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Abstract: Interconnection between telecommunication networks and other critical in-
frastructures is usually established through nodes that are spatially close, generating
a geographical interdependency. Previous work has shown that in general, geographi-
cally interdependent networks are more robust with respect to cascading failures when
the interconnection radius (r) is large. However, to obtain a more realistic model,
the allocation of interlinks in geographically interdependent networks should consider
other factors. In this paper, an enhanced interconnection model for geographically
interdependent networks is presented. The model proposed introduces a new strategy
for interconnecting nodes between two geographical networks by limiting the number
of interlinks. Results have shown that the model yields promising results to maintain
an acceptable level in network robustness under cascading failures with a decrease in
the number of interlinks.
Keywords: Cascading failures, interdependent critical infrastructures, robustness,
region-based interconnection.

1 Introduction

Interdependent networks depend on a set of Critical Infrastructures (CIs) that function col-
laboratively to produce and distribute the essential goods and services required for the defence
and economic security of nations and the proper functioning of governments and society [11].
Natural disasters (hurricanes, earthquakes, tsunami, tornadoes, floods or forest fires), man-made
disasters (Electromagnetic Pulse (EMP) or Weapons of Mass Destruction (WMD) or terrorist
attacks), technology-related disasters (power grid blackouts, hardware failures, dam failures or
nuclear accidents), or cyber-attacks (viruses, worms or denial of services attacks) are responsible
for large-scale disasters in networks [14] [10]. Consequently, failures in critical infrastructures
imply service disruptions that affect thousands of people, multiple communities, entire countries,
or just one company [9].

Telecommunication networks play a vital role in supporting the control, monitoring, connec-
tivity and data transportation services of a number of critical infrastructures, including banking
and finance, emergency and government services, water supply, transportation networks, power
grids and oil and gas distribution networks. The interconnection between the nodes of these CIs
and telecommunication networks is usually carried out by their spatial proximity. This region-
based interconnection model generates a geographically interdependent network in which two
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nodes i and j, located in two separate networks are interconnected if the distance (dij) between
them is less than or equal to a given radius (r). Because of such interconnections, failures that
occur in one infrastructure can directly or indirectly affect the other and impact large regions
with catastrophic consequences [9]. An example of a large-scale failure in interdependent net-
works is the Italian blackout of 2003, where a single failure in the power grid resulted in failures
that propagated over a telecommunications network, ultimately affecting more than 55 million
people [2]. Therefore, network topologies, the geographic locations of nodes and their interde-
pendency relationships have a huge impact on how robust interdependent networks are designed
and maintained [9].

In contrast to the one-to-one interconnection studied in previous work [2], geographically
interdependent networks exhibit a one-to-multiple interdependency model i.e., one node in one
network can depend on an arbitrary number of nodes in the other network [16]. In terms of
the functional giant component, a geographically interdependent network is more robust with
respect to cascading failures when r is large [16]. This is due to the fact that with the increase of
r, a node tends to have more interconnection nodes which, in turn, will decrease the probability
of that node failing as result of the failures of its interconnection nodes. However, the region-
interconnection models proposed in our previous work [16] only consider the geographical distance
between nodes to establish the interlink, whereas in most real scenarios, interlink allocation in
geographically interdependent networks should be controlled with additional factors in order to
mitigate other issues introduced by the large number of interlinks in each r e.g., high deployment
cost or exceeding node capabilities.

In the literature, most of the studies have been focused on modifying the interconnection
patterns, according to a certain strategy, in order to improve the robustness of interdependent
networks against cascading failures. Yagan et al. [17] showed that the regular allocation of bidi-
rectional interlinks always yields stronger robustness than random strategy and unidirectional
interlinks do. Li et al. [14] allocated weighted interdependency links under limited budget to
obtain a more robust interdependent cyber-physical network. Ji et al. [6] showed that the low
Inter Degree-Degree difference addition strategy (IDD) and Random Inter Degree-degree differ-
ence addition strategy (RID) are superior to the existing four link addition strategies (random
addition, low degree, low betweenness and algebraic connectivity based) in improving the robust-
ness of interdependent networks with high average inter degree-degree difference. However, these
studies are focused on interdependent networks where the geographical location of the nodes is
not considered to establish an interlink.

J. Martín-Hernández et al. [8] showed the critical number of interlinks beyond which any
further inclusion does not enhance the algebraic connectivity (λ2) of an interdependent network.
Therefore, controlling the number of interlinks in geographically interdependent networks is likely
a valuable design feature in order to reduce the deployment cost of interdependent networks and
not to exceed the capabilities of the nodes to be interconnected. Unlike prior efforts, the major
contributions of this paper are: 1) proposing a new strategy for interconnecting nodes between
two geographical networks by limiting the number of interlinks and 2) analyzing the impact of
limiting the number of interlinks has on the robustness of geographically interdependent networks
against cascading failures. As a study case, we focused on interdependent telecommunication
networks because they can represent the interconnection of two internet service providers or can
refer to multilayer networks. Moreover, in this paper we consider the vulnerability analysis of
each network to a certain type of targeted attack to determine the influence the new region-based
interconnection model has on the robustness of the resulting interdependent network.

The remainder of this paper is organized as follows: Section 2 describes the proposed in-
terconnection model for region-based interdependent networks and cascading failure process in
interdependent networks. Section 3 presents the topologies of the networks to be interconnected
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Figure 1: Enhanced interconnection model in geographically interdependent networks

and discusses the impact limiting the number of interlinks has on the robustness of region-based
interdependent networks to cascading failures. Finally, Section 4 provides the conclusions and
future work.

2 Concepts and models

In addition to the distance between the nodes, interlink allocation in geographic interde-
pendent networks should be controlled by considering factors additional to the geographical
constraint. This paper proposes a new region-based interconnection model in which a node i in
network G1 and a node j in network G2 can be interconnected if 1) the distance dij between
them is less than or equal to a given radius r and 2) the number of interlinks for nodes i and j
do not exceed a given percentage for limiting the number of interlinks (φ1 and φ2, respectively).
Our new strategy for interlink allocation is based on dividing the nodes in both networks into
subsets in accordance with a certain nodal property. Thus, the model prevents φ1 and φ2 being
exceeded for any node in G1 and G2, respectively.

The model proposed is illustrated in Fig. 1. The nodes in G1 are represented by filled circles
and the nodes in G2 are represented by unfilled circles. For each node i in G1, there is a set of
nodes in G2 that can be interconnected if the conditions 1) and 2) are satisfied. Consequently, in
contrast to our previous work [16], an enhanced interconnection model for limiting the number of
interlinks in geographically interdependent networks is generated. The remainder of this section
presents the proposed region-based interconnection model in detail and describes the failure
model involving cascading failures.

2.1 Interconnection model for limiting number of interlinks in geographically
interdependent networks

Consider two undirected networks G1 (S,U) and G2 (T, V ), each with a set of nodes (S, T )
and a set of links (U, V ) respectively. Denote N1 and N2 as the number of nodes in G1 and G2,
respectively, and L1 and L1 as the number of links in G1 and G2, respectively. When G1 and G2

interact, a set of bidirectional interlinks I joining the two networks is introduced. Consequently,
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an interdependent network is defined as G(N,L) = (S ∪ T,U ∪ V ∪ I) [8]. Let us define the
adjacency matrix (A) of G as the N ×N matrix:

AN×N =

(
A1 αB12

αBT
12 A2

)
, (1)

where α represents the coupling strength of the interaction, A1 is the N1×N1 adjacency matrix of
the network G1, A2 is the N2×N2 adjacency matrix of the network G2, and B12 is the N1×N2

interconnection matrix representing the interlinks Si ↔ Tj , between G1 and G2. Because we
consider bidirectional interlinks, it follows that B21 = BT

12 [8]. Let bij denote as the (i, j) entry
in the B12 matrix, where bij = 1 if the node i and node j are interconnected, and bij = 0 if they
are not. The interdependency matrix (B) of the whole system is given by:

BN×N =

(
0 B12

BT
12 0

)
(2)

In the region-based interconnection model previously proposed by us [16], the entry bij is
determined by the geographical location of nodes. Let (xi, yi) and (xj , yj) denote the spatial
coordinates for nodes i and j, then, bij= 1 if the Euclidean distance dij between node i in G1

and node j in G2 is smaller than a given threshold r. This link pattern generates a random
geometric graph with a one-to-multiple interdependency model [16]. The Euclidean distances dij
is given by:

dij =
√

(xi − xj)2 + (yi − yj)2 (3)

In the random geometric graph, a node i in G1 can depend on an arbitrary number of nodes in
G2 that is no greater thanN2, and vice versa. When the distance between two nodes is considered
as the unique interconnection constraint, some issues are evidenced. Specifically, the nodes in
one network may have many interlinks from the other network, thus incurring high deployment
cost. Note that the cost can be related to the economic investment required to construct an
interlink. For instance, in the case of interdependent networks constructed by power grids and
telecommunication networks, a new interlink has an associated deployment cost as a function of
the cable length. Additionally, nodes in each network have limited capabilities to interconnect
to a fixed number of nodes, and so the network’s extension requires additional investments.
Therefore, limiting the number of interlinks between the nodes in two networks contributes to
keeping the deployment cost under control and adjusting to the operator’s budget.

Let us define the new factor to be considered in the interconnection of geographically inter-
dependent networks for limiting the number of interlinks in each network. For G1, this factor is
denoted as φ1 and is given by:

φ1 =
η1
N2
× 100%, (4)

where η1 ≤ N2 is the maximum number of nodes from G2 that each node in G1 can interconnect
to and N2 is the number of nodes in G2. Similary, the limit of interlinks (φ2) for nodes in G2 can
be calculated analogous to (4). Therefore, the maximum number of interlinks that each node in
G1 and G2 can interconnect to is controlled by φ1 and φ2.

As part of our proposal, the nodes in G1 (G2) are divided into µ1 (µ2) subsets of nodes, each
with a maximum of η1 (η2) nodes. Subsets of nodes are a key aspect to controlling the allocation
of a specific number of interlinks to each node. The number of nodes in a subset is directly
related to the capacity of the nodes and the functionality performed by nodes in each network.
For instance, in a fixed broadband access architecture, a subset of nodes in the access network
can be interconnected to a subset of nodes in the core network. Moreover, a core network can
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support the interconnection of a limited number of access nodes. Without loss of generality, a
subset of nodes in a network can group nodes with similar properties or randomly. Then, the
nodes of a subset in G1 will be interconnected to the nodes of a subset in G2 if the distance is
less than or equal to a radius (r). As the number of nodes in each subset is limited, the number
of interlinks in each node can be kept under control.

Let us consider that the nodes in G1 are divided into µ1 subsets of nodes, where µ1 is given
by:

µ1 =

{
round(N2

η1
), if φ1 < 50%

2, if φ1 ≥ 50%
(5)

Similarly, the nodes in G2 are divided into µ2 subset of nodes, where µ2 is given by:

µ2 =

{
round(N1

η2
), if φ2 < 50%

2, if φ2 ≥ 50%
(6)

Let ai denote the property value of node i ∈ G1. Then, nodes in G1 are ordered according
to ai, i.e.„ a1 ≥ a2 ≥ ... ≥ ai−1 ≥ ai ≥ ai+1 ≥ ... ≥ aN1−1 ≥ aN1 . Moreover, let ΓSg denote the
ordered set of nodes previously defined in G1. If ΓS1 ,ΓS2 , ...,ΓSµ1 represent the subsets of ΓS ,
then, ΓS =

⋃µ1
g=1 ΓSg , and ΓSg is given by:

ΓSg =

{
{i : (g − 1)× η2 < i ≤ g × η2}, if g < µ1

{i : (g − 1)× η2 < i ≤ N1}, if g = µ1
, (7)

where i represents the i − th element in ΓSg and g ∈ {1, 2, ..., µ1}. Similarly, let cj denote
the property value of node j ∈ G2. Then, nodes j ∈ G2 are ordered according to cj , i.e.„
c1 ≥ c2 ≥ ... ≥ cj−1 ≥ cj ≥ cj+1 ≥ ... ≥ cN2−1 ≥ cN2 . Additionally, let ΓTh denote the ordered
set of nodes previously defined inG2. If ΓT1 ,ΓT2 , ...,ΓTµ2 are subsets of ΓT , then, ΓT =

⋃µ2
H=1 ΓTh ,

and ΓTh is given by:

ΓTh =

{
{j : (h− 1)× η1 < j ≤ h× η1}, if h < µ2

{j : (h− 1)× η1 < j ≤ N2}, if h = µ2
, (8)

where j represents the j − th element in ΓTh and h ∈ {1, 2, ..., µ2}
Let us define Bφ as an N1×N2 interconnection matrix, whose entries or elements are bφij = 1

if nodes in the subset ΓSg are connected to nodes in the subset ΓTh for g = h, otherwise bφij = 0.
Accordingly, the Bφ matrix defines which nodes in the networks can be interconnected and
establishes the limit for the number of interlinks that each node in the networks can handle.
Thus, each node in G1 or G2 will have a maximum of η1 or η2 interconnected nodes, respectively.

Finally, let us redefine the dependency matrix B12, whose entries are bji = 1 if dij ≤ r
and bφij = 1, otherwise bij = 0. Note that the new B12 matrix captures the interconnection
conditions 1) and 2) proposed in this paper and thus the new interdependency matrix B, which
is given by the equation (2), can be generated. Therefore, the nodes in each geographical network
will interconnect with a limited number of interlinks, consequently improving the model defined
in [16].

For simplicity, in this paper we consider that G1 and G2 have the same number of nodes
(N1 = N2) and that all the nodes in the interdependent network have the same limit of interlinks
(φ1 = φ2). Therefore, each network has µ1 = µ2 subsets of nodes with a maximum number of
nodes η1 = η2. Figure 2 presents two geographical networks being interconnected by employing
the interconnection proposal described in this section. As can be seen in Fig. 2, both networks
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Figure 2: Subsets for limiting the number of interlinks in geographically interdependent networks

have N1 = N2 = 9 nodes and each node in G1 and G2 can support until φ1 = φ2 = 30% of
nodes from the other. According to what has been described above, nodes in both networks are
divided into µ1 = µ2 = 3 subsets, each one with a maximum of η1 = η2 = 3 nodes. Then, the
Bφ matrix is generated with the subsets ΓSg and ΓTh . Finally, the interlinks between the nodes
from G1 and G2 (dashed lines) are established if dij ≤ r and bφij = 1.

2.2 Algorithm description

Algorithm1 summarizes the interconnection model proposed to limit the number of interlinks
in geographically interdependent networks. Algorithm1 requires two networks (G1 and G2) to
be interconnected, the percentage for limiting the number of interlinks (φ1 and φ2) and the
radius (r). The output of Algorithm1 is a dependency matrix B12 with the conditions 1) and
2) previously described. As can be seen, Algorithm1 calculates the maximum number of nodes
that a node can interconnect to (Lines 1 and 2) and the number of subsets (Lines 3 and 4). Then,
the nodes are grouped in subsets according to one property (Lines 5 and 6). The interconnection
matrix (Bφ12), in which each node in G1 (G2) has a maximum of η1 (η2) interconnected nodes
(Line 7) is generated. Finally, the interdependency matrix B12 is generated by considering
the distance constraint for a given r and the Bφ matrix (Lines 8 to 19). Thus, an enhanced
region-based interconnection model is defined for interconnecting the G1 and G2 networks and
the interdependency matrix B, which is given by the equation (2), can be generated from the
resulting B12 matrix.

2.3 Cascading failure process in interdependent networks

Consider a geographically interdependent network G generated from the model proposed
in this paper. When a random fraction of the nodes in G1 fails, a cascading failure process is
induced. We assume the node i in network G1 is functional if a) at least one of its interconnected
nodes in network G2 is operative, and b) the node i belongs to the giant component of the
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Algorithm 1 Interconnection model for limiting the number of interlinks in geographically
interdependent networks.
D
¯
ata: two geographical networks (G1 and G2), limit for number of interlinks (φ1 and φ2) and

radius (r).
R
¯
esult: dependency matrix B12.

η1 = round(φ1N2/100)
η2 = round(φ2N1/100)
µ1 = round(N1/η2)
µ2 = round(N2/η1)
ΓSg ← getSubsetNodes(S, µ1, η2, nodal_property)
ΓTh ← getSubsetNodes(T, µ2, η1, nodal_property)
Bφ ← getBφMatrix (ΓSg ,ΓTh , η1, η2, µ1, µ2)
for all i ∈ S do

for all j ∈ T do
dij =

√
(xi − xj)2 + (yi − yj)2

if dij ≤ r and bφij == 1 then
bij = 1

else
bij = 0

end if
end for

end for
return B12

functional nodes in network G1 [4]. Due to interdependency, the failed nodes in G1 spread
failures in G2. As the assumptions a) and b) are also applied to the nodes j in network G2, the
failed nodes in G2 spread failures back into G1, and so on. The cascading failures continue until
no more nodes fail. The remaining set of functional nodes is referred to as the Largest Mutually
Connected Component (LMCC ):

LMCC =
n1 + n2
N1 +N2

, (9)

where n1 and n2 are the number of nodes that belong to the giant component of the functional
nodes in G1 and G2, respectively, when the assumptions a) and b) are satisfied. The cascading
failures described in this section can occur in real scenarios such as power grid blackouts [1] and
disruptions in economic networks [15]. Note that [16] also considered the case in which a node in
G1 is functional if all of its interconnected nodes in G2 are operational. Under that condition, in
some cases, having more interconnected links makes the geographically interdependent network
less robust. However, this case is outside the scope of this paper.

3 Simulation results and discussion

In this section, the topologies for geographically interdependent networks are described.
Moreover, the impact limiting the number of interlinks has on the robustness of geographically
interdependent network is analyzed.
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Table 1: Nodes distribution in G1 and G2 according to interlink limits

φ1 = φ2 µ1 = µ2 η1 = η2

10% 10 5
25% 4 12
50% 2 25
75% 2 37
100% 1 50

3.1 Topologies for geographically independent networks

The geographically interdependent networks considered as the study case represent two back-
bone telecommunication networks being interconnected with bidirectional interlinks. The ran-
dom connection property of a backbone telecommunications network is modeled using an Erdös-
Rényi (ER) random graph with a Poisson nodal degree distribution [12]. This indicates that
most nodes have approximately the same number of links close to the average nodal degree [3].
Although, scale-free or other graph models can be also used to model telecommunication net-
works, these are more associated to large networks (such as multi-autonomous systems networks).
Moreover, some current backbone topologies are also scaling to other models which are out of
the scope of this paper.

In order to analyze the impact the model proposed has on the robustness of interdependent
networks against cascading failures, the Largest Mutually Connected Component (LMCC) is
measured in 100 interdependent telecommunication networks. Each backbone telecommunication
network to be interconnected is modeled as an ER random graph with N1 = N2 = 50 nodes and
the average nodal degree (〈k〉) equal to 6. The nodes in each network are placed uniformly in
a two-dimensional square of the size Z = 1 i.e., each node in the G1 and G2 networks has as
spatial coordinates (x, y), where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

The interconnection link pattern between the two ER graphs is conditioned by a given radius
r. The number of interlinks in each node is limited by a given percentage φ. The number of
subsets (µ1, µ2) and the maximum number of nodes that a node in G1 and G2 can interconnect
with (η1, η2) are presented in Table 1. For instance, when φ = 25% , this is considered as the
design constraint and, as such, the nodes in each network are divided into µ1 = µ2 = 4 subsets.
Thus, for a given radius r, it is expected that each node in G1 and G2 will have a maximum of
12 interlinks.

As was described in subsection 2.1, a nodal property is also required to define how nodes
in each network can be grouped. In the study case considered in this paper, node vulnerability
to failures is selected as the property with which to group the nodes into subsets. In most
real scenarios, the vulnerability of nodes to failures can be estimated from the historical failure
database of their Operation Support Systems (OSS). However, given the difficulty of obtaining
access to real data, centrality metrics could be used to measure the importance of nodes for
the network connectivity under some failure scenarios [5]. Previous studies have revealed that
backbone telecommunication networks modeled as ER are highly vulnerable to a sequential
targeted attack based on nodal betweenness centrality (bc) [13].

Figure 3 depicts a robustness analysis of the backbone telecommunication networks under
targeted attacks when networks are not connected to other. The networks’ robustness is quan-
tified as a function of the Average Two Terminal Reliability (ATTR) metric [9]. As can be seen
in Fig. 3, the telecommunication networks considered in this work exhibit high vulnerability to
a sequential targeted attack by bc. Whereas, the networks are more robust to a simultaneous
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Figure 3: Robustness analysis of backbone telecommunication networks (N1 = 50 and 〈k〉 = 6)
in a single scenario

targeted attack by bc and sequential or simultaneous targeted attacks based on degree centrality
(dc). Consequently, node vulnerability in each ER network could be quantified by their bc values
i.e., the higher the betweenness centrality of node is, the higher the node’s vulnerability is.

3.2 Analyzing the impact limiting the number of interlinks has on the ro-
bustness of geographically interdependent networks

To investigate the impact the region-based interconnection model has on the robustness of
interdependent networks against cascading failures, the Largest Mutually Connected Compo-
nent (LMCC) metric is measured when a fraction of nodes is removed. In the failure scenario
considered in this paper, nodes in the network G1 are removed (according to their vulnerability
to a sequential targeted attack by bc) until the percentage of removed nodes (P ) is reached.
Removing the nodes in G1 leads to a cascading failure process as described in Section 2.3.

Although several geographically interdependent networks can be generated by varying the
radius and the limit of the number of interlinks, the two scenarios considered as case studies are:

• Scenario 1: The radius (r) is fixed to 0.2 and the limit for the number of interlinks (φ)
ranges from 25% to 100%. This scenario can represent a real situation in which a telecom-
munication network operator has a geographical area limited by a radius r and is interested
in controlling the number of interlinks to other infrastructures.

• Scenario 2: The number of interlinks is limited to 25% and r is varied from 0.1 to
√

2. This
scenario can be used by a telecommunication network operator who has a certain capacity
in their network, but wants to restrict its coverage area to a certain radius r to interconnect
to fewer number of nodes from other infrastructures.

Both scenarios are replicated in 100 interdependent networks. The robustness analysis pre-
sented in this section is the average of the LMCC results measured in these interdependent
networks.

Scenario 1: Robustness analysis in geographically interdependent networks against
variations in the limit of interlinks (φ)

In this scenario, the radius (r) to interconnect the G1 and G2 networks is fixed to 0.2. Then,
for a given limit in the number of interlinks (φ), the LMCC of an interdependent network is
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(a) (b)

Figure 4: Robustness analysis in geographically interdependent networks (r = 0.2) versus vari-
ations in the limit of interlinks (φ) a) Largest Mutually Connected Component (LMCC) as a
function of the removed nodes (P ) b) Number of interlinks as a function of φ

measured when a fraction of nodes (P ) is removed in the G1 network. Figure 4a depicts that for
a given φ the LMCC first decreases almost linearly with the increase in the fraction of removed
nodes (P ≤ 35%). Later, the LMCC dramatically decreases until the networks are completely
disconnected. Networks with the highest slope in their LMCC curves are those that have less
φ. This is because with the decrease of φ, nodes in the G1 and G2 networks are divided into
more subsets (µ1 and µ2, respectively) which decreases the probability for interconnecting a large
number of nodes. Consequently, a node has fewer interconnected nodes and its failure probability
is increased thanks to the failures of its interconnected nodes.

Also note that in Fig. 4a there is a zone (P ≤ 20%) in which the robustness of interdependent
networks for a given φ is similar to the robustness reached by a network modeled according to [16]
with r = 0.2 and without limiting the number of interlinks (GRG). Moreover, in this zone all
networks exhibit a high level of robustness against cascading failures (LMCC > 0.8). For
example, when 20% of the nodes are removed from G1 and after the cascading failure process,
LMCC = 0.89 for φ = 100% and 0.81 for φ = 10%. However, for P > 20%, there are more
differences between the LMCC values reached by the networks with φ ≤ 25% and the network
GRG. However, in the case of networks with φ ≥ 50%, their robustness remains near to that
achieved by GRG until P ≤ 40%. Therefore, for some P values, our model is able to maintain the
LMCC in values near those achieved by our previous work [16] when the number of interlinks
is limited to a certain value of φ.

On other hand, as can be seen in Fig. 4b, the number of interlinks is under the maximum
number of interlinks reached by the GRG network for φ < 100% (compare the dashed line GRG
and the blue bars G). This result is due to the strategy proposed in this paper whereby the
nodes in the G1 and G2 networks are divided into subsets, with a maximum number of nodes
η1 and η2, respectively. Thus, our new region-based interconnection model guarantees that the
number of interlinks in geographically interdependent networks is maintained below the limit φ.
For instance, when φ = 75%, the maximum number of interlinks in the interdependent networks
is 159. Although this value is not exactly 75% of the maximum number of interlinks, it is below
the limit of interlinks considered to be a design constraint.
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(a) (b)

Figure 5: Robustness analysis in geographically interdependent networks (φ = 25%) versus
variations in radius (r) a) Largest Mutually Connected Component (LMCC) as a function of
removed nodes (P ) b) Number of interlinks as a function of r

Scenario 2: Robustness analysis in geographically interdependent networks against
variations in radius (r)

In this scenario, the interdependent telecommunication networks are the result of intercon-
necting the G1 and G2 networks by limiting the interlinks (φ) to 25% and varying the radius (r).
The Largest Mutually Connected Component (LMCC) as a function of the fraction of removed
nodes from the G1 network is shown in Fig. 5a. Although the number of interlinks is limited to
25%, Fig.5a shows that geographically interdependent networks better resist cascading failures
because of a major number of interlinks when the r is large. This result is to be expected as the
nodes in the G1 and G2 networks tend to be more probable to interconnect to a greater number
of nodes as a wide geographical area is defined by a larger radius r. For example, when 20%
of the nodes are removed from G1 and after the cascading failure process, LMCC = 0.90 for
r = 1.2 and 0.83 for r = 0.2.

Additionally, Fig. 5a depicts a zone (P ≤ 20%) in which the robustness of geographically
interdependent networks for a given radius r remains near to the robustness of a network modeled
according to [16] where r =

√
2 and the number of interlinks is not limited (GRG). In this zone,

all geographically interdependent networks have the LMCC > 0.8. As the percentage of removed
nodes in G1 increases, the networks modeled with our new proposal maintain similar robustness
levels until P ≤ 40%. Consequently, limiting the number of interlinks to a certain percentage φ
trends to control interlink allocation against increases in radius r. Thus, our proposal based on
subsets is effective in limiting the number of interlinks in geographically interdependent networks.

Regarding the number of interlinks, Fig. 5b shows that for a given radius r our model
generates interdependent networks where the interlinks are around 25% of the maximum reached
by each network GRG (compare light blue and dark blue bars).The reason is because, independent
of the selected radius (r), the model proposed in this paper restricts the number of nodes that a
node in the G1 and G2 networks can interconnect with to η1 and η2, respectively. For example,
when r = 0.6, the maximum number of interlinks in the interdependent networks is 390, and the
number of interlinks per node is 4 on average. Consequently, for some P values our model yields
promising results for maintaining network robustness under cascading failures by reducing the
number of interlinks.
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4 Conclusions

In this paper, an enhanced interconnection model in geographically interdependent networks
has been proposed. In contrast to previous work, a new strategy based on subsets of nodes
has been proposed to limit the number of interlinks in interdependent networks. The proposed
region-based interconnection model has considered the percentage with which to limit the num-
ber of interlinks (φ) as a new factor in the design of geographically interdependent networks.
Moreover, the impact limiting the number of interlinks has on the robustness of geographically
interdependent networks against cascading failures has been analyzed.

The interconnection strategy proposed in this paper has proven to be effective in guaranteeing
the number of interlinks in geographically interdependent networks is maintained under a certain
limit φ. This is because for a given φ the nodes to be interconnected have been divided into
subsets (µ1, µ2), each with a maximum number of nodes (η1, η2). Results indicate that in some
scenarios (P ≤ 20%) the robustness for a given φ has been maintained at levels close to those
reached by [16] (LMCC ≥ 0.80). This is a relevant outcome because compared to the critical
threshold at which LMCC equals zero, quantifying the impact of a small percentage of node
failures (P ) is essential for network providers to prevent networks from collapsing.

Furthermore, the two scenarios that have been analyzed in this paper represent some situ-
ations in which the model proposed can be applied by network providers. Results have shown
the robustness behaviour for geographically interdependent networks under cascading failures.
In the first case, by limiting the coverage area to a certain radius r and varying the number of
interlinks (φ), an interdependent networks is more robust against cascading failures when φ is
increased. Meanwhile, in the second case, by limiting the number of interlinks to a certain φ and
varying the radius r, the robustness increases for large values of r. In both cases, the results are
because with the increase in the number of interlinks, a node tends to be less likely to fail from
the failures of its interconnection nodes.

In the future work, the proposed region-based interconnection model can be studied in other
interdependent networks and validated with real-world data. Moreover, an in-depth cost-benefit
analysis of limiting the number of interlinks in geographically interdependent networks can be
carried out.

Acknowledgements

This research was supported in part by the Spanish Ministry of Economy and Competitiveness
and the DURSI Consolidated Research Group (CSI Reference SGR-1469) through the GIROS
Project (TEC2015-66412-R).

Bibliography

[1] Andersson, G. et. al. (2005); Causes of the 2003 Major Grid Blackouts in North America
and Europe, and Recommended Means to Improve System Dynamic Performance, IEEE
Trans. on Power Systems, 20 (4), 1922-1928, 2005.

[2] Buldyrev, S. V.; Parshani, R.; Paul G.; Stanley, H. E.; Havlin, S. (2010); Catastrophic
cascade of failures in interdependent networks, Nature, 464, 1025-1028, 2010.

[3] Erdos, P.; Renyi, A. (1960); On the evolution of random graphs, Publication of the Mathe-
matical Institute of the Hungarian Academy of Sciences, 5, 17-61, 1960.

[4] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S. (2012); Networks formed from interde-
pendent networks, Nat. Phys., 8, 40-48, 2012.



Enhanced Interconnection Model in Geographically Interdependent Networks 549

[5] Iyer, S.; Killingback, T.; Sundaram, B.; Wang, Z. (2013); Attack robustness and centrality
of complex networks, PLoS ONE, 8 (4), e59613, 2013.

[6] Ji, X.; Wang, B.; Liu, D.; Chen, G.; Tang, F.; Wei, D.; Tu, L. (2016); Improving interde-
pendent networks robustness by adding connectivity links, Physica A, 444, 9-19, 2016.

[7] Li, X.; Wu, H.; Scoglio, C.; Gruenbacher, D. (2015); Robust allocation of weighted depen-
dency links in cyber-physical networks, Physica A, 433, 316-327, 2015.

[8] Martín-Hernández, J.; Wanga, H.; Van Mieghem, P.; D’Agostino, G. (2014); Algebraic
connectivity of interdependent networks, Physica A, 404, 92-105, 2014.

[9] Neumayer, S.; Modiano, E. (2016); Network Reliability under Geographically Correlated
Line and Disk Failure Models, Computer Networks, 94, 14-28, 2016.

[10] Ouyang, M. (2014); Review on modeling and simulation of interdependent critical infras-
tructure systems, Reliability Engineering & System Safety, 121, 43-60, 2014.

[11] Rinaldi, S. M.; Peerenboom, J.P.; Kelly, T. K. (2001); Identifying, Understanding, and
Analyzing Critical Infrastructure Dependencies, IEEE Control Systems Magazine, 21 (6),
11-23, 2001.

[12] Rueda, D. F.; Calle E. (2017), Using interdependency matrices to mitigate targeted attacks
on interdependent networks: A case study involving a power grid and backbone telecom-
munications networks, International Journal of Critical Infrastructure Protection, 17, 3-12,
2017.

[13] Rueda, D. F.; Calle, E.; Marzo, J. L. (2017); Robustness Comparison of 15 Real Telecom-
munication Networks: Structural and Centrality Measurements, J. Netw. Syst. Manage, 25
(2), 269-289, 2017.

[14] Sterbenz, J.P.G.; Hutchison, D.; Çetinkaya, E.K.; Jabbar, A.; Rohrer J.P.; Scholler, M.;
Smith, P. (2010); Resilience and survivability in communication networks: Strategies, prin-
ciples, and survey of disciplines, Computer Networks, 54(8), 1245-1265, 2010.

[15] Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A., White, D. R.
(2009); Economic Networks: The New Challenges, Science, 325 (5939), 422-425, 2009.

[16] Wang, X.; Kooij, R.E.; Van Mieghem, P. (2016); Modeling region-based interconnection for
interdependent networks, Phys. Rev. E., 94, 042315(14), 2016.

[17] Yagan, O.; Qian, D.; Zhang, J.; Cochran, D. (2012); Optimal allocation of interconnecting
links in cyber-physical systems: Interdependence, cascading failures, and robustness, EEE
Trans. Parallel Distrib. Syst., 23 (9), 1708-1720, 2012.


