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Abstract: Development of rule-based systems is an important research area for arti-
ficial intelligence and decision making, as rule base is one of the most general purpose
forms for expressing human knowledge. In this paper, a new rule-based representation
and its inference method based on evidential reasoning are presented based on oper-
ational research and fuzzy set theory. In this rule base, the uncertainties of human
knowledge and human judgment are designed with interval certitude degrees which
are embedded in the antecedent terms and consequent terms. The knowledge repre-
sentation and inference framework offer an improvement of the recently developed rule
base inference method, and the evidential reasoning approach is still applied to the
rule fusion. It is noteworthy that the uncertainties will be defined and modeled using
interval certitude degrees. In the end, an illustrative example is provided to illustrate
the proposed knowledge representation and inference method as well as demonstrate
its effectiveness by comparing with some existing approaches.
Keywords: interval certitude rule, knowledge representation, uncertainty inference,
evidential reasoning.

1 Introduction

There are several types of uncertainties of knowledge such as incompleteness, randomness,
fuzziness, inexactness and ignorance. The inference method which is based on uncertain knowl-
edge is the uncertainty inference method. Because of the uncertainty is ubiquitous, the uncer-
tainty knowledge representation and uncertainty inference method have become the most visible
and fastest growing branch of artificial intelligence [38].

In the existed methods of knowledge representation, rule base seems to be the most common
form for expressing various types of knowledge [27]. The rule bases can be used to support
decision making with both quantitative and qualitative knowledge under various types of uncer-
tainties. Specifically, different types of data such as exact number, fuzzy number, interval value,
even subjective judgment can be represented by rule.

In the last four decades, the development of uncertainty methods have received extensive
attention. Many methods have been proposed for showing uncertain knowledge and informa-
tion. Such as the certainty factor based inference method [36], inference method using the
Dempster-Shafer theory [12], Belief Rule Base Inference Methodology using the Evidential Rea-
soning (RIMER) [31, 38–40], subjective Bays method [36], fuzzy inference method [29], et al.
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In these methods, inference method using the Dempster-Shafer theory has a shortcoming in
the aspect of dealing with conflict evidence, the subjective Bayes method is mainly used in the
randomness but does not apply to other uncertainties, fuzzy inference method is used in the
vagueness.

With the Dempster-Shafer theory, fuzzy set theory and If-then rule, Yang et al [38] have
researched and given RIMER. The uncertain knowledge is described by Belief Rule Base (BRB),
and it is able to handle many types of information. Evidential Reasoning (ER) approach is an
uncertainty inference method which make up for the deficiencies of the inference method using
the Dempster-Shafer theory. However, there are still some defects [17].

Liu et al. [5, 21] proposed the Extended Belief Rule Base (EBRB) based on BRB and the
Extended Belief Rule Base Inference Methodology using the Evidential Reasoning (RIMER+).
And the uncertainty of antecedent is described with belief structure and different evaluation
grade set, but there is only one consequent attribute and knowledge should be converted to
belief structure.

The fuzzy set has been widely researched and applied in various fields [20, 30, 34]. Interval
number is an important fuzzy number, and it has been widely used in a lot of fields such as
decision making science [2,32,37,41], operational research [6,9,19], [8,33]. The main reasons are
as follows:

• In the theoretical research, interval numbers are closely linked with other forms of uncer-
tainty.

• In the practical application, in order to evaluate the things, people are mainly inclined to
give the upper and the lower bounds of information, and the interval number’s expression
is nearly accord with this uncertainty characteristics of human thought.

According to the above analysis, the certitude rule base is not accord with actual situation.
Because of the limitations of human cognition and the complexity of the objective things, decision
maker can not always be confident enough to provide subjective judgment with exact certitude
degrees. But at times, a range of the certitude degree can be assessed, such range is referred to as
interval certitude degree. In order to apply the interval uncertainty, the knowledge representation
which is based on the interval certitude rule and its inference method should be proposed. [16]

This paper is organized as follows. In Section 2, the Interval Certitude Rule Base Inference
Method using the Evidential Reasoning (ICRIMER) is given. First, the structure and repre-
sentation of Interval Certitude Rule Base (ICRB) is presented. Then a new generic knowledge
base inference method ICRIMER is proposed. In Section 3, the performances of ICRIMER is
demonstrated by comparing with some existing approaches using a case study of classifications
with eight data sets of UCI Machine Learning Repository. The paper is concluded in Section 4.

2 Interval certitude rule base inference method

In this section, the basic knowledge of interval value fuzzy number is introduced, include
concept, ranking method and similarity measure. Then the interval certitude rule is proposed
as knowledge representation method. In the end of this section, the interval certitude rule base
inference method using the evidential reasoning with nonlinear programming is presented.

2.1 Interval value fuzzy number

Note a =
[

aL, aU
]

be a bounded closed interval, and satisfies aL ≤ aU , aL is the lower bound
of a, aU is the upper bound of a. If aL, aU ∈ R, then a =

[

aL, aU
]

is an interval number; if
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aL, aU ∈ [0, 1], then a =
[

aL, aU
]

is an interval value fuzzy number (for short, interval number).
Specially, if aL = aU , then a =

[

aL, aU
]

is an exact number, note a = aL.

A ranking method based on the technique for order preference by similarity to ideal solution
(TOPSIS) and distance is given in order to rank the interval number.

According to TOPSIS [22], for interval number, the positive ideal solution is [1, 1], the negative
ideal solution is [0, 0]. The relative similarity degree η of interval number a =

[

aL, aU
]

is as
follows:

η (a) =
d− (a)

d+ (a) + d− (a)

where d− (a) =
∣

∣

∣

aL+aU

2 − 0
∣

∣

∣
= aL+aU

2 is the distance [23] between a =
[

aL, aU
]

and negative

ideal solution [0, 0], d+ (a)=
∣

∣

∣

aL+aU

2 − 1
∣

∣

∣
= 1− aL+aU

2 is the distance [23] between a =
[

aL, aU
]

and positive ideal solution [1, 1].

The relative similarity degree η satisfies that the larger the relative similarity degree is the
larger the interval number will be. So the ranking of interval number can be given based on the
relative similarity degree:

• If η (a) > η(b) then a ≻ b , ’≻’ denotes the fuzzified version of ’>’ and has the linguistic
interpretation ‘greater than’.

• If η (a) = η(b) then a = b, means that the ranking orders of a =
[

aL, aU
]

and b =
[

bL, bU
]

are identical, a =
[

aL, aU
]

is equal to b =
[

bL, bU
]

, but aL = bL and aU = bU may be not
always realized.

The similarity measure of interval numbers is also an important content of interval type data
processing. According to the Lukasiewicz implication algebra on [0, 1], suppose a =

[

aL, aU
]

and
b =

[

bL, bU
]

are interval numbers, the similarity measure S[] is as follows:

S[] (a, b) =
[

SL
[] (a, b) , S

U
[] (a, b)

]

S[]
L (a, b) = min

{

min
{

1− aL + bL, 1− bL + aL
}

, min
{

1− aU + bU , 1− bU + aU
}}

SU
[] (a, b) = max

{

min
{

1− aL + bL, 1− bL + aL
}

, min
{

1− aU + bU , 1− bU + aU
}}

2.2 Interval certitude rule

An interval certitude rule base (ICRB) with K rules can be represented as follows:

R =
〈

(X,A), (Y,C), ICD[],Θ,W, F
〉

where X = {Xi |i = 1, 2, · · · , I } is the set of antecedent attributes, the relationship among the
antecedent attributes is taken as ‘∧’, ‘∧’ is the logical connective; Ai =

{

Ai,Ii

∣

∣Ii = 1, 2, · · · , LA
i

}

is the set of attribute values for antecedent attribute Xi (i = 1, 2, · · · , I) , note A = {Ai |i = 1, 2,
· · · , I} be the set of antecedent attribute value sets; Y = {Yj |j = 1, 2, · · · , J } is the set
of consequent attributes, the relationship among the consequent attributes is taken as ‘∧’;

Cj=
{

Cj,J j

∣

∣

∣
Jj = 1, 2, · · · , LC

j

}

is the set of attribute values for consequent attribute Yj (j = 1, 2,

· · · , J), note C = {Cj |j = 1, 2, · · · , J} be the set of consequent attribute value sets; Θ=
{

θk |0 ≤
θk ≤ 1, k = 1, 2, · · · ,K

}

is the set of the importance degree of each rule, θk is the rule weight of
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the kth rule; W =

{

wi

∣

∣

∣

∣

0 ≤ wi ≤ 1, i = 1, · · · , I, and
I
∑

i=1
wi = 1

}

is the set of the antecedent at-

tribute weights, wi is the weight of Xi ; ICD[] = {Icd (∆) |Icd (∆) ⊆ [0, 1]} is interval certitude
degree set, Icd (∆) is the interval certitude degree of event ∆, Icd (∆) is called interval certitude
degree. Icd (∆) satisfies the more higher the degree of certainty is, the more large Icd (∆) will
be. Icd (∆) = [0, 0] means completely uncertainty, Icd (∆) = [1, 1] means completely certainty,
Icd (∆) = [0, 1] means that we know nothing about the uncertainty of event ∆. F is a logical
function.

More specifically, the kth rule in the ICRB R can be written as Rk (k = 1, 2, · · · ,K):

If
(

X1 = Ak
1, Icd

k
(

X1 = Ak
1

))

∧ · · · ∧
(

XI = Ak
I , Icd

k
(

XI = Ak
I

))

then
(

Y1 = Ck
1 , Icd

k
(

Y1 = Ck
1

))

∧ · · · ∧
(

YJ = Ck
J , Icd

k
(

YJ = Ck
J

))

with rule interval certitude degree Icdk
(

Rk
)

, rule weight θk and antecedent attribute weights
(w1, w2, · · · , wI)

where ‘=’ means ‘is’; θk is the weight of the kth rule Rk; (w1, w2, · · · , wI) are the weights of the
antecedent attributes.

For i = 1, 2, · · · , I , Ak
i is the referential value of the ith antecedent attribute Xi that is used

in the kth rule Rk , Ak
i ∈ Ai or A

k
i = φ, ( φ is default, means that the ith attribute Ai of the

kth rule. Rk has no effect on the consequent); Icdk
(

Xi = Ak
i

)

⊆ [0, 1] is the interval certitude
degree of that Ak

i is the referential value of Xi in Rk , means the degree of Ak
i influence on the

consequent; if Ak
i = φ then Icdk

(

Xi = Ak
i

)

= 0 and this antecedent attribute can be left out.

For j = 1, 2, · · · , J , Ck
j is the referential value of the jth consequent attribute Yj that is

used in Rk , Ck
j ∈ Cj or Ck

j = φ (means that the kth rule Rk and its antecedent have no

effect on the jth consequent Cj ), Icdk
(

Yj = Ck
j

)

⊆ [0, 1] is the interval certitude degree of

that Ck
j is the referential value of Yj in Rk, means the degree of that Yj is Ck

j , if Ck
j = φ

then Icdk
(

Yj = Ck
j

)

= 0 and this consequent attribute can be left out; Icdk
(

Rk
)

⊆ [0, 1] is the

interval certitude degree of Rk, means the degree of that Rk is true.

For shortly, the kth rule Rk can be written as:

If
(

Ak
1, Icd

k
(

Ak
1

))

∧ · · · ∧
(

Ak
I , Icd

k
(

Ak
I

))

then
(

Ck
1 , Icd

k
(

Ck
1

))

∧ · · · ∧
(

Ck
J , Icd

k
(

Ck
J

))

with rule certitude degree Icdk
(

Rk
)

, rule weight θk and antecedent attribute weights
(w1, w2, · · · , wI)

Note:

αk
i = Icdk

(

Ak
i

)

=

[

(

αk
i

)L

,
(

αk
i

)U
]

, βk
j = Icdk

(

Ck
j

)

=

[

(

βk
j

)L

,
(

βk
j

)U
]

γk = Icdk
(

Rk
)

=

[

(

γk
)L

,
(

γk
)U

]

where 0 ≤
(

αk
i

)L
≤

(

αk
i

)U
≤ 1, 0 ≤

(

βk
j

)L

≤
(

βk
j

)U

≤ 1, 0 ≤
(

γk
)L
≤

(

γk
)U
≤ 1; and the kth

rule Rk can be given as:

If
(

Ak
1, α

k
1

)

∧ · · · ∧
(

Ak
I , α

k
I

)

, then
(

Ck
1 , β

k
1

)

∧ · · · ∧
(

Ck
J , β

k
J

)

.

with rule certitude degree
[

(

γk
)L

,
(

γk
)U

]

, rule weight θk and antecedent attribute weights

(w1, w2, · · · , wI)
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Note:
Ak =

{

Ak
i

∣

∣

∣
Ak

i ∈ AiorA
k
i = φ, i = 1, 2, · · · , I

}

Ck =
{

Ck
j

∣

∣

∣
Ck
j ∈ CjorC

k
j = φ, j = 1, 2, · · · , J

}

∧Ak = Ak
1 ∧Ak

2 ∧ · · · ∧Ak
I

∧Ck = Ck
1 ∧ Ck

2 ∧ · · · ∧ Ck
J

where Ak is the set of antecedent attribute values of the kth rule Rk; ∧Ak is the antecedent
of the kth rule Rk; Ck is the set of consequent attribute values of the kth rule Rk; ∧Ck is the
consequent of the kth rule Rk.

The kth rule Rk can be given as:

If
(

∧Ak, αk
)

then
(

∧Ck, βk
)

with rule certitude degree γk, rule weight θk and antecedent attribute weights (w1, w2, · · · , wI)

where αk =
[

(

αk
)L

,
(

αk
)U

]

⊆ [0, 1] is the interval certitude degree of ∧Ak, βk =
[

(

βk
)L

,
(

βk
)U

]

⊆

[0, 1] is the interval certitude degree of ∧Ck, γk =
[

(

γk
)L

,
(

γk
)U

]

⊆ [0, 1] is the interval certitude

degree of the kth rule Rk, θk is the weight of the kth rule Rk, (w1, w2, · · · , wI) are the weights
of the antecedent attributes.

2.3 Inference method

The interval certitude rule base inference method using the evidential reasoning is given as
follows.

The input actual vector can be noted as

Input() = {(a1, α1) , (a2, α2) , · · · , (aI , αI)}

where ai ∈ Ai or ai = φ (i = 1, 2, · · · , I) is one-to-one correspondence with the ith antecedent at-

tribute Xi; αi =
[

(αi)
L, (αi)

U
] (

0 ≤ (αi)
L ≤ (αi)

U ≤ 1, i = 1, 2, · · · , I
)

is the interval certitude

degree of ai. If ai = φ then αi = 0.
Suppose that the input fact Input() and the kth rule Rk match successfully, for all i =

1, 2, · · · , I, ai is equal to Ak
i without Ak

i = φ. But the interval certitude degrees of input fact
value and antecedent attribute value may be different; so according to the similarity measure,
there is a similarity degree should be given as activation certitude factors.

The activation certitude degree of Ak
i (i = 1, 2, · · · , I) under the input fact is given with

similarity measure S[] as follows:

α̃k
i =

{

S
(

Ak
i , ai

)

Ak
i ∈ Ai

1 Ak
i = φ

where S
(

Ak
i , ai

)

= S[]

(

αk
i , αi

)

, αk
i is the interval certitude degree of Ak

i , αi is the interval

certitude degree of ai, S
(

Ak
i , ai

)

is the similarity degree of Ak
i and ai. Ak

i=φ is a specific case,
if Ak

i=φ then the value of will not influence the matched conclusions, whether ai is default or
some other values, the ith antecedent attribute in the kth rule always can be satisfied.

Note
Ãk =

{

α̃k
i |i = 1, 2, · · · , I

}

Ãk is the collection of activation certitude degree.
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The activation weight set of the kth rule Rk is given as follows:

W k =
{

wk
i |i = 1, 2, · · · , I

}

where

wk
i =

{

wi Ak
i ∈ Ai

0 Ak
i = φ

after normalization, the activation weight set is given as

W̃ k =
{

w̃k
i |i = 1, 2, · · · , I

}

where

w̃k
i =

wk
i

I
∑

t=1
wk
t

.

Because that the ‘∧’ connective is used in rules, so the aggregation function of antecedent
is referred to as the T-norm operator. The interval certitude degree of antecedent ∧Ak can be
obtained as follows:

α̃k =

[

(

α̃k
)L

,
(

α̃k
)U

]

=

[

I
∏

i=1

I

√

[

(

α̃k
i

)L
]w̄k

i

,
I
∏

i=1

I

√

[

(

α̃k
i

)U
]w̄k

i

]

where

w̄k
i =

w̃k
i

max
l=1,··· ,I

{

w̃k
l

}

w̄k
i means that the smaller the weight is, the less the impact on certitude degree (

(

α̃k
i

)w̄k

i is

approaches the limit of 1), if w̃k
i = 0 then

I

√

[

(

α̃k
i

)L
]w̄k

i

=
I

√

[

(

α̃k
i

)U
]w̄k

i

= 1 [23].

According to ER approach,
{

∧Ck
}

is the set of the consequent of the kth rule Rk as the
frame of discernment, let Ωk =

{

∅,
{

∧Ck
} }

, Rk and ∧Ak are evidences, the weights of them
should be confirmed, the new weight is called credibility degree. By the definition of ICRB,

γk =
[

(

γk
)L

,
(

γk
)U

]

is the degree of that the rule Rk is true, it can be seem as the degree of

Rk influence on ∧Ck when Rk is true; α̃k =
[

(

α̃k
)L

,
(

α̃k
)U

]

is the degree of ∧Ak influence on

∧Ck when ∧Ak is true. Based on the above analysis, the credibility degree wk
R of Rk and the

credibility degree wk
A of ∧Ak can be obtained as follows:

wk
R =

[

(

wk
R

)L

,
(

wk
R

)U
]

=

[

(

γk
)L

(α̃k)
U
+ (γk)

L
,

(

γk
)U

(α̃k)
L
+ (γk)

U

]

wk
A =

[

(

wk
A

)L

,
(

wk
A

)U
]

=

[

(

α̃k
)L

(α̃k)
L
+ (γk)

U
,

(

α̃k
)U

(α̃k)
U
+ (γk)

L

]

The basic probability masses are:

mR

(

∧Ck
)

= wk
Rγ

k =
[

mL
R

(

∧Ck
)

,mU
R

(

∧Ck
)]

=

[

(

wk
R

)L(

γk
)L

,
(

wk
R

)U(

γk
)U

]



Interval Certitude Rule Base Inference Method using the Evidential Reasoning 845

mR

(

Ωk
)

= 1−mR

(

∧Ck
)

=
[

mL
R

(

Ωk
)

,mU
R

(

Ωk
)]

=

[

1−
(

wk
R

)U(

γk
)U

, 1−
(

wk
R

)L(

γk
)L

]

m̄R

(

Ωk
)

= 1− wk
R =

[

m̄L
R

(

Ωk
)

, m̄U
R

(

Ωk
)]

=

[

1−
(

wk
R

)U

, 1−
(

wk
R

)L
]

where mR

(

∧Ck
)

is the basic probability mass of Rk; mR

(

Ωk
)

is the remaining probability mass
that is unassigned to Ck which is caused by Rk; m̄R

(

Ωk
)

is amount of remaining support left
uncommitted by the weight of Rk.

mA

(

∧Ck
)

= wk
Aα̃

k =
[

mL
A

(

∧Ck
)

,mU
A

(

∧Ck
)]

=

[

(

wk
A

)L(

α̃k
)L

,
(

wk
A

)U(

α̃k
)U

]

mA

(

Ωk
)

= 1−mA

(

∧Ck
)

=
[

mL
A

(

Ωk
)

,mU
A

(

Ωk
)]

=

[

1−
(

wk
A

)U(

α̃k
)U

, 1−
(

wk
A

)L(

α̃k
)L

]

m̄A

(

Ωk
)

= 1− wk
A =

[

m̄L
A

(

Ωk
)

, m̄U
A

(

Ωk
)]

=

[

1−
(

wk
A

)U

, 1−
(

wk
A

)L
]

wheremA

(

∧Ck
)

is the basic probability mass of ∧Ak, mA

(

Ωk
)

is the remaining probability mass
that is unassigned to ∧Ck which is caused by ∧Ak; m̄A

(

Ωk
)

is amount of remaining support left
uncommitted by the weight of ∧Ak.

With the Dempster combination method [12], the upper bound
(

β̃k
)U

and the lower bound
(

β̃k
)L

of the activation degree β̃k of consequent ∧Ck are given as follows:

Max/Minβ̃k

S.t.β̃k =
m∗R

(

∧Ck
)

m∗A
(

∧Ck
)

+m∗R
(

∧Ck
)

m∗A
(

Ωk
)

+m∗R
(

Ωk
)

m∗A
(

∧Ck
)

+m∗R
(

Ωk
)

m∗A
(

∧Ck
)

1− m̄∗R (Ωk) m̄∗A (Ωk)

m∗R

(

∧Ck
)

+m∗R

(

Ωk
)

= 1

m∗A

(

∧Ck
)

+m∗A

(

Ωk
)

= 1

m̄∗R

(

Ωk
)

+ m̄∗A

(

Ωk
)

= 1

the solutions of the optimization problem are the upper bound
(

β̃k
)U

and lower bound
(

β̃k
)L

of the activation degree β̃k.

β̃k =

[

(

β̃k
)L

,
(

β̃k
)U

]

(

β̃k
)L

= Min β̃k

(

β̃k
)U

= Max β̃k

Then the interval certitude degree of consequent attribute value Ck
j (j = 1, 2, · · · , J) is ob-

tained based on the similarity measure S[]:

β̃k
j =

[

(

β̃k
j

)L

,
(

β̃k
j

)U
]
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(

β̃k
j

)L

=















[

min

{

1−
(

βk
j

)L

+
(

β̃k
)L

, 1−
(

βk
j

)U

+
(

β̃k
)U

}]

(

βk
j

)L

α̃k = 1

min

{

(

β̃k
)L(

βk
j

)L

, 1

}

α̃k < 1

(

β̃k
j

)U

=















[

max

{

1−
(

βk
j

)L

+
(

β̃k
)L

, 1−
(

βk
j

)U

+
(

β̃k
)U

}]

(

βk
j

)U

α̃k = 1

min

{

(

β̃k
)U(

βk
j

)U

, 1

}

α̃k < 1

If there are T rules which are matching successfully with the input fact and having the same
consequent attribute value C′, then the combination method should be given. First of all, the
tth rules can be given as Rt:

If
(

∧At, α̃t
)

then
(

C′, β̃t
n

)

∧ · · · ∧
(

Ct
n−1, β̃

t
n−1

)

∧
(

Ct
n+1, β̃

t
n+1

)

∧ · · · ∧
(

Ct
J , β̃

t
J

)

with rule certitude degree γt, rule weight θt and antecedent attribute weights w1, w2, · · · , wI

where = 1, 2, · · · , T , n ∈ {1, 2, · · · , J} and n is determinate; ∧At is the antecedent of rule Rt,

α̃t =
[

(

α̃t
)L

,
(

α̃t
)U

]

⊆ [0, 1] is the interval certitude degree of ∧At; C′ and Ct
j (j = 1, · · · , n− 1,

n+ 1, · · · , J) are the consequent attribute values of rule Rt, β̃
t
n =

[

(

β̃t
n

)L

,
(

β̃t
n

)U
]

⊆ [0, 1]

is the interval certitude degree of C′ under the input fact, β̃t
j =

[

(

β̃t
j

)L

,
(

β̃t
j

)U
]

⊆ [0, 1]

(j = 1, · · · , n− 1, n+ 1, · · · , J) is the interval certitude degree of Ct
j under the input fact; γ

t =
[

(

γt
)L

,
(

γt
)U

]

⊆ [0, 1] is the rule certitude degree of rule Rt, θ
t ∈ [0, 1] is the rule weight of

rule Rt, the activation weights of rules are under the influence of Θ = {θt |t = 1, 2, · · · , T },
w1, w2, · · · , wI are antecedent attribute weights.

The rule weights are the relative weights (preference weights), according to the preference
weight method [25], the credibility degrees of rules are given as ̟ = {̟t |t = 1, 2, · · · , T }, and
̟t is the credibility degree of the tth rule Rt.

According to the evidential reasoning approach, {C′} is frame of discernment, let Ω′ =
{

∅, {C′}
}

, the basic probability masses are given as follows:

mt (C′) = ̟tβ̃
t
n =

[

mL
t (C′) ,mU

t (C′)
]

=

[

̟t

(

β̃t
n

)L

̟t

(

β̃t
n

)U
]

mt (Ω′) = 1−mt (C′) = 1−̟tβ̃
t
n =

[

mL
t (Ω′) ,mU

t (Ω′)
]

=

[

1−̟t

(

β̃t
n

)U

, 1−̟t

(

β̃t
n

)L
]

m̄t (Ω′) = 1−̟t

where mt (C′) is the basic probability mass of Rt, mt (Ω′) is the remaining probability mass
that is unassigned to C′ which is caused by the incompleteness of rule Rt; m̄t (Ω′) is amount of
remaining support left uncommitted by the weight of Rt.

Suppose mΛ(t) (C′) is the combined basic probability mass of C′ by aggregating the first
t (t = 1, 2, · · · , T ) rules (R1, · · · , Rt), and mΛ(t) (Ω′) is unassigned to C′ which is caused by the
incomplete-ness of the first t rules (R1, · · · , Rt); m̄Λ(t) (Ω′) is amount of remaining support left
uncommitted by the weight of the first t rules (R1, · · · , Rt).

Obviously, for the first t = 1,

mΛ(1) (C′) = m1 (C′) = ̟1β̃
1
j =

[

mL
Λ(1) (C′) ,m

U
Λ(1) (C′)

]

=

[

̟1

(

β̃1
n

)L

, ̟1

(

β̃1
n

)U
]
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mΛ(1) (Ω′) = m1 (Ω′) =
[

mL
Λ(1) (Ω′) ,m

U
Λ(1) (Ω′)

]

=

[

1−̟1

(

β̃1
n

)U

, 1−̟1

(

β̃1
n

)L
]

m̄Λ(1) (Ω′) = 1−̟1

The combined masses of the first t rules are given as follows:

• mΛ(t+1) (C′)

Max/Min mΛ(t+1) (C′) = m∗Λ(t) (C′)m
∗

t+1 (C′)

+m∗Λ(t) (C′)m
∗

t+1 (Ω′) +m∗Λ(t) (Ω′)m
∗

t+1 (C′)

S.t. m∗Λ(t) (C′)m
∗

t+1 (C′) +m∗Λ(t) (Ω′)m
∗

t+1 (Ω′)

+m∗Λ(t) (C′)m
∗

t+1 (Ω′) +m∗Λ(t) (Ω′)m
∗

t+1 (C′) = 1

m∗t+1 (C′) +m∗t+1 (Ω′) = 1

The result of solving the optimization model is

mΛ(t+1) (C′) =
[

mL
Λ(t+1) (C′) ,m

U
Λ(t+1) (C′)

]

mL
Λ(t+1) (C′) = Min mΛ(t+1) (C′)

mU
Λ(t+1) (C′) = Max mΛ(t+1) (C′)

• mΛ(t+1) (Ω′)

Max/Min mΛ(t+1) (Ω′) = m∗Λ(t) (Ω′)m
∗

t+1 (Ω′)

S.t. m∗Λ(t) (C′)m
∗

t+1 (C′) +m∗Λ(t) (Ω′)m
∗

t+1 (Ω′)

+m∗Λ(t) (C′)m
∗

t+1 (Ω′) +m∗Λ(t) (Ω′)m
∗

t+1 (C′) = 1

m∗t+1 (C′) +m∗t+1 (Ω′) = 1

The result of solving the optimization model is

mI(t+1) (Ω′) =
[

mL
I(t+1) (Ω′) ,m

U
I(t+1) (Ω′)

]

mL
I(t+1) (Ω′) = Min mI(t+1) (Ω′)

mU
I(t+1) (Ω′) = Max mI(t+1) (Ω′)

• m̄Λ(t+1) (Ω′)

m̄Λ(t+1) (Ω′) = m̄Λ(t) (Ω′) m̄t+1 (Ω′)

The composition certitude degree of the consequent attribute value C′ is given as follows:

β′ =
[

(β′)L, (β′)U
]

, (β′)L =
mL

Λ(T ) (C′)

1− m̄Λ(T ) (Ω′)
, (β′)U =

mU
Λ(T ) (C′)

1− m̄Λ(T ) (Ω′)
.

Obviously, interval certitude degree satisfies that the interval certitude degree is more greater
the consequent attribute value is more certain. If there are more than one matches and values of
each consequent attribute, then the consequent attribute value with the greater interval certitude
degree is the final consequent attribute value under the actual input vector.
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3 Illustrative examples

In this section, a case study of classification with UCI data sets is provided. This example is
used to illustrate the effectiveness of ICRIMER by comparing with some existing approaches.

In order to compare ICRIMER inference method with other methods which are based on
different data types as well as missing values, eight data sets from the UCI Machine Learning
Repository are used. Table 1 shows for each data set its name, the numbers of instances,
attributes, linear attributes, nominal attributes, linguistic attributes, classes, and the percentage
of the missing values.

Table 1: Properties of eight data sets from UCI

Dataset Instances Attributes
Linear

Attributes
Nominal
Attributes

Linguistic
Attributes

Classes
Missing

Values (%)

cancer 699 10 0 0 10 2 0.25
glass 214 9 9 0 0 6 0
horse 368 27 7 20 0 2 24
ionosphere 351 34 34 0 0 2 0
iris 150 4 4 0 0 3 0
liver 345 6 6 0 0 2 0
pima 768 8 8 0 0 2 0
wine 178 13 13 0 0 2 0

These data sets are used to compare the performances of Interval Certitude Rule Base Infer-
ence Method using Evidential Reasoning approach (ICRIMER), Rule Based Inference Method
using Dempster-Shafer theory (RIMDS) [15], Feature Interval Learning algorithm (FIL) [11], k-
Nearest Neighbor algorithm (k-NN) [4] Logistic Regression (LoR) [3,26], Naive Bayesian classifier
(NB) [7], Pruning Decision Tree (PDT) [13].

ICRIMER and RIMDS are interval feature projection based logical inference algorithms. FIL
is an interval feature projection based algorithm. LoR and NB are probability based algorithm.
PDT is a structure based algorithm and decision tree can be used to describe If-then rules. k-NN
is a famous machine learning method and give excellent results on many real-world examples [24].

To illustrate the significance of the accuracy of the rule base, a comparison rule base is given,
and the interval certitude degrees and weights of rules are given based on some artificial restric-
tions. For example, if two rules which have the same antecedent and the different consequent,
then these two rules will be given the smaller interval certitude degrees and weights; the weights
of attribute are given using the feature selection method based on Relief [18]. The learning
method based on ICRIMER and the comparison rule base is recorded as ICRIMER-c.

In the eight data sets, there are different data types: linear values, nominal values, linguistic
values (evaluation grade) and missing values. So the instances should be transformed into interval
certitude rules firstly.

Table 2 and Figure 1 report the correctly classified accuracy rate of the FIL, k-NN, LoR, NB,
PDT, RIMDS and ICRIMER which are obtained by averaging the correctly classified accuracy
rates over five repetitions of 5-folder cross validations. In this paper, k=5 for k-NN which exactly
consistent with the case study in Ref. 29 as 5-NN gives the best correctly classified accuracy
rate.

From Table 2 and Figure 1, we can find some phenomena as follows.
(i) ICRIMER may not always be the best classification method except data sets cancer and

iris, but ICRIMER outperforms the interval classification methods RIMDS and FIL on five data
sets, cancer, glass, horse, iris and liver. It means that ICRIMER has a higher classification
capability on interval data sets.
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Table 2: Correctly classified accuracy rates of the FIL, k-NN, LoR, NB, PDT, RIMDS, ICRIMER
and ICRIMER-c

Learning Method cancer glass horse ionosphere iris liver pima wine

FIL 0.9688 0.5502 0.7718 0.9253 0.9426 0.6185 0.7054 0.9663
k-NN 0.9691 0.6455 0.8157 0.8501 0.9640 0.6110 0.7353 0.9540
LoR 0.9342 0.6355 0.8300 0.8775 0.8533 0.6870 0.6355 0.9607
NB 0.9740 0.5392 0.8027 0.8842 0.9293 0.6151 0.7262 0.9348
PDT 0.9299 0.6822 0.8033 0.8974 0.9600 0.6870 0.6822 0.9157
RIMDS 0.9629 0.5844 0.7700 0.8643 0.9739 0.6232 0.5195 0.9444
ICRIMER 0.9759 0.6047 0.7733 0.8942 0.9800 0.6318 0.6987 0.9055
ICRIMER-c 0.9900 0.6512 0.8132 0.8971 0.9899 0.6957 0.7532 0.9722

cancer glass horse ionosphere iris liver pima wine
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Figure 1: Correctly classified accuracy rates of the FIL, k-NN, LoR, NB, RIMDS, ICRIMER
and ICRIMER-c

(ii) With regard to If-then rules, ICRIMER outperforms or a bit underperforms PDT on five
data sets, cancer, ionosphere, iris, pima and wine. It means that ICRIMER has advantages in
this respect.

(iii) ICRIMER-c is the best classification method on five data sets cancer, iris, liver, pima
and wine, on the other three data sets the accuracy rate of ICRIMER-c is higher than the
accuracy rate of ICRIMER and ICRIMER-c is the second best method in the eight methods. It
means that, with a relatively accurately rule base, ICRIMER has general applicability and high
classification capability.

(iv) Compare the classified accuracy rates of ICRIMER and ICRIMER-c, the classified accu-
racy rate of ICRIMER-c is higher than the classified accuracy rates of ICRIMER. It means that
a relatively accurately rule base is an important influencing factors of ICRIMER and the rule
base can be more accurately by adjusting the interval certitude degrees and weights of rules, the
knowledge representation method ICRB is effective.

In general, ICRIMER is the better algorithm on this eight UCI data sets, with the relatively
accurate rule bases, the results of classification would be better. And the interval certitude
structure can be used to describe the uncertainties of knowledge; the ICRB can better reflect
the uncertainty, correctness and importance of instance or knowledge. Moreover, if the weights
and interval certitude degrees are given by domain expert or gained through training, then the
results will be more rational and better.
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4 Conclusions

In this paper, a new knowledge representation, interval certitude rule base (ICRB), was
proposed to capture uncertainty and nonlinear causal relationships based on the If-then rule and
fuzzy set theory. The inference process of interval certitude rule base was characterized by all
interval certitude rules expression and was reasoning using the evidential reasoning. And an
illustrative example with UCI data sets was used to illustrate the application of the proposed
method.

There are several features of the interval certitude rule base inference method (ICRIMER).
First, due to the use of interval certitude rule, the ICRIMER method gives a description frame-
work of relationships between inputs and outputs which may be complete or incomplete, linear
or nonlinear, discrete or continuous, or their mixture, which are based on both numerical data
and human judgments. Second, the uncertainty of human judgment is characterized with inter-
val certitude structure, and ICRIMER is a multi-output uncertainty inference method with one
or more than one consequent attributes. These features are more close to the experience and
perception of human.

Acknowledgements

This work is supported by Doctor Project of Chongqing Social Sciences (Grant No. 2016BS082,
2016BS032), Project of Chongqing Municipal Education Commission (Grant No. KJ2016008391
44), Chongqing Commission of Science and Technology Research Projects (Grant No. KJ170616
5), Chongqing Engineering Research Center for Processing, Storage and Transportation of Char-
acterized Agro-Products (Grant No. KFJJ2016026), Fundamental Science and Frontier Technol-
ogy Research Project in Chongqing (cstc2017jcyjAX01301), National Natural Science Foundation
of China (No.71702015).

Bibliography

[1] Aczel J., Saaty T.L. (1983); Procedures for synthesizing ratio judgments, Journal of Math-
ematical Psychology, 27(2), 93–102, 1983.

[2] Barrenechea E., Fernandez J., Pagola M. et al (2014); Construction of interval-valued fuzzy
preference relations from ignorance functions and fuzzy preference relations. Application to
decision making, Knowledge-Based Systems, 58, 33–44, 2014.

[3] Bielza C., Robles V., Larranaga P. (2011); Regularized logistic regression without a penalty
term: an application to cancer classification with microarray data, Expert Systems with
Applications, 38(5), 5110–5118, 2011.

[4] Cataron A., Andonie R., Chueh Y. (2013); Asymptotically unbiased estimator of the infor-
mational energy with kNN, International Journal of Computers Communications & Control,
8(5), 689–698, 2013.

[5] Calzada A., Liu J., Wang H.,Kashyap A. (2013); A GIS-based spatial decision support tool
based on extended belief rule-based inference methodology, Eureka–2013 Fourth Interna-
tional Workshop Proceedings, 388–395, 2013.

[6] Chao X.R., Peng Y., Kou G. (2017); A similarity measure-based optimization model for
group decision making with multiplicative and fuzzy preference relations, International Jour-
nal of Computers Communications & Control, 12(1), 26–40, 2017.



Interval Certitude Rule Base Inference Method using the Evidential Reasoning 851

[7] Chen J.N., Huang H.K., Tian F.Z. et al. (2008); A selective bayes classifier for classifying
incomplete data based on gain ratio, Knowledge-Based Systems, 21(7), 530–534, 2008.

[8] Chin K.S., Yang J.B., Guo M. et al. (2009); An evidential-reasoning-interval-based method
for new product design assessment, IEEE Transactions on Engineering Management, 56(1),
142–156, 2009.

[9] Conde E., de la Paz Rivera Perez M. (2010); A linear optimization problem to derive relative
weights using an interval judgement matrix, European Journal of Operational Research,
201(2), 537–544, 2010.

[10] Couso I., Garrido L., Sanchez L. (2013); Similarity and dissimilarity measures between fuzzy
sets: A formal relational study, Information Sciences, 229, 122–141, 2013.

[11] Dayanik A. (2010); Feature interval learning algorithms for classification, Knowledge-Based
Systems, 23(5), 402–417, 2010.

[12] Dempster A.P. (1967); Upper and lower probabilities induced by a multivalued mapping,
Annals of Mathematical Statistics, 38(2), 325–339, 1967.

[13] Esposito F., Malerba D., Semeraro G. (1997); A comparative analysis of methods for pruning
decision trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), 476–
491, 1997.

[14] Hu B.Q. (2010); Fuzzy theory, Wuhan University Press, 2010.

[15] Jin L.Q., Xu Y. (2014); A rule-based inference method using Dempster-Shafer theory,
Knowledge Engineering and Management Proceedings of the Eighth International Conference
on Intelligent Systems and Knowledge Engineering (ISKE 2013), 61–72, 2014.

[16] Jin L. Q., Xu Y., Fang X. (2016); A novel interval certitude rule base inference method
with evidential reasoning, Proceedings of the 12th International FLINS Conference (FLINS
2016), 50–55, 2016.

[17] Jin L.Q., Liu J., Xu Y., Fang X. (2015); A novel rule base representation and its inference
method using the evidential reasoning approach, Knowledge-Based Systems, 87, 80–91, 2015.

[18] Kononenko I. (1994); Estimating attributes: analysis and extension of relief, Proceedings of
the Seventh European Conference in Machine Learning, Springer-Verlag, 171–182, 1994.

[19] Li D.F. (2011); Linear programming approach to solve interval-valued matrix games, Omega,
39, 655–666, 2011.

[20] Li M., Wu C., Zhang L. et al. (2015); An intuitionistic Fuzzy-TODIM method to solve
distributor evaluation and selection problem, International Journal of Simulation Modelling,
14(3), 511–524, 2015.

[21] Liu J., Martinez L., Calzada A. et al (2013); A novel belief rule base representation, gener-
ation and its inference methodology, Knowledge-Based Systems, 53, 129–141, 2013.

[22] Nadaban S., Dzitac S., Dzitac I. (2016); Fuzzy TOPSIS: A General View, Procedia Computer
Science, 91, 823-831, 2016.

[23] Park J.H., Park I.Y, Kwun Y.C. et al (2011); Extension of the TOPSIS method for decision
making problems under interval-valued intuitionistic fuzzy environment, Applied Mathemat-
ical Modelling, 35, 2544–2556, 2011.



852 L.Q. Jin, X. Fang

[24] Saez J.A., Derrac J., Luengo J. et al (2014); Statistical computation of feature weight-
ing schemes through data estimation for nearest neighbor classifiers, Pattern Recognition,
47(12), 3941–3948, 2014.

[25] Saaty T.L. (1980); The Analytic Hierarchy Process, McGraw-Hill Press, 1980.

[26] Soman K.P., Diwakar S., Ajay V. (2011); Insight into data mining theory and practice, China
Machine Press, 2011.

[27] Sun R. (1995); Robust reasoning: integrating rule based and similarity based reasoning,
Artificial Intelligence, 75(2), 241–295, 1995.

[28] Wang Y.M. (2009); Reply to the note on article "The evidential reasoning approach for
multiple attribute decision analysis using interval belief degrees", European Journal of Op-
erational Research, 197, 813–817, 2009.

[29] Wang Z.D., Wang H.Q., Lv H.W. et al (2014); Spectrum migration approach based on Pre-
decision Aid and interval mamdani fuzzy inference in cognitive radio networks, International
Journal of Computers Communications & Control, 9(1), 85–92, 2014.

[30] Wang J.Q., Wu J.T., Wang J. et al. (2014); Interval-valued hesitant fuzzy linguistic sets
and their applications in multi-criteria decision-making problems, Information Sciences, 288,
55–72, 2014.

[31] Wang Y.M., Yang J.B., Xu D.L. et al (2006); The evidential reasoning approach for multiple
attribute decision analysis using interval belief degrees, European Journal of Operational
Research, 175, 35–66, 2006.

[32] Wang Y.M., Yang J.B., Xu D.L. et al. (2006); The evidential reasoning approach for multiple
attribute decision analysis using interval belief degrees, European Journal of Operational
Research, 175, 35–66, 2006.

[33] Wang Y.M., Yang J.B., Xu D.L. et al. (2007); On the combination and normalization of
interval-valued belief structures, Information Sciences, 177, 1230–1247, 2007.

[34] Wang T., Zhang G.X., Perez-Jimenez, M.J. (2015); Fuzzy membrane computing: Theory
and applications, International Journal of Computers Communications & Control, 10(6),
144–175, 2015.

[35] Xu D.L., Yang J.B., Wang Y.M. (2006); The evidential reasoning approach for multi-
attribute decision analysis under interval uncertainty, European Journal of Operational Re-
search, 174, 1914–1943, 2006.

[36] Xu Y., Qiao Q.X., Chen C.P. et al. (1994); Uncertainty inference, Southwest Jiaotong
University Press, 1994.

[37] Xu Z.S. (2013); Group decision making model and approach based on interval preference
orderings, Computers & Industrial Engineering, 64, 797–803, 2013.

[38] Yang J.B., Liu J., Wang J. (2006); Belief rule-base inference methodology using the eviden-
tial reasoning approach—-RIMER, IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, 36(2), 266–285, 2006.



Interval Certitude Rule Base Inference Method using the Evidential Reasoning 853

[39] Yang J.B., Singh M.G. (1994); An evidential reasoning approach for multiple-attribute
decision making with uncertainty, IEEE Transactions on Systems, Man, and Cybernetics,
24(1), 1–18, 1994.

[40] Yang J.B., Xu D.L. (2013); Evidential reasoning rule for evidence combination, Artificial
Intelligence, 205, 1–29, 2013.

[41] Yue Z.L. (2013); Group decision making with multi-attribute interval data, Information
Fusion, 14, 551–561, 2013.


