node is given in Table 1, where



512 I.D. Mironescu, L. Vinţan

Table 1: Nodes configuration

Node i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nCPU (i) 8 8 8 8 8 8 8 8 16 16 16 16 16 16 16 16
nGPU (i) 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
NBO(i) 23 38 53 68 83 98 113 128 31 46 61 76 91 106 121 136

nCPU(i) and nGPU(i) are the number of PUs of each type and NBO(i) the number of blocks
completely occupying the units of the node i.

Considering the optimal blocks load of each PU given in [4] and that a CPU core is needed
to manage the operation of a GPU board (=two processors), NBO(i) is given by the formula:

NBO(i) = nCPU (i)−
nGPU(i)

2
+ 8 · nGPU (i) (40)

5.2 Design space

The input variables for the three objective functions of the multi-criterial optimisation prob-
lem are the partition of the LB grid in 16 subdomains and the running frequency for each PU of
the system. The dimension of the design space (i.e. the number of possible hardware-software
combinations) is equal to the number of possible partitions x number of possible frequency config-
urations. The number of possible frequency configurations is equal to ((number of CPU frequency levels)
x (number of GPU frequency levels))16. Even by considering only the frequencies effectives for
DVFS (as shown in [4]), we have four levels for CPU and 12 levels for GPU giving a set of
4816 possible configurations. The number of possible partitions depends on the dimension of the
partition unit(the smallest part to be transferred between nodes). If a node is idle, the minimal
optimal load to be transferred to it will be of 16 blocks(the load of a GPU card with two GPU
processor). The node 15 can host maximal 256 blocks over its optimal load of 136; this gives
256/16 = 16 units of partition. For the 16 nodes, we determined experimentally 300540195
possibilities of distributing these 16 units. This gives a total of 4816 · 300540195 ≈ 1035 possible
configurations. This design space obviously cannot be explored exhaustively in order to obtain
the Pareto set.

5.3 Reference surface

To have a measure of the algorithm efficiency, we built an approximation of the Pareto
surface in the space of the three objectives: energy consumption, completion time and load
balancing. We designated this surface as reference. Given the design space dimension, we used
a metaheuristic algorithm to generate a reference surface approximating the Pareto set. We
preferred this approach to other metaheuristics (e.g. NSGA2 multi-objective genetic algorithm)
because it can find points in the Pareto set like the configurations using minimal energy and the
configurations with minimal computing time. The pseudocode is presented in Algorithm 1

To reduce calculation, we used a dictionary type structure perf_data to store the values for
the time needed and energy consumed by each individual node for the computing of each of the
possible subdomain’s dimension (in blocks), with each of the possible frequency configurations.
The values were calculated with formulas (27) and (28) from Section 4.2. The dictionary allows
the retrieving for each node i and for each subdomain dimension B of the minimal computing
time (tmin) and corresponding energy (Etmin), of the minimal energy (Emin) and corresponding
time (tEmin) and of the corresponding frequencies configurations, freqtmin and freqEmin . We
obtained a set of starting points by generating a manageable set of partitions. We considered



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 513

Algorithm 1 Metaheuristic search
1: generate perf_data dictionary
2: generate schedules
3: for all schedules, S do . global candidate selection
4: (freqtmin , tmin, Etmin , Litmin)← generate tmin configuration(S, perf_data)
5: (freqEmin , tEmin , Emin, LiEmin)← generate Emin configuration(S, perf_data)
6: if insert(ref_set, (S, freqtmin , tmin, Etmin , Litmin)) then
7: new_freq ← freqtmin
8: repeat . local search for candidates that minimise Li
9: new_freq ← decreasefrequency(new_freq)

10: (tnew, Enew, Linew)← generatenewLiconfig(S, new_freq, perf_data)
11: until insert(ref_set, (s, new_freq, tnew, Enew, Linew))
12: end if
13: if insert(ref_set, (S, freqEmin , tEmin , Emin, LiEmin) then
14: new_freq ← freqEmin
15: repeat . local search for candidates that minimise Li
16: new_freq ← increasefrequency(new_freq)
17: (tnew, Enew, Linew)← generatenewLiconfig(S, new_freq, perf_data
18: until insert(ref_set, (s, newc_Emin, tnew,Enew, linew)
19: end if
20: end for

packets of 16 blocks as the partition units and we generated all possible distributions of these
16 units on the 16 nodes (300540195 schedules). The reference set ref_set is the structure that
will contain the approximation of the Pareto set at the algorithm completion. For the ref_set
we used a dictionary of dictionaries structure. Each of the three optimization objectives is key
at one level. The keys are sorted, allowing efficient comparison of a given element with the set
members. This is used by the insert operation testing the argument element before insertion.
If the element is not dominated, it is inserted in the set and the operation returns true. If the
element is dominated, it is discarded and the operation returns false. If the element dominates a
set member, this member is deleted from ref_set. Using the same algorithm, we built reference
sets with less blocks by decreasing the dimension of the partition unit. These configurations were
used as starting point for the investigation of load increase case (see Section 5.5). With a similar
process, reference sets were calculated for partitions on 10 to 15 nodes to be used for the node
failure case (see Section 5.6).

5.4 Initialization case

The simulation aims to test if the developed algorithm can achieve a mapping (domain
decomposition plus scheduling) near to the reference set and how fast it can reach this mapping.
An initialization message is sent to one of the nodes with the location and dimension of the
complete domain. The node starts the Contract Net Protocol initiation. After receiving biddings,
the starting node divides the domain, considering its processing power (type and number of PUs)
and the processing power of the bidding nodes. The distribution phase continues recursively
until no nodes are bidding. Each node starts computation in parallel with redistribution. The
computations start with the blocks situated at the domain core, allowing the outer blocks to be
redistributed. The normal redistribution takes place automatically at the end of each iteration.
A simulation was run for each node as first node.



514 I.D. Mironescu, L. Vinţan

5.5 Load increase case

The simulation goal was to show how the algorithm reacts in case of a dynamic increase in
load; this situation arises when the calculation imposes the mesh refining in order to increase
computation’s accuracy. Refining is done by halving the distance between the grid sites (one
step of refining). The number of sites in each direction is doubled. The total number of block
sites is multiplied by four. We started with a configuration that is on the reduced reference set
and increased four times the load of some selected nodes. In the CPN model, the load increase
was simulated by marking the places corresponding to the selected nodes with four times more
tokens than in the reference mapping. The effect of a single affected node was investigated at
first. Each node was loaded with four times its complete load indicated in Table 1. The cases of
multiple nodes were then investigated. As reference we used the reference set computed for the
maximal number of sites. As starting configuration we used a configuration in the reference set
for a lower number of sites.

5.6 Node failure case

In this case, we investigated how the load balancing will react to a node failure. We used
the reference set computed with the same number of sites for a system with fewer nodes. In the
simulation case, a scheduled transition injects at a random time a token, blocking the functioning
of one or more nodes. The first goal is to find if the system could recover after losing one or more
nodes; the second one is to see in how much time the mapping reaches the reference surface for
the corresponding number of nodes.

6 Results and discussion

6.1 Initialisation case

In the first step, the chare on the init node distributed the data to eight other nodes with
the shortest path to it. Each of these nodes already have some fixed neighbours (the node from
which it received the task and some of the nodes that accepted the task.) The recursive process
ends when no other nodes respond or a node has a subdomain that it can certain compute.
Figure 3 presents one example of the distribution process for a 4x4 grid. In each step, the
announcing nodes are in blue, the nodes that have finished distribution and started computing
are in green and the nodes that cannot distribute further are in red. The arrows are presenting
established contracts.

Figure 3: Initial distribution of load on available nodes

After all nodes start calculation, blocks are also exchanged in the communication step to
balance the load. This happens until the computation time is approximately equal on all nodes.
After the computations were started, the simulations were run until a stable mapping (meaning
no full block exchange) took place in the communication step. The simulations were run for each
node as starting node. A mean of 40 iterations are needed for reaching a grid distribution that
is near to the reference set.



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 515

Figure 4 presents one of the reached mapping as a red point, compared with the reference set
in blue. We considered the time and the used energy as more important than the load; so, we
selected the values α = 0.40; β = 0.40; γ = 0.2 for the weighting coefficients of the objective
function given by formula (1). Therefore we expected that the resulted mapping will be nearer
to the points representing also the weighted combination of the three objectives on the reference
set. The cause of not reaching the configuration on the reference set is that the redistribution
stopped before reaching the optimal schedule. The faster node has finished earlier and requested
the border block. The request arrived only after the slower node started to process the last
blocks so they were not transferred anymore.

Figure 4: Reference set (blue) with stable configuration (red) reached after redistribution

6.2 Load increase case

Figure 5 presents time (a) and iteration number (b) needed to reach the proximity of the
Pareto front for a single affected node.

600

500

400

300

200

100

T
im

e
 [

s
]

0 2 4 6 8 10 12 14

Node

69

114

159
204

249

294

 339

 384

93

138

183

228

273

318

 363

 408

(a) Time needed to reach the near opti-
mal solution.

80

50

40

N
o
. 

o
f 
it
e
r
a
t
io

n
s

0 2 4 6 8 10 12 14

Node

69

114

159

204

249
294

 339

 384

93

138

183

228

273

318

 363

 408

60

90

70

(b) Number of iterations needed to reach
optimal solution.

Figure 5: Handling of the load increase on one node. Point label indicates number of blocks to
be transferred

The numbering of the nodes are in the order from the slowest node (node 0 only two GPUs
available) to the fastest node (node 15 - all possible GPUs=16 available). In each case, the
affected node was considered to have the minimal optimal load (NBO(i) from Table 1) before
the refinement was started. In Figure 5, each point is labelled with the number of blocks to be



516 I.D. Mironescu, L. Vinţan

transferred which is approximated to 3*optimal load. Point annotation is the number of supple-
mentary blocks to be redistributed (3*optimal load, see Table 1). The break in the ascending
trend at the nodes 3 and 11 can be explained by some architectural details. Starting with the
two nodes, there is a better distribution of GPUs on the CPU-GPU interconnect network. In
this way, the transfer time between the host and devices is smaller for the same amount of data.
The time needed to reach a stable near optimal mapping, in the proximity of the reference set,
for the refinement started in two(a) to six(f) nodes is presented in Figure 6. Number of blocks on
the x-axis is the total number of blocks to be redistributed from the affected node. All possible
distinct combinations of two, three, four, five and respectively six nodes that can be formed from
the 16 nodes, were simulated. As the configurations are limited, there are more combination

500

400

300

200

100

T
im

e
 [

s
]

Number of blocks
200 300 400 500 600 700 800

(a) Refining on two nodes .

500

400

300

200

600

T
im

e
 [

s
]

Number of blocks
800400 600 1000

(b) Refining on three nodes

500

400

300

800

600

T
im

e
 [

s
]

Number of blocks
400 600 800 1000 1200 1400

700

(c) Refining on four nodes

500

400

900

800

600T
im

e
 [

s
]

Number of blocks
600 800 1000 1200 1400 1600

700

1000

1800

(d) Refining on five nodes

500

900

800

600

T
im

e
 [

s
]

Number of blocks

700

1000

1100

1200

800 1000 120014001600 18002000

(e) Refining on six nodes

Figure 6: Handling of the load increase on 2 to 6 nodes

of nodes with the same total number of blocks. Depending of the node combination, we have
different timings for the same total point number (grid sites). This is the result of their hardware
configuration and of the number of neighbours from each of them. The time is increasing with
the number of nodes as they share the same communication bandwidth.

6.3 Node failure case

Figure 7 shows the time until the stable, near optimal mapping is reached depending on the
number of points to be redistributed. The points label indicates the number of defective nodes.
Three classes of nodes failure behaviour are observed:

• slow recovering nodes: 0, 1, 3, 13 and 15;

• intermediate recovering nodes: 8, 9, 2, 10, 4, 12, 6, 14 and 7;

• fast recovering nodes: 11 and 5.

The three classes are given by the variation in the number and the hardware configuration of the
node neighbours. Failure in nodes with many neighbours with better architectural characteristics



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 517

(such as nodes 11 and 5) is recovered faster than failure in nodes that have less and/or suboptimal
neighbours (such as nodes 0 and 5).

250

300

200

100

T
im

e
 [

s
]

0

2

4

6

8

10
12

14

Number of blocks

11

15

5

20

9

1

13

80

7
3

60 40

150

100 140120

Figure 7: Time for the redistribution of the load of a failed node. The label of each point
indicates the node that has failed.

7 Conclusion

We have investigated through simulation the behaviour of the proposed algorithm for the
multi-objective optimization of the workload distribution on a heterogeneous computing system.
The simulations have shown that the algorithm can perform as expected. The algorithm succeeds:

• To distribute the workload by passing it from neighbour to neighbour. The maximal
number of iterations needed is equal to the maximal distance between the starting node
and the other nodes in the tree of neighbourhood that is forming;

• To reach a stable state in the proximity of the reference set of a tri-objective optimisation
problem. The factors influencing the iteration number and the time needed for reaching
a stable configuration were also revealed by this investigation. They are the hardware
configuration and the position in the node neighbourhood hierarchy/topology. From the
hardware perspective, the number and distribution of GPUs on the available slots is de-
termined. The optimum is for a moderate number of GPUs uniformly distributed on the
slots, to fully exploitation of the communication hierarchy. From the topological perspec-
tive, nodes with fewer neighbours recover slower from the increase of load as they cannot
efficiently evacuate the load;

• To handle well sudden load increases caused by mesh refining or node failure.

The behaviour observed through the simulation reveals that our algorithm has some advantages
over other algorithms:

• It does not need an explicit, distinct imbalance check. This is implicitly detected by the
slower node that receives a border zone request from is faster neighbours. The load bal-
ancing is also resolved with the transfer that is already taking place only with an increased
payload. Therefore, our developed algorithm has a speed and resource advantage over all
algorithms that make an explicit balance check and have an explicit load balancing phase;

• It can detect and solve imbalances resulted from special situations, like mesh refining or
node failure without explicit checks. The detection is implicitly codified in the exchanges
protocol between neighbours. After the supplementary load is dispatched to some queues,
the load balancing is taking place like in a normal situation. The consideration of special
cases- refining and failure - is an original aspect. This is important because these cases are
unexpected, but not rare for the application investigated;



518 I.D. Mironescu, L. Vinţan

• It uses less uncertain data. It starts the transfer only when the imbalance is certain and
directs the data only to the nodes that can handle the supplementary load. So, our proposed
algorithm is more robust than algorithms basing their decision exclusive on estimations.
The second level scheduler uses estimates in its decision, but at this level predictability is
higher. At first level, the decision of transferring the load is not based on estimations but
triggered by a real imbalance;

• It follows three objectives for optimisation, instead of classical solution that considers only
time and energy [6] [13]. Analysis of computing load is also important in the context of
system cooling and of a datacenter reliability.

The heuristic algorithm used to approximate the Pareto surface is also original and has showed
potential at least for producing reference sets and for off-line scheduling. It must be also further
analysed. More investigation has to be done on the model of a system with a much higher
number of nodes in the magnitude order of a real HPC configuration. This will be done using
a simulator that can handle this number of nodes and a metaheuristic automatic design space
tool (FADSE) [11] to build the reference set.

Conflict of interest

The authors declare no conflict of interest.

Bibliography

[1] Augonnet, C.; Samuel, T.; Namyst, R.; Wacrenier, P.-A. (2011); StarPU: A Unified Platform
for Task Scheduling on Heterogeneous Multicore Architectures, Concurrency and Computa-
tion: Practice and Experience, Special Issue: Euro-Par 2009, 23, 187-198, 2011.

[2] Blätke, M.A.; Heiner, M.; Marwan, W. (2015); Engineering with Petri Nets, In R. Robeva
(Ed.), Algebraic and Discrete Mathematical Methods for Modern Biology, Elsevier Inc., 141–
193, 2015.

[3] Brahambhatt, M.; Panchal, D. (2015); Comparative Analysis on Heuristic Based Load Bal-
ancing Algorithms in Grid Environment, International Journal of Engineering Research &
Technology (IJERT), 4(4), 802–806, 2015.

[4] Calore, E.; Gabbana, A.; Schifano, F.S.; Tripiccione, R. (2017); Evaluation of DVFS tech-
niques on modern HPC processors and accelerators for energy-aware applications, Concur-
rency and Computation: Practice and Experience, DOI: https://doi.org/10.1002/cpe.4143,
29(12), 1–19, 2017.

[5] Casanova, H.; Giersch, A.; Legrand, A.; Quinson, M.; Suter, F. (2014); Versatile, Scalable
and Accurate Simulation of Distributed Applications and Platforms, Journal of Parallel
and Distributed Computing, DOI: https://doi.org/10.1016/j.jpdc.2014.06.008, 74(10), 2899–
2917, 2014.

[6] Chatterjee, N.; Paul, S.; Mukherjee, P.; Chattopadhyay, S.(2017); Deadline and energy
aware dynamic task mapping and scheduling for Network-on-Chip based multi-core platform,
Journal of Systems Architecture, DOI: https://doi.org/10.1016/j.sysarc.2017.01.008, 74, 61–
77, 2017.



A Simulation based Analysis of an Multi Objective Diffusive
Load Balancing Algorithm 519

[7] Chen, B.; Potts, C.N.; Woeginger, G.J. (1998); A Review of Machine Scheduling: Com-
plexity, Algorithms and Approximability, In D.Z. Du, P.M. Pardalos (Eds.), Handbook of
Combinatorial Optimization, Springer, 21–129, 1998.

[8] Guo, Z.; Shu, C.(2013); Lattice Boltzmann Method and Its Applications in Engineering
Advances in computational fluid dynamics Volume:3, World Scientific, 2013.

[9] Heiner, M.; Herajy, M.; Liu, F.; Rohr, C.; Schwarick, M.(2012); Snoopy - a unifying Petri
net tool, In S. Haddad, L. Pomello, (Eds.) Application and Theory of Petri Nets, Springer,
7347, 398–407, 2012.

[10] Hugo, A. E.; Guermouche, A.; Wacrenier, P.A.; Namyst, R. (2013); Composing Multiple
StarPU Applications over Heterogeneous Machines: A Supervised Approach, In 2013 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum,
1050–1059, 2013.

[11] Jahr, R.; Calborean, H.; Vintan, L.; Ungerer, T. (2012); Finding Near-Perfect Parameters
for Hardware and Code Optimizations with Automatic Multi-Objective Design Space Explo-
rations, In Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.2975,
27(9), 2196–2214, 2012.

[12] Jeannot, E.; Vernier, F., (2006); A Practical Approach of Diffusion Load Balancing Algo-
rithms, INRIA, RR5875, 2006.

[13] Juarez, F.; Ejarque, J.; Badia, R.M. (2018); Dynamic energy-aware scheduling for parallel
task-based application in cloud computing, Future Generation Computer Systems, 78, 257–
271, 2018.

[14] Kale, L.V.; Bhatele, A.; (2013); Parallel Science and Engineering Applications: The
Charm++ Approach (1st ed.), CRC Press, 2013

[15] Kasmi, N.; Zbakh, M.; Samadi, Y.; Cherkaoui, R.; Haouari, A. (2017) Performance evalua-
tion of StarPU schedulers with preconditioned conjugate gradient solver on heterogeneous
(multi-CPUs/multi-GPUs) architecture, In 3rd International Conference of Cloud Comput-
ing Technologies and Applications (CloudTech), 1–6, 2017.

[16] Kaur, N.; Chhabra, A. (2017); Comparative Analysis of Job Scheduling Algorithms in Par-
allel and Distributed Computing Environments, International Journal of Advanced Research
in Computer Science, 8(3), 948–956, 2017.

[17] Khan, S.; Nazir, B.; Khan, I. A.; Shamshirband, S.; Chronopoulos, A. T. (2017); Load
balancing in grid computing: Taxonomy, trends and opportunities, Journal of Network and
Computer Applications, 88, 99–111, 2017.

[18] Kjolstad, F.B.; Snir, M.(2010); Ghost Cell Pattern, In Proceedings of
the 2010 Workshop on Parallel Programming Patterns (ParaPLoP’10),
DOI=http://dx.doi.org/10.1145/1953611.1953615, 4, 2010.

[19] Martinez, D. R.; Cabaleiro, J.C.;Pena, T.F.; Rivera, F.F.; Blanco,V. (2009); Ac-
curate analytical performance model of communications in MPI applications, In
2009 IEEE International Symposium on Parallel & Distributed Processing, DOI:
https://doi.org/10.1109/IPDPS.2009.5161175, 1–8. 2009.



520 I.D. Mironescu, L. Vinţan

[20] Mironescu, I.D.; Vintan, L. (2017); A task scheduling algorithm for HPC applications using
colored stochastic Petri Net models, In Proceedings of 13th International Conference on
Intelligent Computer Communication and Processing, 479–486, 2017.

[21] Rauber, T.; Rünger, G.; Schwind, M.; Xu, H.; Melzner, S. (2014); Energy measurement,
modeling, and prediction for processors with frequency scaling, The Journal of Supercom-
puting, 70, 1451–1476, 2014.

[22] Ubal, R.; Byunghyun, J., Mistry, P.; Schaa, D.; Kaeli, D., (2012); Multi2Sim: a simulation
framework for CPU-GPU computing, In Proceedings of the 21st international conference on
Parallel architectures and compilation techniques (PACT ’12), ACM, 335–344, 2012.

[23] van Werkhoven, B.V.; Maassen, J.; Seinstra, F.J.; Bal, H.E. (2014); Performance Models
for CPU-GPU Data Transfers, In 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 11–20, 2014.

[24] Wu,J.; Contract Net Protocol for Coordination in Multi-Agent System, In 2008 Second In-
ternational Symposium on Intelligent Information Technology Application, doi: 10.1109/I-
ITA.2008.273, 1052-1058, 2008.

[25] [Online]. Available: http://www.fe.infn.it/coka/doku.php?id=start, Accesed on 26 february
2018

[26] [Online]. Available: https://pcisig.com/specifications/pciexpress/base2/, Accesed on 26
february 2018

[27] [Online]. Available: https://pop-coe.eu/node/69, Accesed on 26 february 2018


