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Abstract: Computational intelligence based forecasting approaches proved to be
more efficient in real time air pollution forecasting systems than the deterministic ones
that are currently applied. Our research main goal is to identify the computational
intelligence model that is more proper to real time PM2.5 air pollutant forecasting
in urban areas. Starting from the study presented in [27]a, in this paper we first
perform a comparative study between the most accurate computational intelligence
models that were used for particulate matter (fraction PM2.5) air pollution forecasting:
artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS).
Based on the obtained experimental results, we make a comprehensive analysis of best
ANN architecture identification. The experiments were realized on datasets from the
AirBase databases with PM2.5 concentration hourly measurements. The statistical
parameters that were computed are mean absolute error, root mean square error,
index of agreement and correlation coefficient.
Keywords: computational intelligence, PM2.5 air pollution forecasting, ANFIS,
ANN, ANN architecture identification.

aReprinted (partial) and extended, with permission based on License Number
3957050363449 [2016] ©IEEE, from "Computers Communications and Control (ICCCC),
2016 6th International Conference on".

1 Introduction

This paper is an extension of [27] (doi: 10.1109/ICCCC.2016.7496746). A comprehensive
comparative study is here presented. In addition, an extended analysis for the identification of
best neural network architecture is included. We report our new experimental results.

Air pollution forecasting is an important research topic especially for the improvement of life
quality in cities. Among currently used forecasting methods, computational intelligence methods
proved to be more efficient in real time forecasting systems. The deterministic methods which
take into account many variables related to the forecasted parameter and use a precise mathe-
matical model with embedded physical and chemical factors (e.g. those based on climate models)
give better solutions, but in a longer period of time. In contrast, computational intelligence based
methods are approximate methods, that give solutions with a good forecasting accuracy, in short
periods of time. Thus, the real time forecasting systems used for urban population early warning
of air pollution episodes occurrence can be based on computational intelligence techniques.

Artificial intelligence (AI) provides several techniques for building forecasting systems, mainly
from its computational intelligence part and less from its symbolic part. Such applications in
different domains were reported in the literature, most of them in the economic, energy and en-
vironmental fields [1], [18], [25]. Symbolic AI is used as a knowledge based approach in selecting
some important parameters that influence the forecasting systems performance, usually for the
prediction model features selection. On the other hand, computational intelligence techniques
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can be used as effective predictors’ builders (see e.g. [5], [12], [16], [29], [30]). An important
environmental problem that needs better solutions nowadays is urban air quality improvement
and reducing human health effects due to air pollution in cities. For this, good real time air
pollution short-term forecasters have to be developed and included in the environmental man-
agement systems or in the early warning system of intelligent environmental decision support
systems. Particulate matter with diameter less than 2.5 µm (PM2.5) is an air pollutant that
has potential negative effects on human health, when its concentration exceeds the admissible
standard upper level. Our research work focuses on the development of a good real time PM2.5

air pollution forecasting model that will be integrated in the ROKIDAIR Decision Support Sys-
tem (ROKIDAIR DSS) to be used in two pilot Romanian cities, Ploieşti and Târgovişte, by the
ROKIDAIR Early Warning System. Starting from a literature review and a comparative study
between most used computational intelligence based forecasting methods, we have selected the
best model which is a neural network model and we have performed an analysis of best neural
network architecture identification via trial and error method.

Computational intelligence is a paradigm introduced in [2] which combines mainly three
computing technologies: fuzzy computing, neural computing and evolutionary computing. Fuzzy
computing and neural computing are used as forecasting models, while evolutionary computing
can be applied mainly for the optimization of a forecasting model. In the last decade, other
nature-inspired computing methods were added to computational intelligence, such as swarm
intelligence with various techniques: ant colony optimization (ACO), particle swarm intelligence
(PSO), artificial bee colony algorithm (ABC) etc. These last techniques are commonly used for
optimizing the forecasting model and not as a forecasting model.

The remainder of the paper is organized as follows. In Section 2 it is described computa-
tional intelligence based forecasting focusing on most used techniques: artificial neural networks
and adaptive neuro-fuzzy inference system (ANFIS). A comparative study of the two techniques
(ANN and ANFIS) applied to PM2.5 air pollution forecasting is presented in Section 3, con-
cluding that the best experimental results were obtained by the ANN forecasting model. The
identification of the best PM2.5 ANN forecasting architecture is discussed in Section 4. The final
section concludes the paper and highlights some future work.

2 Computational intelligence based forecasting

Computational intelligence provides data-driven methods. The neural methods applicable
to solve forecasting problems are: artificial neural network (ANN) and adaptive neuro-fuzzy
inference system (ANFIS). They can perform air pollution forecasting more efficiently than the
deterministic methods by capturing the knowledge accumulated in the historical data sets (time
series) which is learned via a training algorithm and is used to accurately predict specific air
pollution parameters (e.g. air pollutants concentrations).

2.1 Artificial Neural Networks (ANN)

Artificial neural networks are universal approximators of non-linear functions [14]. They
are composed by a number of non-linear processing units named artificial neurons which are
structured in layers. Forecasting problems are solved mainly by feed-forward ANNs (multi-layer
perceptron - MLP and radial basis function - RBF) and recurrent ANNs. Figure 1 shows the
general architecture of a feed-forward ANN, which has an input layer, some hidden layers and
an output layer.
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Figure 1: The general architecture of a feed-forward ANN

A recurrent neural network is a type of artificial neural network that has a directed cycle
made by the connections between the artificial neurons, allowing it to have an internal state.
Thus, it exhibits a dynamic behaviour which provides the ability to process and predict chaotic
time series for long-terms [19]. A recurrent ANN is an ANN that has feedback, allowing arbitrary
connections between neurons, both forward and backward (i.e. recurrent). Thus, it propagates
data bi-directional, from input to output and from output to input. Recurrent ANNs are universal
approximators [34]. They provide a very good performance in temporal structures modeling, as
well as in real world problem solving ( [4], [6]). Recurrent ANNS exhibit a dynamic temporal
behavior and can process arbitrary sequences of inputs (e.g. chaotic time series).

The best structure of an ANN is experimentally determined. Usually, a single hidden layer
is enough to capture the nonlinearity of any function. Deep networks are ANNs with several
hidden layers. The number of hidden nodes is chosen by experiments, while the number of input
and output nodes is set according to the forecasting problem that has to be solved. The number
of input nodes represents the input window (in the case of time series, the number of past hours
measurements) and the number of output nodes represents the forecast horizon (number of future
time steps, hours, days etc., for which the prediction is determined). The ANN is trained with a
training set (which is extracted from a data set) by using a specific training algorithm (the most
used being backpropagation and the Levenberg-Marquardt algorithm), after that following the
validation and testing steps which are executed on the validation set and testing set, respectively.
Details on the ANN computational algorithms are given in the literature (see e.g. [13]). The
Levenberg Marquardt algorithm [20] is an iterative algorithm that estimates the weights vector
of the ANN model by minimizing the sum of the squares of the deviation between predicted and
target values. If ANN training is too long then overfitting can occur. To avoid this, the ANN
training is stopped earlier, as soon as the performance on testing data is not improved any more.

2.2 ANFIS

The ANFIS method applied to prediction uses a hybrid architecture composed by a fuzzy
inference system FIS enhanced with ANN features proposed by Jang [15]. The advantages of
FIS are mainly its design that emulates human thinking and the simple interpretation of the
results. Integrating the ANN part into a fuzzy inference system enhanced the FIS part with
learning/adapting capabilities. The prediction model does not use a mathematical model as well
as the case of ANN. The ANFIS architecture has the structure given in Figure 2.
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Figure 2: The general architecture of ANFIS

The FIS part is formed by five functional units: a fuzzification unit (from crisp value to
fuzzy set), a defuzzification unit (from fuzzy set to a crisp value), the database unit (containing
the description of membership functions for input/output variables), a rule base unit (all the
rules defined for FIS), and the decision unit (performing the inference operations on the fuzzy
rules) [26]. The neuro-fuzzy architecture is capable to learn new rules or membership functions,
to optimize the existing ones (Figure 2). The training data determine restrictions on the design
methods for the rule base and membership functions. Usually the particular type of datasets for
PM2.5 eliminates the subclustering method in generating the FIS structure, a good choice being
the grid partition method.

The ANFIS architecture (Figure 2) has five layers, with Takagi-Sugeno rules. The first layer
(adaptive) forms the premise parameters (the IF part with inputs and their membership func-
tions). The second layer computes a product of the involved membership functions. The third
layer normalizes the sum of inputs. In layer 4, the adaptive i-node computes the contribution of
i-th rule to ANFIS output, forming the consequence parameters (the THEN part with output
and its membership function). The fifth layer makes the summation of all inputs. The ANN part
can improve the membership functions associated with FIS structure. Usually these membership
functions are the tuning parameters of the FIS. Their initial values are chosen from experience
or trial and error methods. In the training mode the ANN finds the most suited membership
functions for the input-output relation described by FIS, according to training and checking
dataset.

ANFIS applies a hybrid learning algorithm (H) or backpropagation (BP) algorithm. The
hybrid learning algorithm identifies premise parameters with gradient method and consequence
parameters with least square method. At feedforward propagation step from H, the system out-
put reaches layer 4, and the consequence parameters are formed with least square method. With
backpropagation (BP) optimization method, the error signal is fed back and the new premise pa-
rameters are computed through gradient method. The prediction method is tested with datasets
that respect the main features of training dataset. The prediction precision decreases with en-
larging the prediction window from one hour in advance to six hours in advance.

2.3 An overview on PM2.5 computational intelligence based forecasting

The main computational intelligence techniques that were used for PM2.5 forecasting are:
feed forward ANN, radial basis function ANN, recurrent ANN, and ANFIS. Other AI techniques
such as genetic algorithms and swarm intelligence were applied to optimize the forecasting model.
We have selected some PM2.5 forecasting systems based on computational intelligence that were
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reported in the literature.
In the first years of the current century, the PM2.5 forecasting ANN models (usually, of MLP

type) were compared mostly with statistical models such as linear regression, ARMA, ARIMA,
revealing a very good performance of the neural models. One of the earlier PM2.5 forecasting
neural models were proposed in [21] and [31]. The first ANN model was applied in Canada,
while the latter was applied in Santiago de Chile. The experimental results described in both
papers showed a very good performance of the ANN model in comparison with the traditional
statistical models (e.g. linear regression).

In the next years, various comparisons between different types of ANNs models used to PM2.5

forecasting were performed. For example, an analysis of three ANN models (MLP, RBF-ANN
and square MLP) applied to PM2.5 short term prediction in an area on the US-Mexico border
is presented in [28]. The experimental results revealed that for the analyzed area the RBF-ANN
model outperformed the other two models. Another work that analyzes the performance of
different neural network models and regression model applied to forecasting expressway fine PM
(i.e. PM2.5) in Indiana, USA is described in [35].

A feed forward ANN with backpropagation training algorithm is described in [?], for 3 days
in advance forecasting of PM10, SO2 and CO air pollutants (AP) levels in the Besiktas district in
Istanbul, Turkey. The ANN is integrated in the AirPol system (http://airpol.fatih.edu.tr). The
ANN inputs are daily meteorological forecasts and the AP indicator values. The authors applied
some geographical models, the most complex one being based on the distance between two sites
in the case of using three selected neighborhood districts.

In [10] it is demonstrated the efficacy of using EnviNNet, a prototype stochastic ANN model
for air quality forecasting in cities from Italy (Rome, Milan and Napoli) to predict PM10 in
Phoenix, Arizona in comparison with the use of CMAQ system. The ANN is a MLP that uses
the conjugate-gradient method for training.

In the last years, the research work was focused on combining PM2.5 forecasting ANN models
with other techniques, such as statistical techniques, data mining, genetic algorithms, wavelet
transformation, deep learning, that can improve the forecasting accuracy. Some examples are
briefly described as follows. A research work that reports the successful use of ANNs and principal
component analysis for PM10 and PM2.5 forecasting in two cities, Thessaloniki (Greece) and
Helsinki (Finland) is described in [36]. The authors used a MLP and the meteorological and
AQ pollutants to predict the next day mean concentration of PM10 and PM2.5. A genetically
optimized ANN and k-means clustering was applied in [8] to predict PM10 and PM2.5 in a
coastal location of New Zealand. A hybrid PM2.5 forecasting model that uses feed forward ANN
combined with rolling mechanism and accumulated generating operation of gray model, that was
experimented in three cities from China is introduced in [11]. Another recent work on PM2.5

neural forecasting is described in [9]. The authors propose a novel hybrid model that combines
air mass trajectory analysis with wavelet transformation in order to improve the accuracy of the
average PM2.5 concentration two days in advance neural forecasting. The ANN is a MLP trained
with a backpropagation algorithm and the Levenberg-Marquardt (LM) algorithm. Also, early
stopping was used to avoid overfitting. Some meteorological parameters were used. Finally, one of
the newest achievements for PM2.5 prediction in 52 cities from Japan is reported in [24]. Each city
has several thousands of PM2.5 sensors. A deep recurrent neural network (DRNN) is proposed for
PM2.5 prediction based on real data sensors, which applies a novel pre-training method (DynPT)
using time series prediction especially designed auto-encoder. The experimental results showed
that the DRNN model outperformed the current climate models used in Japan, which are based
on Eulerian and Lagrangian grids or Trajectory models.

The use of pure FIS for specific air pollutants is reported in literature. In [3] it is presented
a study for Mexico City air pollution. The paper present a solution of classifying different air
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parameters via fuzzy reasoning and include this solution in the air quality index calculation. In [7]
it is formulated a fuzzy based forecasting model used in Polish Environmental Agency, a model
that forecast specific air pollutants based on decades of measurements. Examples of ANFIS based
systems for the prediction of air pollutants concentrations are presented in [22], [23], [32] and [33]].
In [23] it is proposed a fuzzy inference system to forecast PM2.5 concentrations at specific hours
using as additional input the medium temperature. In [33] it is developed a fuzzy inference system
to forecast ozone concentrations levels based on other pollutants and meteorological parameters.
The provided FIS model accuracy has the best values for coefficient of determination. For the
city of Konya, Turkey the literature present the solution of ANFIS forecasting model for PM10

trained with large datasets [32]. In [22] there are presented three case studies from three different
cities from Romania. Each time the proposed ANFIS forecasting model for PM10 is tested and
there are made recommendations on how to adjust the model parameters to improve forecasting
accuracy.

The main conclusion of the literature overview is that an efficient PM2.5 forecasting ANN
model can be derived only by experiment, depending on the PM2.5 measurements data sets
and several characteristics (climatic, geographic, industrial, economic, social etc) specific to the
analyzed area. Thus, there is no pre-set ANN model type for PM2.5 that is proper for any area.
Another important conclusion is that both ANN and ANFIS can model non-linear time series.

3 A Comparative study of PM2.5 forecasting with ANFIS and
ANN

3.1 Data sets

ANFIS / ANN 
forecasting 

modelPM2.5(t-1)

PM2.5(t)

PM2.5(t-2)

PM2.5(t-3)

PM2.5(t+1)

Figure 3: Structure of the proposed architecture

For this study were chosen two urban traffic PM2.5 monitoring stations. Taking into consid-
eration the lack of data for the Romanian stations, the data used for training and validation were
from a München (Germany) station where sufficient data are available (4 years) in the Airbase
database. In addition, the testing was done using also data (from 2015) from Ploieşti (Romania),
a city which presents interest as part of a larger project (ROKIDAIR project- www.rokidair.ro).
The data set from München contains 34000 samples and the PM2.5 hourly concentration has a
range of 0.52-168.5 µg/m3. The additional testing data from Ploieşti contains 4000 samples and
the domain of PM2.5 concentration is 3.24-36.45 µg/m3.

The data were normalized and then divided (randomly) as follows: 70% for training, 15% for
validation and 15% for testing the model.

If the amount of data is large enough, it is supposed that the data contains the effect of other
pollutants and meteorological data, so the proposed architecture (Figure 3) for the forecasting
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model (ANFIS or ANN) has as inputs the values of PM2.5 concentrations from current hour to
three hours ago and as output the prediction for the next hour.

In order to determine the suitability of the models the following statistical parameters were
calculated: MAE - mean absolute error; RMSE - root mean square error; IA - index of agreement;
R - correlation coefficient.

The two errors measure how close the predicted data are to the true values and have to be
as small as possible, and the last two indices are numbers that indicate how well the data fit the
prediction model and they should be close to 1.

The experiments presented in the following sections were performed using MATLAB© envi-
ronment.

3.2 Experimental results for ANFIS model

In this study, for the generation of the fuzzy inference system was used the grid partition
method, imposed by the specific of data. The membership functions were triangular and Gaussian
and the optimization algorithms of the ANN were backpropagation and hybrid.

The ANFIS model was tested for all combinations between the modifiable parameters, namely
the membership functions types and the optimization methods.

Table 1 presents the experimental results of the ANFIS model tested with data fromMünchen.

Table 1: Statistical indices for ANFIS model (München)

ANFIS Structure MAE [µg/m3] RMSE [µg/m3] IA R
Trimf/Hybrid 1.9614 3.2564 0.9796 0.9604

Gauss/Hybrid 1.9419 3.2089 0.9801 0.9616
Trimf/Backprop. 2.0494 3.3933 0.9778 0.9573
Gauss/Backprop. 2.2177 3.4471 0.9770 0.9556

Analyzing Table 1 it can be seen that the best configuration is when a Gaussian function
is used for the membership functions associated to inputs, and for the training of the neural
network a hybrid algorithm is used. In this case, the RMSE is the smallest, and the IA and R
have the biggest values. The smallest training and validation errors are around 0.02.

The best configuration of the ANFIS structure was also tested with data from the Ploieşti
station. The values of the statistical parameters are presented as follows: MAE [µg/m3]: 1.0166;
RMSE [µg/m3]: 1.9160; IA: 0.9711; R: 0.9447.

3.3 Experimental results for ANN model

The structure of the neural network contains four neurons in the input layer, one hidden layer
and one neuron in the output layer.

There were used two types of neural networks, namely feed forward backpropagation (FF)
and layer recurrent (LR), with Levenberg-Marquardt as training algorithm, and the adaptive
learning functions were gradient descent with momentum weight and bias (learngdm - LGDM )
and gradient descent weight and bias (learngd - LGD). The simulations were performed modifying
also the number of neurons in the hidden layer (from three to twelve).

The training and validation errors are with two orders of magnitude smaller than the ones
obtained in the case of ANFIS model, with values around 0.0004.

In Table 2 is presented a selection with the values of the statistical parameters for the ANN
models. The best configurations of the ANN models are highlighted, being associated to the
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layer recurrent structure with 4 neurons in the hidden layer and the learngd adaptation learning
function, and the feedforward structure with 5 neurons in the hidden layer and the learngdm
adaptation learning function, respectively. In this case the mean absolute error and the root
mean squared error have the smallest values, and IA and R indices have the biggest values.

Table 2: Statistical indices for ANN model with one hidden layer (München)

ANN Structure MAE [µg/m3] RMSE [µg/m3] IA R

4x4x1/LGDM FF 1.9421 3.2086 0.9802 0.9616
LR 1.9683 3.2359 0.9798 0.9609

4x4x1/LGD FF 1.9421 3.2086 0.9802 0.9616
LR 1.9278 3.1931 0.9804 0.9619

4x5x1/LGDM FF 1.9340 3.1966 0.9804 0.9619
LR 1.9836 3.2360 0.9797 0.9609

4x5x1/LGD FF 1.9609 3.2152 0.9800 0.9614
LR 1.9486 3.2138 0.9801 0.9614

4x6x1/LGDM FF 1.9415 3.2149 0.9801 0.9614
LR 1.9676 3.2207 0.9800 0.9613

4x6x1/LGD FF 1.9471 3.2292 0.9799 0.9611
LR 1.9519 3.2182 0.9801 0.9613

4x7x1/LGDM FF 1.9402 3.2185 0.9801 0.9613
LR 1.9528 3.2252 0.9800 0.9612

4x7x1/LGD FF 1.9489 3.2128 0.9801 0.9615
LR 1.9567 3.2224 0.9800 0.9612

4x8x1/LGDM FF 1.9516 3.2218 0.9800 0.9612
LR 1.9498 3.2130 0.9801 0.9615

4x8x1/LGD FF 1.9433 3.2148 0.9801 0.9614
LR 1.9613 3.2290 0.9799 0.9611

4x10x1/LGDM FF 1.9657 3.2272 0.9799 0.9611
LR 1.9527 3.2183 0.9800 0.9613

4x10x1/LGD FF 1.9568 3.2167 0.9800 0.9614
LR 1.9791 3.2367 0.9797 0.9609

In addition, as in the ANFIS case, the best configurations of the RNN and FFNN structure
were tested with data from the Ploieşti station and the values of the statistical parameters from
Table 3 were obtained.

Table 3: Statistical indices for ANN model (Ploieşti)

MAE [µg/m3] RMSE [µg/m3] IA R
RNN 0.9672 1.3713 0.9852 0.9714
FFNN 0.9852 1.3970 0.9846 0.9702

The experimental results confirms that the best ANN configuration (RNN) previously ob-
tained provides very good results for the testing data set from Ploieşti.
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3.4 Discussion

A comparison between the best values of the statistical parameters obtained for the ANFIS
model and the ANN models, respectively, using München datasets is synthesized in Table 4.

Table 4: Comparison between best results

Forecasting Method MAE [µg/m3] RMSE [µg/m3] IA R
Best ANFIS 1.9419 3.2089 0.9801 0.9616
Best RNN 1.9278 3.1931 0.9804 0.9619
Best FFNN 1.9340 3.1966 0.9804 0.9619

It can be observed that the results obtained with ANN are slightly better than the ANFIS
results, and corroborated with the fact that for Ploieşti data the statistical indices are much
better in the case of ANN (see sections 3.2 and 3.3) and the time for training is much smaller
(with at least 10 times) for ANN, it can be concluded that the ANN forecasting model is most
suitable for the prediction of PM2.5 concentrations. Therefore, in the next section the focus will
be on the ANN forecasting model.

4 Best ANN architecture identification for PM2.5 forecasting

Usually, an ANN with one hidden layer is enough for any complex nonlinear function (see
e.g. [37]). However, in order to make a complete analysis, several ANN architectures with one
hidden layer and two hidden layers were experimented. Thus, the selected architectures (RNN
and FFNN) with one hidden layer from the previous section were tested with two hidden layers.
Also, different adaptive learning functions were used: gradient descent with momentum weight
and bias and gradient descent weight and bias, and different number of neurons in the second
hidden layer (from three to twelve).

A trial and error method was applied in order to identify the best ANN forecasting model
architecture. The best ANN architecture selection was determined using the same statistical
indices as in the section 3.

It is interesting to analyze how is influenced the forecasting accuracy (error) of the ANNmodel
by the number of hidden layers and the number of hidden neurons in each hidden layer. More
hidden layers involve a deeper learning ability of the ANN model. However, the number of hidden
layers is dependent on the application specific data sets (e.g. in our case PM2.5 concentration
hourly measurements) and must be determined by experiment until optimum prediction (i.e.
minimum RMSE).

Table 5 presents a selection of the statistical indices values for an ANN architecture with two
hidden layers, which has four neurons in the first hidden layer and 3 to 12 neurons in the second
hidden layer.
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Table 5: Statistical indices for ANN model with two hidden layers (München))

ANN Structure MAE [µg/m3] RMSE [µg/m3] IA R

4x4x4x1/LGDM FF 1.9319 3.2041 0.9803 0.9617
LR 1.9491 3.2159 0.9801 0.9614

4x4x4x1/LGD FF 1.9303 3.1923 0.9804 0.9620
LR 1.9338 3.2120 0.9802 0.9615

4x4x5x1/LGDM FF 1.9397 3.2065 0.9802 0.9616
LR 1.9494 3.2228 0.9800 0.9612

4x4x5x1/LGD FF 1.9475 3.2192 0.9801 0.9613
LR 1.9491 3.2258 0.9800 0.9612

4x4x7x1/LGDM FF 1.9460 3.2292 0.9800 0.9611
LR 1.9776 3.2450 0.9796 0.9607

4x4x7x1/LGD FF 1.9291 3.2028 0.9803 0.9617
LR 1.9102 3.1890 0.9805 0.9621

4x4x8x1/LGDM FF 1.9562 3.2264 0.9799 0.9611
LR 1.9428 3.2356 0.9800 0.9610

4x4x8x1/LGD FF 1.9472 3.2131 0.9801 0.9615
LR 1.9320 3.2061 0.9803 0.9617

4x4x9x1/LGDM FF 1.9350 3.2149 0.9801 0.9314
LR 1.9310 3.2062 0.9802 0.9616

4x4x9x1/LGD FF 1.9353 3.2165 0.9801 0.9614
LR 1.9630 3.2346 0.9799 0.9609

4x4x10x1/LGDM FF 1.9359 3.2105 0.9802 0.9615
LR 1.9481 3.2137 0.9801 0.9615

4x4x10x1/LGD FF 1.9377 3.2149 0.9802 0.9614
LR 1.9516 3.2327 0.9799 0.9610

Changing the number of neurons in the first hidden layer from 4 to 5 the results from Table
6 are obtained. The number of neurons in the second hidden layer is the same as in the previous
case (from 3 to 12 neurons).
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Table 6: Statistical indices for ANN model with two hidden layers (München)

ANN Structure MAE [µg/m3] RMSE [µg/m3] IA R

4x5x4x1/LGDM FF 1.9455 3.2076 0.9802 0.9616
LR 1.9491 3.2159 0.9801 0.9614

4x5x4x1/LGD FF 1.9512 3.2137 0.9801 0.9614
LR 1.9338 3.2120 0.9802 0.9615

4x5x5x1/LGDM FF 1.9627 3.2302 0.9799 0.9610
LR 1.9489 3.2265 0.9799 0.9611

4x5x5x1/LGD FF 1.9389 3.2012 0.9802 0.9617
LR 1.9835 3.2450 0.9796 0.9607

4x5x7x1/LGDM FF 1.9313 3.2147 0.9802 0.9614
LR 1.9556 3.2257 0.9799 0.9612

4x5x7x1/LGD FF 1.9314 3.1957 0.9804 0.9619
LR 1.9791 3.2499 0.9796 0.9606

4x5x8x1/LGDM FF 1.9256 3.1926 0.9804 0.9620
LR 1.9350 3.1961 0.9803 0.9619

4x5x8x1/LGD FF 1.9380 3.2025 0.9803 0.9617
LR 1.9446 3.2249 0.9800 0.9612

4x5x9x1/LGDM FF 1.9505 3.2251 0.9800 0.9612
LR 1.9184 3.1926 0.9804 0.9620

4x5x9x1/LGD FF 1.9181 3.1678 0.9807 0.9626
LR 1.9658 3.2414 0.9797 0.9608

4x5x10x1/LGDM FF 1.9336 3.2041 0.9802 0.9617
LR 1.9429 3.2145 0.9801 0.9614

4x5x10x1/LGD FF 1.9164 3.2053 0.9803 0.9617
LR 1.9441 3.2136 0.9801 0.9614

Analyzing the results from Tables 5 and 6 it can be observed that the best ANN architecture
with two hidden layers is feedforward with five neurons in the first hidden layer, nine neurons in
the second hidden layer and gradient descent weight and bias as the adaptive learning function
(Figure 4). In this case, MAE and RMSE have the smallest values and IA and R have the biggest
values.

Figure 4: Best ANN architecture

For the best architecture mentioned above are presented in Figures 5 and 6 the testing error
evolution and a partial view of the comparison between testing and forecasted data for München
data set.
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Figure 5: Testing error for best ANN architecture (FF - 4x5x9x1)
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Figure 6: Comparison of testing vs forecasted data for best ANN architecture (FF - 4x5x9x1)

Table 7: Best ANN Architecture

Best ANN architecture MAE [µg/m3] RMSE [µg/m3] IA R
with one hidden layer 1.9278 3.1931 0.9804 0.9619

with two hidden layers 1.9181 3.1678 0.9807 0.9626

Table 7 concludes that using an ANN architecture with two hidden layers improves the results
obtained with the ANN architecture one hidden layer suggesting a possible use of this type of
structure for PM2.5 forecasting.
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5 Conclusions and future works

This paper is an extension of [27] which proposed PM2.5 air pollution forecasting models based
on computational intelligence techniques. Starting from the study presented in [27], in this paper
we extend the comparative study between artificial neural networks (ANNs) and adaptive neuro-
fuzzy inference system (ANFIS) which are the most accurate computational intelligence models
used for particulate matter (fraction PM2.5) air pollution forecasting by increasing the number
of neurons in the hidden layer of the ANN architecture. We also present an extended overview
of computational intelligence techniques based on neural networks approach with up to date
solutions of air pollution forecasting.

The data used for training and validation were from a München (Germany) urban traffic
station available from the Airbase database with hourly PM2.5 concentrations (for 4 years). For
the testing of the model data from Ploieşti (Romania), a city which presents interest as part of
a larger project (ROKIDAIR project - www.rokidair.ro) were also used. The proposed models
have four PM2.5 hourly concentrations as inputs and the prediction of the next hour PM2.5

concentration. We compared the performances of the models using statistical indices such as
mean absolute error, root mean square error, index of agreement and correlation coefficient. The
simulation results obtained with ANN are better than the ANFIS results, and corroborated with
the fact that for Ploieşti data the statistical indices are much better in the case of ANN and the
time for training is much smaller (with at least 10 times) for ANN, it can be concluded that the
ANN forecasting model is most suitable for the prediction of PM2.5 concentrations. Therefore,
the next part of the paper concentrates on finding the best neural network architecture by
increasing the number of hidden layer of the ANN architecture. In this new approach there are
performed numerous simulations with different architectures starting from the best architectures
with one hidden layer obtained in Section 3. Therefore we kept the number of the neurons in
the first hidden layer and varied the number of neurons in the second different layers. The paper
proposes an ANN model for PM2.5 forecasting, whose architecture was identified via trial and
error method, during an extended analysis that was performed. The simulation results pointed
out that introducing another hidden layer is beneficial in terms of statistical indices that assess
the forecasting performance. This is a good premise to find other solutions using deep learning
as future work. The model can be used to real time forecasting and is incorporated in the
ROKIDAIR DSS, being used by the ROKIDAIR Early Warning System in case some PM2.5 air
pollution episodes arise in different areas from the two pilot cities: Ploieşsti and Târgovişte. The
selection of the most proper computational intelligence based PM2.5 forecasting model was made
during the comprehensive comparative study of applying the ANN and ANFIS models, which
proved to be efficient in real time forecasting systems. The ANN PM2.5 forecasting model can
detect concentrations above the standard limit values for the human health protection.

As future work we will extend the study for the improvement of the forecasting model per-
formance through deep learning or combining neural networks with wavelets or data mining
techniques.
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