
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 13(3), 353-364, June 2018.

Implementation of Arithmetic Operations by SN P Systems
with Communication on Request

Y. Jiang, Y. Kong, C. Zhu

Yun Jiang*, Chaoping Zhu
1. Detection and Control of Integrated Systems Engineering Laboratory
2. School of Computer Science and Information Engineering
Chongqing Technology and Business University
Chongqing 400067, China
*Corresponding author: jiangyun@email.ctbu.edu.cn
jsjzcp@163.com

Yuan Kong
College of Mathematics and System Science
Shandong University of Science and Technology
Qingdao 266590, China
kongyuan1122@126.com

Abstract: Spiking neural P systems (SN P systems, for short) are a class of dis-
tributed and parallel computing devices inspired from the way neurons communicate
by means of spikes. In most of the SN P systems investigated so far, the system
communicates on command, and the application of evolution rules depends on the
contents of a neuron. However, inspired from the parallel-cooperating grammar sys-
tems, it is natural to consider the opposite strategy: the system communicates on
request, which means spikes are requested from neighboring neurons, depending on
the contents of the neuron. Therefore, SN P systems with communication on re-
quest were proposed, where the spikes should be moved from a neuron to another one
when the receiving neuron requests that. In this paper, we consider implementing
arithmetical operations by means of SN P systems with communication on request.
Specifically, adder, subtracter and multiplier are constructed by using SN P systems
with communication on request.
Keywords: membrane computing, spiking neural P system, communication on re-
quest, arithmetic operation.

1 Introduction

Since Gh. Păun first circulated his idea of membrane computing in 1998 [3] [22] (first circu-
lated as a Turku Center for Computer Science (TUCS) Report 208, 1998), membrane computing
has developed rapidly for almost two decades. As a branch of natural computing, membrane
computing aims on abstract computing ideas from the structure and the functioning of a single
cell, and also from complexes of cells, such as tissues and organs (including the brain) [23]. The
computational devices in membrane computing are known as membrane systems (P systems, for
short). Till now, three main classes of P systems have been investigated: cell-like P systems [22],
tissue-like P systems [13,50] and neural-like P systems [9]. The present paper deals with a class
of neural-like P system, called spiking neural P systems (SN P systems, for short) [9].

SN P systems are a class of distributed parallel computing devices inspired from the way
the neurons communicate by sending spikes to each other. In SN P systems, neurons (in the
form of membranes) are placed in the nodes of a directed graph, with the edges representing
synapses. Each neuron contains a number of identical objects, denoted by a and called spikes.
Each neuron may also contain a number of firing rules and forgetting rules. When the contents

Copyright ©2018 CC BY-NC



354 Y. Jiang, Y. Kong, C. Zhu

of a neuron satisfy some regular expression, a firing rule allows a neuron to send information
to other neurons in the form of spikes. On the other hand, forgetting rule removes from the
neuron a specified number of spikes. The system evolves by means of firing rules and forgetting
rules. And it evolves synchronously, in each time unit, each neuron which can use a rule, no
matter firing or forgetting, should use one. When the computation halts, no further rule can be
used, and a result is obtained, e.g., in the form of the distance between the first two spikes of the
output neuron, or the number of spikes present in a specified neuron in the halting configuration.

Since 2006 there have been quite a few research efforts put forward to SN P systems. Many
variants of SN P systems have been proposed, such as asynchronous SN P systems [3], sequential
SN P systems [8], SN P systems with anti-spikes [16], homogenous SN P systems [47], SN P
systems with astrocytes [19], SN P systems with weighted synapses [21], SN P systems with rules
on synapses [32], SN P systems with weights [36], SN P systems with a generalized use of rules [52],
SN P systems with white hole neurons [27], SN P systems with request rules [30], cell-like SN
P systems [43], extended SN P systems [1], SN P systems with scheduled synapses [2], SN P
systems with polarizations [19]. Most of the classes of SN P systems obtained are computationally
universal, equivalent in power to Turing machines [4, 11, 15, 31, 33, 35, 40, 42, 46, 51, 53]. An
interesting topic is to find small universal SN P systems [14,20,25,28,29,44,54]. In certain cases,
polynomial solutions to computationally hard problems can also be obtained in this framework
[10, 17]. Moreover, SN P systems have been applied to solve real-life problems [24] [21], for
example, to design logic gates, logic circuits [34] and databases [5], to represent knowledge [38],
to diagnose faults [26,37,39], or to approximately solve combinatorial optimization problems [49].

SN P systems can also be applied in a very different way, where they are viewed as components
of a restricted Arithmetic Logic Unit. Some SN P systems were constructed for dealing with
basic arithmetic operations. These systems apply different encoding method. In [7], the binary
number is encoded as a sequence of spikes: at each time unit, zero or one spike will be provided to
the input neuron, depending on the corresponding bit being 0 or 1. The numbers used in [45] are
encoded as the interval of time elapsed between two spikes. Under the third encoding mechanism,
natural numbers are encoded in the form of spike train and introduced in the system through the
input neurons, while the results of arithmetic operations are encoded in the form of the number
of spikes emitted to the environment [13].

These SN P systems mentioned above perform communication on command, that is the ini-
tiative for communication belongs to the emitting neuron. Specifically speaking, the application
of evolution rules depends on the contents of a neuron, (as mentioned above, checked by a regular
expression), a specified number of spikes are consumed and a specified number of spikes are pro-
duced, and then sent to each neurons linked to the evolving neuron by a synapse. Inspired from
parallel-cooperating grammar systems, it is natural to consider the opposite strategy – communi-
cation on request. In this case, spikes are requested from neighboring neurons, depending on the
contents of the neighboring neuron (also checked by a regular expression). On the other hand, no
spike is consumed or created, they are only moved from a neuron to another one along synapses
when the receiving neuron requests that. This request-response communication is an important
concept in software engineering, and computers use it as a basic method to communicate with
each other. Recently, communication on request was introduced into SN P systems by Pan et
al., and this variant of SN P systems is shortly called SNQ P systems [18]. Communication on
request is a powerful feature in SN P systems: SNQ P systems using two types of spikes are
proved to be universal, equivalent with Turing machines, and it is reported that 49 neurons are
sufficient for SNQ P systems to achieve Turing universality.

In this work, SN P systems with communication on request for performing the arithmetic
operations are introduced. The arithmetic operations we will consider are addition, subtraction
and multiplication. Natural numbers can be encoded in the form of the number of spikes and



Implementation of Arithmetic Operations by SN P Systems
with Communication on Request 355

introduced in the system through input neurons. And then by performing the computation of
the system, a number of spikes are present in the output neuron when the system halts. By
analyzing the number of specific spikes in the output neuron, we can obtain the result of this
arithmetic operation.

The paper is organized as follows. In the next section we recall some preliminaries that will
be used in the following, including the formal definition of SN P systems with communication on
request. In Section 3.1 we present an SN P system with communication on request that is used
to add two natural numbers. A subtracter based on SN P system with communication on request
is given in Section 3.2. An SN P system with communication on request for multiplication is
constructed in Section 3.3. Conclusions and some open problems for future works are present in
Section 4.

2 Spiking neural P systems with communication by request

Formally, a spiking neural P system with communication on request (shortly, SNQ P system),
with k types of spikes, is a construct of the form (this form is almost the same as the one appearing
in [18], except one reasonable change by introducing input neurons)

Π = (O, σ1, σ2, . . . , σm, aiin , aiout , in, out),

where:

1. O = {a1, a2, . . . , ak} is an alphabet (ai is a type of spikes), k ≥ 1;

2. σ1, σ2, . . . , σm are neurons, of the form

σi = (an1
1 an2

2 . . . ankk , Ri), 1 ≤ i ≤ m,nj ≥ 0, 1 ≤ j ≤ k,

where:

a) nj ≥ 0 is the initial number of spikes of type aj contained in the neuron σj , 1 ≤ j ≤ k;
b) Ri is a finite set of rules of the form E/Qw, with w a finite non-empty list of queries

of the forms (aps, j) and (a∞s , j), 1 ≤ s ≤ k, p ≥ 0, 1 ≤ j ≤ m, or j = env;

3. aiin , aiout , 1 ≤ iin, iout ≤ k, are the types of input spikes and output spikes,

4. in ⊆ {1, 2, . . . ,m} indicate the input neurons, and out ∈ {1, 2, . . . ,m} indicates the output
neurons, respectively.

A query (aps, j) means that neuron σi requests p copies of as from neuron σj , while the
meaning of (a∞s , j) is that all spikes of type as from σj , no matter how many they are, are
requested by σi. Specifically, a query of the form (a, env) is allowed to be used, which means
that one copy of a is requested from the environment – with the environment supposed to contain
arbitrarily many copies of a. This kind of rules can be removed [18], so it will not effect the
arithmetic operations.

A rule of the form E/Qw can be used if both of the following conditions are satisfied: (1) the
contents of the neuron are described by the regular expression E; (2) all queries formulated in w
are satisfied (for example, if σj contains strictly less than p spikes, then the query (aps, j) is not
satisfiable). Specifically, there is a situation called the conflicting queries, where two different
neurons σi1 , σi2 ask different numbers of occurrences of the same spike as from the same neuron
σj (namely, two queries of the forms (aps, j), (ars, j) with p 6= r, or of the forms (aps, j), (a∞s , j) for



356 Y. Jiang, Y. Kong, C. Zhu

p a given number). In the case of conflicting queries, the two rules cannot be used simultaneously,
but one of them, non-deterministically chosen, can be used.

In SNQ P systems, the definition of a computational step is quite delicate because of the
interplay of the queries. A computational step is described in terms of three sub-steps: (1) In
each neuron, a rule is chosen to be applied, and its applicability is checked; (2) The requested
spikes are removed from the neurons where they were present. (3) The queries are satisfied, the
requested spikes are moved to the requesting neuron. The three sub-steps together form a step,
which lasts one time unit.

An SNQ P system starts from the initial configuration, which is described by the number of
spikes of each type present in each neuron in the beginning of the computation. Then it proceeds
by applying the rules synchronously, which means that in each neuron if a rule can be used, then
it is applied according to the procedure described above. After a computation step, we can define
transitions configurations. Any sequence of transitions starting from the initial configuration is
called a computation. A computation halts if reaches a configuration where no rule can be used.
The result of a halting computation is the number of copies of spikes aiout present in neuron σout
in the halting configuration.

In order to perform arithmetic operations, it is necessary to introduce the numbers to be
computed into the system, which may be encoded in many different ways. Here, we use the way
discussed in [7]. A positive integer number is given as input to a specified input neuron. The
number is specified as the number of input spikes initially contained in the input neuron. The
result of the operation is encoded as the number of output spikes present in the output neuron
when a computation halts.

In the next sections SNQ P systems are represented graphically, which is easy to understand.
An oval with the initial number of spikes and rules inside is used to represent a neuron. The
input neurons have incoming arrows and the output neuron have outgoing arrows, suggesting
their communication with other devices (or the environment).

3 Performing arithmetic operations by SN P systems with com-
munication on request

3.1 An SNQ P system for addition

In this section we present an SN P system with communication on request, as shown in Fig.
1, for dealing with the addition of two arbitrary natural numbers. System Πadd is composed of 5
neurons: two specified neurons are used as input neurons, where the summand and addend are
introduced, and one neuron is used for giving the obtained result.

Theorem 1. For two arbitrary natural numbers x and y, SN P system with communication on
request Πadd computes the addition of x and y.

Proof: We construct a system Πadd of the form

Πadd = ({a, b, c1}, σ1, σ2, σ3, σ4, σ5, {a, b}, {a}, {1, 2}, 5),

where:
σ1 = (ax, ∅),
σ2 = (by, ∅),
σ3 = (λ, {λ/Q(c1, env), c1/Q(a∞, 1)}),
σ4 = (λ, {λ/Q(c1, env), c1/Q(b, 2), bc1/Q(a, env)}),
σ5 = (λ, {λ/Q(c1, env), a∗b∗c1/Q(a∞, 3)(ab, 4)}).



Implementation of Arithmetic Operations by SN P Systems
with Communication on Request 357

ax

1/in1

λ/Q(c1, env)

c1/Q(a∞, 1)

3

by

2/in2 λ/Q(c1, env)

c1/Q(b, 2)

bc1/Q(a, env)

4

λ/Q(c1, env)

a∗b∗c1/Q(a∞, 3)(ab, 4)

5/out

Figure 1: The structure of adder Πadd

SNQ P system Πadd functions as follows. In the initial configuration of Πadd, all neurons are
empty. The summand x and the addend y are encoded as spikes ax and by, and are provided
to neuron σin1 and neuron σin2 , respectively. Since neurons σ3, σ4 and σout are empty, all of
them can use the rule λ/Q(c1, env), the spikes c1 arrives into them, and these neurons become
active. With spike c1 inside, neuron σ3 can absorb from neuron σin1 all spikes a , which will be
requested by neuron σout in a later step. In the meantime, neuron σ4 absorb spike b, one by one,
from neuron σin2 . In the next step, the spike b in neuron σ4 will absorb from the environment
one spike a, and then both the spike a and spike b are requested by neuron σout together. In this
way, through neuron σ3, the spikes a in σin1 move to σout at one time, and through neuron σ4,
the spikes b in σin2 move to σout one by one, together with a spike a every time. When the last
spike b in σin2 is requested by neuron σ4, and then moves to σout together with a spike a, all the
spikes a and b in neurons σin1 , σin2 , σ3 and σ4 are exhausted. The computation halts, because
there is no rule that can be used in the system. At this time, the spikes present in neuron σout
are ax+yby (ax absorbed from neuron σ3 and (ab)y absorbed from neuron σ4). The number of
spikes a from the output neuron is x+ y, which means that the result computed by the system
is x+ y.

Table 1: Spikes in each neuron of Πadd at each step during the computation of the addition
5 + 2 = 7

step 1/in1 2/in2 3 4 5/out

0 a5 b2 λ λ λ
1 a5 b2 c1 c1 c1

2 λ b a5c1 bc1 c1

3 λ b a5c1 abc1 c1

4 λ b c1 c1 a6bc1

5 λ λ c1 bc1 a6bc1

6 λ λ c1 abc1 a6bc1

7 λ λ c1 c1 a7b2c1

With the explanation above, readers can check that, for given x, y > 0, system Πadd can
correctly compute the addition of x and y, which completes the proof. 2

As an example, let us consider the addition 5 + 2 = 7. Table 1 reports the spikes contained
in each neuron of Πadd at each step during the computation. The input and output spikes are
written in bold.



358 Y. Jiang, Y. Kong, C. Zhu

3.2 An SNQ P system for subtraction

We now describe an SN P system with communication on request Πsub used as subtracter,
which is shown in Fig. 2. System Πsub is composed of 6 neurons, where two specified neurons
are used to introduce the minuend and subtrahend into the system, and one neuron is used for
giving the obtained result.

ax

1/in1

λ/Q(a∞, 1)

3

by

2/in2

λ/Q(b∞, 2)

4

λ/Q(c2, env)

a∗b∗c2/Q(a∞, 3)(b, 4)

5/out

(ab)∗/Q(ab, 5)

6

Figure 2: The structure of subtracter Πsub

Theorem 2. For two arbitrary natural numbers x and y, where x > y > 0, SN P system with
communication on request Πsub computes the subtraction of x and y.

Proof: We construct a system Πsub of the form

Πsub = ({a, b, c2}, σ1, σ2, σ3, σ4, σ5, σ6, {a, b}, {a}, {1, 2}, 5),

where:
σ1 = (ax, ∅),
σ2 = (by, ∅),
σ3 = (λ, {λ/Q(a∞, 1)}),
σ4 = (λ, {λ/Q(b∞, 2)}),
σ5 = (λ, {λ/Q(c2, env), a∗b∗c2/Q(a∞, 3)(b, 4)}),
σ6 = (λ, {(ab)∗/Q(ab, 5)}).

SNQ P system Πsub functions as follows. In the initial configuration of Πsub, all neurons are
empty. The minuend x and the subtrahend y are encoded as spikes ax and by, and are provided
to neuron σin1 and neuron σin2 , respectively. Since neurons σ3, σ4 are empty, the spikes ax will
be absorbed by σ3, and the spikes by by σ4, respectively. In the meantime, neuron σ5 can use
the rule λ/Q(c2, env), and spike c2 arrives in it. With spike c2 inside, the neuron σ5 will absorb
one spike a from neuron σ3 and one spike b from σ4. In the next step, this pair of spikes a and
b will move to the neuron σ6, and spike c2 remains in the neuron σ5. So the absorbability of
pairs of spikes a and b continues. When the spikes b in σ2 get exhausted, the last spike b will
be absorbed by σ4, moves to σ5 together with one spike a from σ3, and this last pair of spikes
of a and b moves to σ6 at last. At this time, there is no rule can be used in the system, so the
computation halts. During the computation there are y pairs of a and b moves to σ6, the spikes
b get exhausted in neuron σ4, and there are x − y spikes of a left in neuron σ3. At the end of
computation, the number of spikes a present in the output neuron is x − y, which means that
the result computed by the system is x− y.



Implementation of Arithmetic Operations by SN P Systems
with Communication on Request 359

Table 2: Spikes in each neuron of Πsub at each step during the computation of the subtraction
5− 2 = 3

step 1/in1 2/in2 3 4 5/out 6

0 a5 b2 λ λ λ λ
1 λ λ a5 b2 c2 λ
2 λ λ λ b a5bc2 λ
3 λ λ λ λ a4bc2 ab
4 λ λ λ λ a3c2 a2b2

With the explanation above, readers can check that, for given x > y > 0, system Πsub can
correctly compute the subtraction of x and y, which completes the proof. 2

As an example let us calculate 5−2 = 3. Table 2 reports the spikes that occur in each neuron
of Πsub at each step during the computation. Also, the input and output spikes are written in
bold.

3.3 An SNQ P System for multiplication

In this section, we present an SN P system with communication on request Πmul, as shown
in Fig. 3 with 6 neurons, for implementing the multiplication of two arbitrary natural numbers.

ax

1/in1

λ/Q(c3, env)

c3/Q(a∞, 1)(b, 5)(a∞, 4)

3

λ/Q(c3, env)

c3/Q(a∞, 3)

4

by

2/in2

λ/Q(c3, env)

c3/Q(b, 2)

5

λ/Q(c3, env)

a∗b∗c3/Q(a∞, 3)(b, 3)

6/out

Figure 3: The structure of multiplier Πmul

Theorem 3. For two arbitrary natural numbers x and y, where x, y > 0, SN P system with
communication on request Πmul computes the multiplication of x and y.

Proof: We construct a system Πmul of the form

Πmul = ({a, b, c3}, σ1, σ2, σ3, σ4, σ5, σ6, {a, b}, {a}, {1, 2}, 6),

where:
σ1 = (ax, ∅),
σ2 = (by, ∅),
σ3 = (λ, {λ/Q(c3, env), c3/Q(a∞, 1)(b, 5)(a∞, 4)}),
σ4 = (λ, {λ/Q(c3, env), c3/Q(a∞, 3)}),
σ5 = (λ, {λ/Q(c3, env), c3/Q(b, 2)}),
σ6 = (λ, {λ/Q(c3, env), a∗b∗c3/Q(a∞, 3)(b, 3)}).



360 Y. Jiang, Y. Kong, C. Zhu

SNQ P system Πmul functions as follows. In the initial configuration of Πmul, all neurons
are empty. The multiplicand x and the multiplier y are encoded as spikes ax and by, and are
provided to neuron σin1 and neuron σin2 , respectively. Since neurons σ3, σ4, σ5 and σout are
empty, all of them can use the rule λ/Q(c3, env), the spikes c3 arrive in them, and these neurons
become active.

With spike c3 inside, neuron σ5 can absorb from neuron σin2 one spike b. Now spike b is
present in σ5, so the rule c3/Q(a∞, 1)(b, 5)(a∞, 4) in neuron σ3 can be used: all spikes a in
neuron σin1 and the one spike b in neuron σ5 are requested by neuron σ3 (there is no spike a
in neuron σ4, so no spike a requested). After this rule is used, neuron σin1 becomes empty, and
spike c3 is left in neuron σ5, which means neuron σ5 can use again the rule c3/Q(b, 2). In the
next step, the spikes ax and b are requested by the neuron σout, and the spike c3 is left in neuron
σ5. This is the first time the spikes ax arrive in the output neuron. In the meantime, with spike
c3 present in neuron σ4 and σ5, neuron σ5 absorb the second spike b from neuron σin2 , neuron
σ4 absorb the spikes ax from neuron σ3, Also with the present of spike c3, these spikes ax and
b will be requested by neuron σ3 in the next step, and then moves to neuron σout, which is the
second time the spikes ax arrive in the output neuron.

Table 3: Spikes in each neuron of Πmul at each step during the computation of the subtraction
5× 2 = 10

step 1/in1 2/in2 3 4 5 6/out

0 a5 b2 λ λ λ λ
1 a5 b2 c3 c3 c3 c3

2 a5 b c3 c3 bc3 c3

3 λ b a5bc3 c3 c3 c3

4 λ λ c3 a5c3 bc3 a5bc3

5 λ λ a5bc3 c3 c3 a5bc3

6 λ λ c3 a5c3 c3 a10b2c3

With the above explanation, readers can check that, the spikes ax in neuron σin1 finally arrive
y times at the output neuron, and at the end of the computation, the number of spikes a present
in the output neuron is xy, which means that the result computed by the system is xy. So for
given x, y > 0, system Πmul can correctly compute the product of x and y, which completes the
proof. 2

For example let us consider 5× 2 = 10. Table 3 reports the spikes that occur in each neuron
of Πmul at each step during the computation. Also, the input and output spikes are written in
bold.

4 Conclusions and future work

Using the SN P systems with communication on request instead of the traditional SN P
systems communicating on command, we have restudied the problem of considering SN P systems
as components of an arithmetic logic unit. Specifically speaking, we have proposed three SN P
systems with communication on request to implement addition, subtraction and multiplication
of two arbitrary natural numbers, respectively. In these systems, natural numbers are introduced
into the system as the number of some spike in input neuron, while the result of an arithmetic
operation is the number of a specified spike present in output neuron at the end of computation.



Implementation of Arithmetic Operations by SN P Systems
with Communication on Request 361

First of all, it is an urgent task to propose an SNQ P system to compute the division between
two natural numbers, and this one is probably the most difficult to design. In this work, the
adder, subtracter and multiplier contain 5 neurons, 6 neurons and 6 neurons, respectively. The
number of neurons is less than that is used in [45] (10 neurons, 12 neurons and 26 neurons,
respectively), but it has no obvious advantage when compared to that is used in [13] (2 neurons,
2 neurons and 11 neurons, respectively). Therefore, it deserves to be investigated whether the
SNQ P systems for arithmetic operations can be simplified by carefully examining the structure,
or by using a different construction. Besides, for the further investigation, it is natural to mention
this problem: how to construct an SNQ P system to implement arithmetic operations with signed
number.

Acknowledgments

This work was supported by National Natural Science Foundation of China (61502063 and
61602188) and Chongqing Social Science Planning Project (2017YBGL142).

Bibliography

[1] Alhazov A., Freund R., Ivanov S., Oswald M., Verlan S. (2017); Extended spiking neural P
systems with hole rules and their red-green variants. Natural Computing, 2-3, 1–14, 2017.

[2] Cabarle F., Adorna H., Jiang M., Zeng X. (2017); Spiking neural p systems with scheduled
synapses. IEEE Transactions on Nanobioscience, 16, 792–801, 2017.

[3] Cavaliere M., Ibarra O.H., Păun Gh., Egecioglu O., Ionescu M., Woodworth S. (2009);
Asynchronous spiking neural P systems. Theoretical Computer Science, 410, 2352–2364,
2009.

[4] Chen H., Freund R., Ionescu M. (2007); On string languages generated by spiking neural P
systems, Fundamenta Informaticae, 75, 141–162, 2007.

[5] Díaz-Pernil, D., Gutiérrez-Naranjo, M.A. (2018); Semantics of Deductive Databases with
Spiking Neural P Systems, Neurocomputing, 272, 365-373, 2018

[6] Dzitac, I. (2015); Impact of Membrane Computing and P Systems in ISI WoS. Celebrating
the 65th Birthday of Gheorghe Păun, International Journal of Computers Communications
& Control, 10(5), 617–626, 2015.

[7] Gutiérrez-Naranjo, M.A., Leporati, A. (2009); First steps towards a CPU made of spiking
neural P systems, International Journal of Computers Communications & Control, 4(3),
244–252, 2009.

[8] Ibarra O.H., Păun A., Rodríguez-Patón A. (2009); Sequential SN P systems based on min/-
max spike number, Theoretical Computer Science, 410, 2982–2991, 2009.

[9] Ionescu M., Păun Gh., Yokomori T. (2006); Spiking neural P systems, Fundamenta Infor-
maticae, 71, 279–308, 2006.

[10] Ishdorj T.-O., Leporati A., Pan L., Zeng X., Zhang X. (2010); Deterministic solutions to
QSAT and Q3SAT by spiking neural P systems with pre-computed resources, Theoretical
Computer Science, 411, 2345–2358, 2010.



362 Y. Jiang, Y. Kong, C. Zhu

[11] Krithivasan K., Metta V.P., Garg D. (2011); On string languages generated by spiking neural
P systems with anti-spikes. International Journal of Foundations of Computer Science, 22,
15–27, 2011.

[12] Liu X., Li Z., Liu J., Liu L., Zeng X. (2015); Implementation of arithmetic operations with
time-free spiking neural P systems, IEEE Transactions on Nanobioscience, 14, 617–624,
2015.

[13] Martín-Vide C., Păun Gh., Pazos J., Rodríguez-Patón A. (2003); Tissue P systems, Theo-
retical Computer Science, 296, 295–326, 2003.

[14] Metta V.P., Raghuraman S., Krithivasan K. (2014); Small universal simple spiking neural P
systems with cooperating rules as function computing devices, Lecture Notes in Computer
Science, 8961, 300–313, 2014.

[15] Neary T. (2009); A boundary between universality and non-universality in extended spiking
neural P systems, Lecture Notes in Computer Science, 6031, 475–487, 2009.

[16] Pan L., Păun Gh. (2009); Spiking neural P systems with anti-spikes, International Journal
of Computers Communnication & Control, 4(3), 273–282, 2009.

[17] Pan L., Păun Gh., Pérez-Jiménez M.J. (2011); Spiking neural P systems with neuron division
and budding, Science China Information Sciences, 54, 1596–1607, 2011.

[18] Pan L., Păun Gh., Zhang G., Neri F. (2017); Spiking neural P systems with communication
on request, International Journal of Neural Systems, 27, 1750042, 2017.

[19] Pan L., Wang J., Hoogeboom H.J. (2012); Spiking neural P systems with astrocytes, Neural
Computation, 24, 805–825, 2012.

[20] Pan L., Zeng X. (2010); A note on small universal spiking neural P systems, Lecture Notes
in Computer Science, 5957, 436–447, 2010.

[21] Pan L., Zeng X., Zhang X., Jiang Y. (2012); Spiking neural P systems with weighted
synapses, Neural Processing Letters, 35, 13–27, 2012.

[22] Păun Gh. (2000); Computing with membranes, Journal of Computer and System Sciences,
61, 108–143, 2000.

[23] Păun Gh. (2002); Membrane Computing: An Introduction, Springer, 2002.

[24] Păun Gh. (2016); Membrane Computing and Economics: A General View, International
Journal of Computers Communnication & Control, 11, 105–112, 2016.

[25] Păun Gh., Păun A. (2007); Small universal spiking neural P systems, Biosystems, 90, 48–60,
2007.

[26] Peng H., Wang J., Pérez-Jiménez M.J., Wang H., Shao J., Wang T. (2013); Fuzzy reasoning
spiking neural P systems for fault diagnosis, Information Sciences, 235, 106–116, 2013.

[27] Song T., Gong F., Liu X., Zhao Y., Zhang X. (2016); Spiking neural P systems with white
hole neurons, IEEE Transactions on Nanobioscience, 15, 666-673, 2016.

[28] Song T., Jiang Y., Shi X., Zeng X. (2013); Small universal spiking neural P systems with
anti-spikes, Journal of Computational and Theoretical Nanoscience, 10, 999–1006, 2013.



Implementation of Arithmetic Operations by SN P Systems
with Communication on Request 363

[29] Song T., Pan L. (2014); A small universal spiking neural P systems with cooperating rules,
Romanian Journal of Information Science and Technology, 17, 177–189, 2014.

[30] Song T., Pan L. (2016); Spiking neural P systems with request rules, Neurocomputing, 193,
193–200, 2016.

[31] Song T., Pan L., Jiang K., Song B., Chen W. (2013); Normal forms for some classes of
sequential spiking neural P systems, IEEE Transactions on Nanobioscience, 12, 255–264,
2013.

[32] Song T., Pan L., Păun Gh. (2014); Spiking neural P systems with rules on synapses, Theo-
retical Computer Science, 529, 82–95, 2014.

[33] Song T., Xu J., Pan L. (2015); On the universality and non-universality of spiking neural P
systems with rules on synapses, IEEE Transactions on Nanobioscience, 14, 960–966, 2015.

[34] Song T., Zheng P., Wong M.L., Wang X. (2016); Design of logic gates using spiking neural P
systems with homogeneous neurons and astrocytes-like control, Information Sciences, 372,
380–391, 2016.

[35] Su Y., Wu T., Xu F., Păun A. (2017); Spiking neural p systems with rules on synapses
working in sum spikes consumption strategy, Fundamenta Informaticae, 156, 187–208, 2017.

[36] Wang J., Hoogeboom H.J., Pan L., Păun Gh., Pérez-Jiménez M.J. (2014); Spiking neural P
systems with weights, Neural Computation, 22, 2615–2646, 2014.

[37] Wang J., Peng H. (2013); Adaptive fuzzy spiking neural P systems for fuzzy inference and
learning, International Journal of Computer Mathematics, 90, 857–868, 2013.

[38] Wang J., Shi P., Peng H., Pérez-Jiménez M.J., Wang T. (2013); Weighted fuzzy spiking
neural P systems, IEEE Transactions on Fuzzy Systems, 21, 209–220, 2013.

[39] Wang T., Zhang G., Zhao J., He Z., Wang J., Pérez-Jiménez M.J. (2015); Fault diagnosis
of electric power systems based on fuzzy reasoning spiking neural P systems, IEEE Trans-
actions on Power Systems, 30, 1182–1194, 2015.

[40] Wang X., Song T., Gong F., Zheng P. (2016); On the computational power of spiking neural
P systems with self-organization, Scientific Reports, 6: 27624, 2016.

[41] Wu T., Păun A., Zhang Z., Pan L. (2017); Spiking neural P systems with polarizations,
IEEE Transactions on Neural Networks and Learning Systems, 1–12, 2017.

[42] Wu T., Zhang Z., Pan L. (2016); On languages generated by cell-like spiking neural P
systems, IEEE Transactions on Nanobioscience, 15, 455–467, 2016.

[43] Wu T., Zhang Z., Păun Gh., Pan L. (2016); Cell-like spiking neural P systems, Theoretical
Computer Science, 623, 180–189, 2016.

[44] Zeng X., Pan L., Pérez-Jiménez M.J. (2014); Small universal simple spiking neural P systems
with weights, Science China Information Sciences, 57, 1–11, 2014.

[45] Zeng X., Song T., Zhang X., Pan L. (2012); Performing four basic arithmetic operations
with spiking neural P systems, IEEE Transactions on Nanobioscience, 11, 366–374, 2012.

[46] Zeng X., Xu L., Liu X. (2014); On string languages generated by spiking neural P systems
with weights, Information Sciences, 278, 423–433, 2014.



364 Y. Jiang, Y. Kong, C. Zhu

[47] Zeng X., Zhang X., Pan L. (2009); Homogenous spiking neural P systems, Fundamenta
Informaticae, 97, 275–294, 2009.

[48] Zhang G. (2017); Real-life applications with membrane computing, Springer, 2017.

[49] Zhang G., Rong H., Neri F., Pérez-Jiménez M.J. (2014); An optimization spiking neural P
system for approximately solving combinatorial optimization problems, International Jour-
nal of Neural Systems, 24, 1440006, 2014.

[50] Zhang X., Liu Y., Luo B., Pan L. (2014); Computational power of tissue P systems for
generating control languages, Information Sciences, 278, 285–297, 2014.

[51] Zhang X., Pan L., Păun A. (2015); On universality of axon P systems, IEEE Transactions
on Neural Networks and Learning Systems, 26, 2816–2829, 2015.

[52] Zhang X., Wang B., Pan L. (2014); Spiking neural P systems with a generalized use of rules,
Neural Computation, 26, 2925–2943, 2014.

[53] Zhang X., Zeng X., Luo B., Pan L. (2014); On some classes of sequential spiking neural P
systems, Neural Computation, 26, 974–997, 2014.

[54] Zhang X., Zeng X., Pan L. (2008); Smaller universal spiking neural P systems, Fundamenta
Informaticae, 87, 117–136, 2008.


