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Abstract: Large-scale knowledge bases, as the foundations for promoting the devel-
opment of artificial intelligence, have attracted increasing attention in recent years.
These knowledge bases contain billions of facts in triple format; yet, they suffer from
sparse relations between entities. Researchers proposed the path ranking algorithm
(PRA) to solve this fatal problem. To improve the scalability of knowledge inference,
PRA exploits random walks to find Horn clauses with chain structures to predict new
relations given existing facts. This method can be regarded as a statistical classifi-
cation issue for statistical relational learning (SRL). However, large-scale knowledge
base completion demands superior accuracy and scalability. In this paper, we propose
the path feature learning model (PFLM) to achieve this urgent task. More precisely,
we define a two-stage model: the first stage aims to learn path features from the exist-
ing knowledge base and extra parsed corpus; the second stage uses these path features
to predict new relations. The experimental results demonstrate that the PFLM can
learn meaningful features and can achieve significant and consistent improvements
compared with previous work.

Keywords: knowledge base completion, random walks, path features, extreme learn-
ing machine.

1 Introduction

Large-scale knowledge bases (KBs), such as Never-Ending Language Learning (NELL) [6],
Freebase [3|, Yago [35], and DBpedia |11], construct their own ontologies derived from facts that
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are manually or automatically extracted from databases, such as Wikipedia or other unannotated
web pages. These KBs usually contain billions of facts, and each fact can be organized as a
triple Ry(as,b;), such as AthletePlaysForTeam (Messi, Barcelona) and Professions (van Gogh,
Artist). The variables a and b represent entities or attributes in the real world, and R represents
the binary relationship between them. Billions of these facts constitute a large complicated
knowledge network. The construction of such large-scale KBs is significant for many types of
natural language processing research, e.g., question answering [2]|, semantic analysis [1|, and
information retrieval [13].

However, existing facts stored in KBs are not comprehensive compared with real-world knowl-
edge. Many important entity-relationships are missing due to improper manual operations or the
drawbacks of fact-extraction models [38]. Fortunately, most of the information can be inferred
from existing facts in KBs. Thus, the task of knowledge base completion (KBC) has aroused
intense attention in both academic and industry research [27,36].

Graph-based approaches for KBC is an important subfield of statistical relational learning
(SRL) [10]. A classic learning method in SRL is Markov logic network (MLN) [32], which com-
bines the probabilistic graphical model with first-order logic for knowledge inference. Although
MLN is very powerful, it needs to explore all derivation trees and combine them to calculate
even a single ground fact; therefore, MLN does not perform well when the amount of data is
large. Inductive logic programming (ILP), such as the first-order inductive learner (FOIL) and
its variants, is another type of SRL [18,23,31]. FOIL deploys the separate-and-conquer strategy
to learn the first-order logic rule set; however, similar to MLN, FOIL cannot handle large-scale
KBs. ProPPR [37] is a new direction that attempts to improve the scalability of FOIL.

The path ranking algorithm (PRA) [19] aims to reason new facts directly from facts observed
in the KBs and achieves state-of-the-art performance compared with previous work. PRA at-
tempts to encode the entire KB as a large edge-labeled directed graph and exploits random walks
to extract informative path features. Each path feature can be viewed as the most frequent se-
quence of relations in the graph. However, PRA is deficient in terms of addressing long-tail data
distributions because some rare entities lack common path features. Another direction empha-
sizes the extraction of relations from a large text corpus and combination with current KBs to
enhance the performance of PRA [7-9,20,21]. The extracted relations are added to the original
directed graph as new edges to compensate for the lack of sufficient facts. However, directly
adding relations with similar semantics to the KB results in severe path explosion and feature
sparsity.

In addition to the aforementioned models, many approaches focus on latent feature mod-
els [27], which aim to learn latent representations of entities and relations by minimizing a
reconstruction loss or a margin-based ranking loss [4,12,25,28,29|. Latent feature models are
effective to encode knowledge representations, but when the KB tensor constructed from data
has a higher rank, it is more difficult to obtain meaningful embeddings.

In this paper, motivated by PRA, we propose a more general framework called the path
feature learning model (PFLM). The PFLM is a two-stage model: In the first stage, two types
of path features (directed relation paths (DRPs) and supplement relation paths (SRPs)) are
generated from different target entity pairs by random walks; in the second stage, we incorporate
the learned features into the kernel extreme learning machine (KELM) [14, 15| for KBC. In
addition to the advantages of good generalization and fast learning speed [16], KELM is robust
in terms of triple classification, which is illustrated in our experiments. The main highlights of
this paper are summarized as follows:

1. With the stage of path feature learning, plenty of classification algorithms (in our case, we
use ELM and KELM) can be easily incorporated into our framework. Using the new path
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features and the single-hidden layer feedforward neural network, the PFLM can perform
KBC effectively and efficiently.

2. The PFLM is an extensible scheme. In addition to the DRPs introduced by PRA, the pro-
posed SRPs and other expected path information (e.g., immediate nodes) can be collected
in the path feature learning stage.

3. The results of experiments show that our model achieves significant and consistent im-
provements compared with baseline models, such as PRA [19] and CPRA [7].

The rest of our paper is organized as follows: Section 2 introduces the background of basic
model setting. In Section 3, we introduce the detailed implementation strategies for our model.
Experimental details and discussions are provided in Section 4. The last section draws our
conclusions and identifies future work.

2 Background

In this section, we first give a brief overview of PRA and KELM. PRA is a classic algorithm
of KBC. KELM is an efficient neural network architecture that we employ to implement triple
classification. Triple classification [33] is a standard way to evaluate KBC.

2.1 Path ranking algorithm (PRA)

PRA leverages multiple random walks to reach tail entity b from head entity a for each en-
tity pair (a,b). The filtered paths that connect entity pair (a,b) serve as different path features.
Then, the random probability of head entity a reaching tail entity b through path-constrained
random walks is calculated as the feature value. Finally, PRA adopts logistic regression based
on the limited-memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS) to perform triple classifi-
cation. The effectiveness of PRA depends on the power of the Horn clause rules to obtain the
entity constraints. A relation path is generated by the conjunction of a sequence of triples, for
example, given WriterCreatedRole (Hemingway, Santiago) — RoleDescribledInBook (Santiago,
The Old Man and the Sea), the predicative information WriterWroteBook (Hemingway, The Old
Man and the Sea) can be inferred. By exploiting the implicit relation paths, novel facts that do
not originally exist in the KBs are produced.

The more detailed procedures are as follows: PRA encodes the whole KB as a directed edge-
labeled graph G(IN, T, E). N is the set of entities in KB, F is the set of edges connecting entity
pairs, and T is the collection of edge types representing first-order logic rules. A path P is the
ordered sequence of edges P={Rj,...,R,}. PRA applies multiple random walks, starting from
the head entity a, to obtain the common path set S(P) = {Px,..., P} for the common tail entity
b. S(P) is relevant to a specific relation R. The most frequent paths from S(P) are selected as
path features. Each path feature value V, p(b) is calculated using the recursive formulas defined
as follows.

If P is an empty path:
Vop()=1 if a=b (1)

Va,p(b) =0 otherwise. (2)
If P is not an empty path, P' = Ry,..., R, _1:

Va,P(b) = Z Va,P’(b/) ’ P(b‘b/7 Rn)7 (3)
b’ erange(P’)
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where P(b|b'; R;,) is the probability of reaching target node b from o’ with one edge labeled R,,,
and range(P’) is the set of target nodes where the path P’ ends.

2.2 Kernel extreme learning machine (KELM)

Extreme learning machine is a learning algorithm aims to train single-hidden layer feedfor-
ward neural networks. Huang provided strict theoretical proof that the standard single-hidden
layer feedforward neural networks training process can be considered as finding a least-squares
solution f’ for the linear system HS3 = T that allows the hidden node parameters w; and b; to
be randomly generated. H is the hidden layer’s output matrix, 3 is the output weights and T’
represents the training sample outputs. In most cases, when the number of hidden nodes is much
less than the number of distinct training samples, 3/ = HT can be calculated with zero error to
approximate these training examples, where H' is the Moore-Penrose generalized inverse of H.
ELM shows good generalizability and learning speed; it performs better than the conventional
learning algorithm in many areas, such as face recognition [40], text classification [39], image
classification [5|, and medical diagnosis [24].

Kernel extreme learning machine (KELM), in contrast to traditional ELM, conducts classifi-
cation and regression with kernel functions and kernel parameters (C,~) instead of the number
of hidden-layer nodes and path feature mappings h(x). The reason we choose KELM as our
classifier is its robustness, which will be discussed in our experiments. The kernel matrix is
defined as

Qpry = HHT (4)

where K (z;,x;) is the kernel function.
The output weights and output function are expressed as follows:

g:HW§+HHﬁ*T (6)
K(z,x1)

f@=h@s=| | G+ T (7
K, o)

3 Proposed method

Motivated by PRA, we propose a novel model called the path feature learning model (PFLM),
which combines path feature learning with KELM to achieve triple classification. Fig. 1 illustrates
the framework for our model. The inputs of our model are the knowledge base and the large
parsed corpus. The path feature learning aims at providing a large real-valued matrix for KELM.
The final output of PFLM is predicting whether the entity pair contains the specific relation,
which is a binary classification problem. The main reason for combining these operations is that
the first stage of our model assumes that all background knowledge and samples are ground
facts, which makes it more suitable for machine learning models. On the premise of representing
the KB as a large directed heterogeneous graph with encodable Horn clause rules, random walk
inference outperforms traditional searching methods, such as the breadth-first search algorithm,
in the process of the feature searching. The retrieved first-order Horn clause rule sets, which
are represented as paths, can be recognized as candidate path features. We first introduce the
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Figure 1: Flowchart of the path feature learning model.

concept of path feature learning, which includes DRPs and SRPs. Then, we introduce two
practical techniques in subsection 3.2 for efficient implementation.

3.1 Path feature learning

In the path feature learning stage, we define two path types according to their components.
DRPs are the existing chains of the Horn clause rules that are directly searched by PRA. SRPs
are the sequences of relations with some latent embeddings that are learned from factorization
of the KB matrix M. Specifically, each row of the matrix is a tuple t = (subject, object), while
subject and object are entities that exist in the KB and also occur in 500 million dependency-
parsed Web documents |7,21]. Each column of the matrix is the verb in ¢. The elements of
the matrix are the frequencies of (¢, verb) in the extra corpus. After row normalization and
centering, we apply PCA to M to obtain the latent embeddings of the verbs. As shown in the
Fig. 1, both DRPs and SRPs can be searched and computed by PRA according to the equations
1, 2 and 3.

We consider a specific example to explicitly describe the two path types. An important
reasoning path for the triple AthletePlaysInLeague (LeBron James, NBA) can be expressed by
DRP as AthletePlaysForTeam (LeBron James, Cleveland Cavaliers) — TeamBelonged ToLeague
(Cleveland Cavaliers, NBA). Unfortunately, the knowledge repository may miss the valuable re-
lational edge AthletePlaysForTeam (LeBron James, Cleveland Cavaliers), so it seems impossible
to infer the fact AthletePlaysInLeague (LeBron James, NBA), which is known to us but dis-
appears in the KB. This feature sparsity problem leads to severe over-fitting for many isolated
entity pairs, which limits the performance of PRA.

In our method, the proposed SRPs combine the extracted subject-verb-object (SVO) infor-
mation that expresses similar semantics of AthletePlaysForTeam from the extra text corpus. The
method exploits verb clustering techniques to map the lexicalized edge labels (e.g., ‘works for’ |
‘plays for’, ‘leads to’) to some latent embeddings, forming a new edge type: LatentEM1 (LeBorn
James, Cleveland Cavaliers). The probability of extracting important path features is increased
by using both DRPs and SRPs compared with that of PRA, which only considers DRPs in
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KBs. The path features are quite logical for our understanding and effective for the large fea-
ture space. After the entity pair path information has been taken into account for all datasets,
the most frequent m candidate path features are selected as the final path features. Each path
feature is composed of relations or latent embeddings or mixtures of both. It is reasonable to
regard the random probability values as path feature values, even if the computation requires
enormous running time. The larger the probability is, the more likely a specific path feature will
be selected for our target relation. This attribute cannot be reflected by binary features. Finally,
the abstract graph information is mapped to relevant feature vectors, and the KELM completes
the task of triple classification.

It is noted that the PFLM is a general scheme. We chose KELM as our second stage clas-
sification model, in contrast to the logistic regression model adopted by PRA. Different kernels
and parameters can be selected for different relation decisions. In general, in the stage of path
feature learning, in addition to DRPs, we propose SRPs to explictly identify path features from
the KBs and extra corpus; in the second stage, the feature matrices are transferred to the kernel
extreme learning machine classifier to complete the task of triple classification. Furthermore,
each feature matrix is computed by random walks following the concrete relations indicated by
DRPs or SRPs. Missing relations can be added to the KBs based on accurate classification
results.

3.2 Two practical sampling techniques

Due to the knowledge bias in KBs, sampling techniques must be employed to balance the
datasets. When adopting random walks to obtain positive and negative samples, two points
must be considered. First, the relation types contained in KBs are probably uneven, and this
phenomenon may affect the overall model’s feature distribution. Therefore, we consider [21],
which employs stratified sampling [32] to obtain identical sample numbers for different types of
relations when possible. Secondly, PRA holds the closed-world assumption. In addition to the
small portion of positive samples already existing in knowledge graph G, most of the samples
are negative ones produced by random walks, which may lead to a serious distribution imbal-
ance. We use a downward sampling technique to solve this problem. To control the positive
and negative samples within a reasonable proportion (in our case, the ratio is 1:10), the PFLM
selects the common relation paths in accordance with the sampling numbers. For example, in
a large-scale KB, we present thousands of entity pairs for AthletePlaysInLeague. In addition
to the path AthletePlaysForTeam — TeamBelongedToLeague, many other related paths, such
as AthletePlaysSport — AthletePlaysSport~' — LeaguePlayers—!, AthletePlaysSport—Stadiu-
mHomeToSport ~!— LeagueStaduim™', and AthletePlaysForTeam — AthletePlaysForTeam ™!
—LeaguePlayers—! are contained in the set. We denote R~! as the inverse of relation R (i.e.,
WriterWroteBook ~! is equivalent to BookWritenByWriter). After sampling and feature comput-
ing, the PFLM provides the final feature matrices composed of multiple entity pairs with their
feature vectors for the target relation AthletePlaysInLeague to the KELM classifier.

4 Experiments and discussion

We use the Never-Ending Language Learning (NELL) dataset to evaluate our model. NELL
is a large-scale KB whose contents are learned by reading from the web over time. The dataset we
employ is a benchmark and can be downloaded from http://rtw.ml.cmu.edu/emnlp2013_pra/.
This dataset contains 15 relations, and each relation is split into two parts: 10% test data and
90% training data. To rigorously compare and decrease the extensive feature computing, we
follow the same rules as CPRA |7] and set the number of each sample’s path features as 750.
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Figure 2: Comparison of 10 relations’ data with ELM and KELM based on RBF kernel function.
The horizontal axis represents the experiment times, and the vertical axis represents the F1-
measure.

Table 1: The comparisons of four different kernels for KELM

Macro-precision Macro-recall Macro-accuracy Macro-F1

Linear kernel 0.5249 0.3798 0.8939 0.4130
Wavelet kernel 0.5974 0.3862 0.8960 0.4332
RBF kernel 0.8825 0.4172 0.9488 0.5279
Polynomial kernel 0.8021 0.4034 0.9446 0.4986

We first compare the robustness of ELM and KELM for triple classification on ten diverse
relation datasets; the corresponding path features are the same and are both provided by path
feature learning. The results are shown in Fig. 2. From Fig. 2, it can be seen that when the
number of samples is small, the ELM’s F-measure oscillates between several fixed values, and
the vibration is drastic in some relation datasets, such as StadiumLocatedInCity. When the
number of samples is larger, we intend to implement more hidden layer nodes to improve the
network generation, and ELM fluctuates more severely, thus causing a decline in accuracy and
stability, such as the relation RoomCanContainFurniture. By contrast, when we choose KELM
and fix the corresponding kernel parameters, KELM is more robust and performs better than
ELM. Therefore, we chose KELM as our classifier instead of ELM based on the experimental
results.

Moreover, we compare the performance of different kernel functions on the same task. Table 1
presents the experimental results. The best performances are indicated in bold for all tables
in this section. We employ the grid-search strategy to select the best parameters C and ~ for
different kernel functions. The parameters are both tuned in {275,273 ... 219} We evaluate the
linear, wavelet, RBF and polynomial kernels on four measurements among 15 relation datasets.
From the results, we can observe that the effects of different kernels vary considerably, and the
RBF kernel achieves the best performance. The most notable result is that the RBF kernel
is 35.8%, 3.8%, 5.5%, and 11.5% higher than the Linear kernel, which indicates that the dot
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Table 2: Running time comparison for PRA, CPRA and PFLM

PRA CPRA PFLM
Time (min) 1313 1160 1191

Table 3: Detailed comparison of the Fl-measure for PRA, CPRA, and PFLM

PRA CPRA PFLM
AnimallsTypeOfAnimal 0.5214 0.5270 0.6069
AthletePlaysForTeam 0.2156 0.6387 0.6667
AthletePlaysInLeague 0.8099 0.7402 0.8370
CityLiesOnRiver 0.0493 0.3076 0.5484
CityLocatedInCountry 0.1538 0.5454 0.5778
CompanyCEO 0.2857 0.3529 0.7273
CountryHasCompanyOffice 0.0000 0.0000 0.1481
DrugHasSideEffect 0.9629 0.9427 0.9474
HeadquarteredIn 0.3076 0.6382 0.6047
locationLocatedwithinLocation 0.3950 0.4147 0.4286
PublicationJournalist 0.0967 0.1594 0.5444
RoomCanContainFurniture 0.7206 0.7320 0.7985
StadiumLocatedInCity 0.5263 0.6666 0.7143
TeamPlaysAgainstTeam 0.4736 0.2086 0.5800
WriterWroteBook 0.5911 0.8000 0.8218

product in an infinite-dimensional space is more suitable for our problem. Therefore, we choose
the RBF kernel as our kernel function in the following experiments. In Table 2 we compare
the running times of PRA, CPRA, and PFLM. From Table 2 we can conclude the following.
1) PRA adopts logistic regression with L2 regularization optimized by L-BFGS to complete the
triple classification. It calculates the path feature values with dozens of iterations, which means
that its convergence is slow. 2) CPRA reduces the number of relation paths that random walkers
need to search, therefore it is the fastest method. 3) Although the computation and selection for
the path feature learning of the DRPs and SRPs consume substantial running time, the PFLM
is not as time-consuming as PRA.

In Table 4 we compare PRA, CPRA and PFLM on 15 relations. The experimental results
show that the PFLM achieves significant and consistent improvement. For example, the PFLM
is 12% and 23% higher than CPRA and PRA on the macro F1 criterion, respectively. We
believe the PFLM outperforms CPRA because the PFLM can better incorporate expressive
path information to address the problem of feature sparsity, which limits the performance of
CPRA and PRA. We reproduce the experiments in [30], and Table 3 shows a more detailed
comparison of the F1 measurement for the three models on 15 NELL relations. From Table 3,
we can conclude that the PFLM shows significant improvement in the triple classification of 13

Table 4: Macro measurement comparison for PRA, CPRA and PFLM (%)

Macro-precision Macro-recall Macro-F1 Macro-accuracy
PRA 0.7458 0.3443 0.4073 0.9373
CPRA 0.8094 0.4241 0.5116 0.8708
PFLM 0.9009 0.5152 0.6367 0.9439
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Table 5: Most impressive path features in the three relations

Path Element of path
Type
AtheletePlaysForTeam DRPs -athleteledsportsteam-
-athelteledssportsteam-teamhomestadium-teamhome

stadium—1-

SRPs -LE1"l-LE2-
-LE17'-LE2-teamhomestadium-teamhomestadium—!-
CityLiesOnRiver DRPs -proximityfor-subpartof~'-riverflowsthroughcity —!-
-statecontainscity ~!-atlocation-riverflowsthrough
city~1-
SRPs -LEILE5™!-
-LE1LE5 ™~ !-riverflowsthroughcity-riverflowsthrough
city~1-
CompanyCEO DRPs -organizationleadbyperson-
-worksfor-
SRPs -LE1LE5- LEILE5™'-agentcollaborateswithagent-

-LE1~-LE2-LE1LE2-agentcollaboratesswithagent-

relations, with the largest increases of 463.0 % and 241.5 % compared with PRA and CPRA
on the relation PublicationJournalist. Table 5 displays the impressive path features (DRPs and
SRPs) that are searched by path feature learning on three different relations. These paths are
common to all entity pairs, and their importance in triple classification are reflected by their own
path feature values. For each path type, we present two examples, and we can observe that the
highest-weighted DRPs and SRPs have similar semantics with the target relations.

5 Conclusions and future work

In this paper, we propose the PFLM to solve the problem of large-scale KBC. The PFLM
extracts DRPs and SRPs during the path feature learning stage and sends these features to
the kernel extreme learning machine. The PFLM shows superior classification ability compared
with the original algorithm and its variants on the benchmark datasets. For our future work, we
plan to 1) incorporate more path information into the path feature learning schemes, e.g., the
path-type limitation and immediate nodes; 2) enhance the efficiency for computing path feature
values by exploiting parallel or distributed computing.
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